Regulation of anion exchanger Slc26a6 by protein kinase C

Am J Physiol Cell Physiol. 2007 Apr;292(4):C1485-92. doi: 10.1152/ajpcell.00447.2006. Epub 2006 Dec 6.

Abstract

SLC26A6 (CFEX, PAT1) is an anion exchanger expressed in several tissues including renal proximal tubule, pancreatic duct, small intestine, liver, stomach, and heart. It has recently been reported that PKC activation inhibits A6-mediated Cl/HCO(3) exchange by disrupting binding of carbonic anhydrase to A6. However, A6 can operate in HCO(3)-independent exchange modes of physiological importance, as A6-mediated Cl/oxalate exchange plays important roles in proximal tubule NaCl reabsorption and intestinal oxalate secretion. We therefore examined whether PKC activation affects HCO(3)-independent exchange modes of Slc26a6 functionally expressed in Xenopus oocytes. We found that PKC activation inhibited Cl/formate exchange mediated by Slc26a6 but failed to inhibit the related anion exchanger pendrin (SLC26A4) under identical conditions. PKC activation inhibited Slc26a6-mediated Cl/formate exchange, Cl/oxalate exchange, and Cl/Cl exchange to a similar extent. The inhibitor sensitivity profile and the finding that PMA-induced inhibition was calcium independent suggested a potential role for PKC-delta. Indeed, the PKC-delta-selective inhibitor rottlerin significantly blocked PMA-induced inhibition of Slc26a6 activity. Localization of Slc26a6 by immunofluorescence microscopy demonstrated that exposure to PKC activation led to redistribution of Slc26a6 from the oocyte plasma membrane to the intracellular compartment immediately below it. We also observed that PMA decreased the pool of Slc26a6 available to surface biotinylation but had no effect on total Slc26a6 expression. The physiological significance of these findings was supported by the observation that PKC activation inhibited mouse duodenal oxalate secretion, an effect blocked by rottlerin. We conclude that multiple modes of anion exchange mediated by Slc26a6 are negatively regulated by PKC-delta activation.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acetophenones / pharmacology
  • Animals
  • Anion Transport Proteins / metabolism
  • Antiporters / metabolism*
  • Benzopyrans / pharmacology
  • Biological Transport, Active
  • Carbazoles / pharmacology
  • Cell Membrane / metabolism
  • Chlorides / metabolism
  • Cytoplasm / metabolism
  • Enzyme Activation
  • Female
  • Formates / metabolism
  • In Vitro Techniques
  • Indoles / pharmacology
  • Maleimides / pharmacology
  • Mice
  • Oocytes / metabolism
  • Oxalates / metabolism
  • Protein Kinase C-delta / antagonists & inhibitors
  • Protein Kinase C-delta / physiology*
  • Protein Transport
  • Sulfate Transporters
  • Tetradecanoylphorbol Acetate / pharmacology
  • Xenopus

Substances

  • 2-(1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl)-3-(1H-indol-3-yl)maleimide
  • Acetophenones
  • Anion Transport Proteins
  • Antiporters
  • Benzopyrans
  • Carbazoles
  • Chlorides
  • Formates
  • Indoles
  • Maleimides
  • Oxalates
  • Slc26a4 protein, mouse
  • Slc26a6 protein, mouse
  • Sulfate Transporters
  • formic acid
  • Go 6976
  • rottlerin
  • Protein Kinase C-delta
  • Tetradecanoylphorbol Acetate