Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose

J Neurochem. 2007 Jan;100(1):73-86. doi: 10.1111/j.1471-4159.2006.04200.x. Epub 2006 Oct 31.

Abstract

Recent studies in rodent and human cerebral cortex have shown that glutamate-glutamine neurotransmitter cycling is rapid and the major pathway of neuronal glutamate repletion. The rate of the cycle remains controversial in humans, because glutamine may come either from cycling or from anaplerosis via glial pyruvate carboxylase. Most studies have determined cycling from isotopic labeling of glutamine and glutamate using a [1-(13)C]glucose tracer, which provides label through neuronal and glial pyruvate dehydrogenase or via glial pyruvate carboxylase. To measure the anaplerotic contribution, we measured (13)C incorporation into glutamate and glutamine in the occipital-parietal region of awake humans while infusing [2-(13)C]glucose, which labels the C2 and C3 positions of glutamine and glutamate exclusively via pyruvate carboxylase. Relative to [1-(13)C]glucose, [2-(13)C]glucose provided little label to C2 and C3 glutamine and glutamate. Metabolic modeling of the labeling data indicated that pyruvate carboxylase accounts for 6 +/- 4% of the rate of glutamine synthesis, or 0.02 micromol/g/min. Comparison with estimates of human brain glutamine efflux suggests that the majority of the pyruvate carboxylase flux is used for replacing glutamate lost due to glial oxidation and therefore can be considered to support neurotransmitter trafficking. These results are consistent with observations made with arterial-venous differences and radiotracer methods.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Isotopes
  • Cerebral Cortex / metabolism*
  • Female
  • Glucose / metabolism*
  • Glutamic Acid / metabolism
  • Glutamine / metabolism
  • Humans
  • Ketone Oxidoreductases / metabolism
  • Magnetic Resonance Spectroscopy*
  • Male
  • Models, Biological
  • Pyruvate Carboxylase / metabolism
  • Time Factors

Substances

  • Carbon Isotopes
  • Glutamine
  • Glutamic Acid
  • Ketone Oxidoreductases
  • pyruvate dehydrogenase (NADP+)
  • Pyruvate Carboxylase
  • Glucose