Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum

Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8751-6. doi: 10.1073/pnas.0602076103. Epub 2006 May 26.

Abstract

Mitochondrial genomes of multicellular animals are typically 15- to 24-kb circular molecules that encode a nearly identical set of 12-14 proteins for oxidative phosphorylation and 24-25 structural RNAs (16S rRNA, 12S rRNA, and tRNAs). These genomes lack significant intragenic spacers and are generally without introns. Here, we report the complete mitochondrial genome sequence of the placozoan Trichoplax adhaerens, a metazoan with the simplest known body plan of any animal, possessing no organs, no basal membrane, and only four different somatic cell types. Our analysis shows that the Trichoplax mitochondrion contains the largest known metazoan mtDNA genome at 43,079 bp, more than twice the size of the typical metazoan mtDNA. The mitochondrion's size is due to numerous intragenic spacers, several introns and ORFs of unknown function, and protein-coding regions that are generally larger than those found in other animals. Not only does the Trichoplax mtDNA have characteristics of the mitochondrial genomes of known metazoan outgroups, such as chytrid fungi and choanoflagellates, but, more importantly, it shares derived features unique to the Metazoa. Phylogenetic analyses of mitochondrial proteins provide strong support for the placement of the phylum Placozoa at the root of the Metazoa.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • DNA, Mitochondrial / genetics*
  • Genome / genetics*
  • Invertebrates / classification*
  • Invertebrates / genetics*
  • Molecular Sequence Data
  • Phylogeny

Substances

  • DNA, Mitochondrial

Associated data

  • GENBANK/DQ112541