Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused

Development. 2005 Oct;132(19):4407-17. doi: 10.1242/dev.02021.

Abstract

The hedgehog (Hh) pathway is conserved from Drosophila to humans and plays a key role in embryonic development. In addition, activation of the pathway in somatic cells contributes to cancer development in several tissues. Suppressor of fused is a negative regulator of Hh signaling. Targeted disruption of the murine suppressor of fused gene (Sufu) led to a phenotype that included neural tube defects and lethality at mid-gestation (9.0-10.5 dpc). This phenotype resembled that caused by loss of patched (Ptch1), another negative regulator of the Hh pathway. Consistent with this finding, Ptch1 and Sufu mutants displayed excess Hh signaling and resultant altered dorsoventral patterning of the neural tube. Sufu mutants also had abnormal cardiac looping, indicating a defect in the determination of left-right asymmetry. Marked expansion of nodal expression in 7.5 dpc embryos and variable degrees of node dysmorphology in 7.75 dpc embryos suggested that the pathogenesis of the cardiac developmental abnormalities was related to node development. Other mutants of the Hh pathway, such as Shh, Smo and Shh/Ihh compound mutants, also have laterality defects. In contrast to Ptch1 heterozygous mice, Sufu heterozygotes had no developmental defects and no apparent tumor predisposition. The resemblance of Sufu homozygotes to Ptch1 homozygotes is consistent with mouse Sufu being a conserved negative modulator of Hh signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Body Patterning
  • Genetic Predisposition to Disease
  • Genotype
  • Heart Defects, Congenital / genetics
  • Heart Defects, Congenital / metabolism*
  • Hedgehog Proteins
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Mutation
  • Neoplasms / genetics
  • Neural Tube Defects / genetics
  • Neural Tube Defects / metabolism*
  • Patched Receptors
  • Patched-1 Receptor
  • Receptors, Cell Surface
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism*
  • Signal Transduction
  • Trans-Activators / metabolism

Substances

  • Hedgehog Proteins
  • Intracellular Signaling Peptides and Proteins
  • Membrane Proteins
  • PTCH1 protein, human
  • Patched Receptors
  • Patched-1 Receptor
  • Ptch1 protein, mouse
  • Receptors, Cell Surface
  • Repressor Proteins
  • Sufu protein, mouse
  • Trans-Activators