Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1alpha

J Vasc Surg. 2005 Feb;41(2):321-31. doi: 10.1016/j.jvs.2004.11.016.

Abstract

Objective: Vascular smooth muscle cell (SMC) migration is critical to the development of atherosclerosis and neointimal hyperplasia. Hemodynamic forces such as shear stress and cyclic strain stimulate endothelial cell signal-transduction pathways, resulting in the secretion of several factors, including SMC chemoattractants such as platelet-derived growth factor (PDGF). We hypothesized that mechanical forces stimulate endothelial cells to secrete SMC chemoattractants to induce migration via the mitogen-activated protein kinase (MAPK) pathway.

Methods: Bovine aortic endothelial cells were exposed to shear stress, cyclic strain, or static conditions for 16 hours. The resulting conditioned medium was used as a SMC chemoattractant in a Boyden chamber. Activation of SMC extracellular signal-regulated protein kinase 1/2 (ERK1/2) was assessed by Western blot analysis. Pathways were inhibited with anti-PDGF-BB or anti-interleukin-1alpha (IL-1alpha) antibodies, or the ERK1/2 upstream pathway inhibitor PD98059.

Results: Conditioned medium from endothelial cells exposed to shear stress corresponding to arterial levels of shear stress stimulated SMC migration but lower levels of shear stress or cyclic strain did not. Both PDGF-BB and IL-1alpha were secreted into the conditioned medium by endothelial cells stimulated with shear stress. Both PDGF-BB and IL-1alpha stimulated SMC chemotaxis but were not synergistic, and both stimulated SMC ERK1/2 phosphorylation. Inhibition of PDGF-BB or IL-1alpha inhibited SMC chemotaxis and ERK1/2 phosphorylation.

Conclusion: Shear stress stimulates endothelial cells to secrete several SMC chemoattractants, including PDGF-BB and IL-1alpha; both PDGF-BB and IL-1alpha stimulate SMC chemotaxis via the ERK1/2 signal-transduction pathway. These results suggest that the response to vascular injury may have a common pathway amenable to pharmacologic manipulation.

Clinical relevance: One difficulty in the pharmacologic treatment of atherosclerosis or neointimal hyperplasia leading to restenosis is the multiplicity of activated pathways and thus potential treatment targets. This study demonstrates that shear stress, a hemodynamic force that may be a biologically relevant stimulus to induce vascular pathology, stimulates endothelial cells to secrete PDGF-BB and IL-1alpha. Both of these mediators stimulate the SMC ERK1/2 pathway to induce migration, a critical event in the pathogenesis of atherosclerosis and neointimal hyperplasia. Therefore, this study suggests a relevant common target pathway in SMC that is amenable to manipulation for clinical treatment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Becaplermin
  • Cattle
  • Cell Culture Techniques
  • Chemotactic Factors / immunology
  • Chemotaxis / immunology*
  • Endothelial Cells / immunology*
  • Interleukin-1 / immunology*
  • Mitogen-Activated Protein Kinases / immunology
  • Muscle, Smooth, Vascular / immunology*
  • Platelet-Derived Growth Factor / immunology*
  • Proto-Oncogene Proteins c-sis
  • Shear Strength
  • Signal Transduction

Substances

  • Chemotactic Factors
  • Interleukin-1
  • Platelet-Derived Growth Factor
  • Proto-Oncogene Proteins c-sis
  • Becaplermin
  • Mitogen-Activated Protein Kinases