Effect of detergents on the association of the glycophorin a transmembrane helix

Biophys J. 2003 Nov;85(5):3097-105. doi: 10.1016/S0006-3495(03)74728-6.

Abstract

We have examined the role of the environment on the interactions between transmembrane helices using, as a model system, the dimerization of the glycophorin A transmembrane helix. In this study we have focused on micellar environments and have examined a series of detergents that include a range of alkyl chain lengths, combined with ionic, zwitterionic, and nonionic headgroups. For each we have measured how the apparent equilibrium constant depends on the detergent concentration. In two detergents we also measured the thermal sensitivity of the equilibrium constant, from which we derive the van't Hoff enthalpy and entropy. We show that several simple models are inadequate for explaining our results; however, models that include the effect of detergent concentration on detergent binding are able to account for our measurements. Our analysis suggests that the effects of detergents on helix association are due to a pair of opposing effects: an enthalpic effect, which drives association as the detergent concentration is increased and which is sensitive to the chemical nature of the detergent headgroup, opposed by an entropic effect, which drives peptide dissociation as the detergent concentration is raised. Our results also indicate that the monomer-monomer interface is relatively hydrophilic and that association within detergent micelles is driven by the enthalpy change. The wide variations in glycophorin a dimmer, stability with the detergent used, together with the realization that this results from the balance between two opposing effects, suggests that detergents might be selected that drive association rather than dissociation of peptide dimers.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites
  • Detergents / chemistry*
  • Glycophorins / chemistry*
  • Membrane Proteins / chemistry*
  • Micelles
  • Protein Binding
  • Protein Conformation
  • Protein Denaturation
  • Protein Folding
  • Protein Structure, Secondary
  • Temperature

Substances

  • Detergents
  • Glycophorins
  • Membrane Proteins
  • Micelles