Extracellular domains, transmembrane segments, and intracellular domains interact to determine the cation selectivity of Na,K- and gastric H,K-ATPase

Biochemistry. 2002 Aug 6;41(31):9803-12. doi: 10.1021/bi025819z.

Abstract

We have previously reported that three residues of the fourth transmembrane segment (TM4) of the Na,K- and gastric H,K-ATPase alpha-subunits appear to play a major role in the distinct cation selectivities of these pumps [Mense, M., et al. (2000) J. Biol. Chem. 275, 1749-1756]. Substituting these three residues in the Na,K-ATPase sequence with their H,K-ATPase counterparts (L319F, N326Y, T340S) and replacing the TM3-TM4 ectodomain sequence with that of the H,K-ATPase alpha-subunit result in a pump that exhibits 50% of its maximal ATPase activity in the absence of Na(+) when the assay is performed at pH 6.0. This effect is not seen when the ectodomain alone is replaced. To gain more insight into the contributions of the three residues to establishing the selectivity of these pumps for Na(+) ions versus protons, we generated Na,K-ATPase constructs in which these residues are replaced by their H,K-ATPase counterparts either singly or in combinations. Surprisingly, none of the point mutants nor even the triple mutant was able to hydrolyze ATP at pH 6.0 at a rate greater than 20% of their respective V(max)s. For the point mutants L319F and N326Y, protons seem to competitively inhibit ATP hydrolysis at pH 6.0, based on the low apparent affinity for Na(+) ions at pH 6.0 compared to pH 7.5. It would appear, therefore, that the cation selectivity of Na,K- and H,K-ATPase is generated through a cooperative effort between residues of transmembrane segments and the flanking loops that connect these transmembrane domains. This view is further supported by homology modeling of the Na,K-ATPase based on the crystal structure of the SERCA pump.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Cations
  • DNA Primers
  • H(+)-K(+)-Exchanging ATPase / chemistry
  • H(+)-K(+)-Exchanging ATPase / genetics
  • H(+)-K(+)-Exchanging ATPase / metabolism*
  • Hydrogen-Ion Concentration
  • LLC-PK1 Cells
  • Point Mutation
  • Sodium-Potassium-Exchanging ATPase / chemistry
  • Sodium-Potassium-Exchanging ATPase / genetics
  • Sodium-Potassium-Exchanging ATPase / metabolism*
  • Stomach / enzymology*
  • Swine
  • Vanadates / metabolism

Substances

  • Cations
  • DNA Primers
  • Vanadates
  • H(+)-K(+)-Exchanging ATPase
  • Sodium-Potassium-Exchanging ATPase