Vascular assembly in natural and engineered tissues

Ann N Y Acad Sci. 2002 Jun:961:223-42. doi: 10.1111/j.1749-6632.2002.tb03090.x.

Abstract

With the advent of molecular embryology and exploitation of genetic models systems, many genes necessary for normal blood vessel formation during early development have been identified. These genes include soluble effectors and their receptors, as well as components of cell-cell junctions and mediators of cell-matrix interactions. In vitro model systems (2-D and 3-D) to study paracrine and autocrine interactions of vascular cells and their progenitors have also been created. These systems are being combined to study the behavior of genetically altered cells to dissect and define the cellular role(s) of specific genes and gene families in directing the migration, proliferation, and differentiation needed for blood vessel assembly. It is clear that a complex spatial and temporal interplay of signals, including both genetic and environmental, modulates the assembly process. The development of real-time imaging and image analysis will enable us to gain further insights into this process. Collaborative efforts among vascular biologists, biomedical engineers, mathematicians, and physicists will allow us to bridge the gap between understanding vessel assembly in vivo and assembling vessels ex vivo.

Publication types

  • Review

MeSH terms

  • Adult
  • Animals
  • Blood Vessels / physiology*
  • Cell Communication
  • Endothelium, Vascular / cytology
  • Extracellular Matrix / metabolism
  • Humans
  • Infant, Newborn
  • Models, Biological
  • Muscle, Smooth / cytology
  • Time Factors
  • Tissue Engineering / methods*