Extracellular domains drive homo- but not hetero-dimerization of erbB receptors

EMBO J. 2000 Sep 1;19(17):4632-43. doi: 10.1093/emboj/19.17.4632.

Abstract

Many different growth factor ligands, including epidermal growth factor (EGF) and the neuregulins (NRGs), regulate members of the erbB/HER family of receptor tyrosine kinases. These growth factors induce erbB receptor oligomerization, and their biological specificity is thought to be defined by the combination of homo- and hetero-oligomers that they stabilize upon binding. One model proposed for ligand-induced erbB receptor hetero-oligomerization involves simple heterodimerization; another suggests that higher order hetero-oligomers are 'nucleated' by ligand-induced homodimers. To distinguish between these possibilities, we compared the abilities of EGF and NRG1-beta1 to induce homo- and hetero-oligomerization of purified erbB receptor extracellular domains. EGF and NRG1-beta1 induced efficient homo-oligomerization of the erbB1 and erbB4 extracellular domains, respectively. In contrast, ligand-induced erbB receptor extracellular domain hetero-oligomers did not form (except for s-erbB2-s-erbB4 hetero-oligomers). Our findings argue that erbB receptor extracellular domains do not recapitulate most heteromeric interactions of the erbB receptors, yet reproduce their ligand-induced homo-oligomerization properties very well. This suggests that mechanisms for homo- and hetero-oligomerization of erbB receptors are different, and contradicts the simple heterodimerization hypothesis prevailing in the literature.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Dimerization
  • Epidermal Growth Factor / metabolism
  • Humans
  • Oncogene Proteins v-erbB / metabolism*
  • Protein Binding
  • Receptor, ErbB-2 / metabolism*
  • Recombinant Proteins / metabolism

Substances

  • Oncogene Proteins v-erbB
  • Recombinant Proteins
  • Epidermal Growth Factor
  • Receptor, ErbB-2