An optimization model for mastication and swallowing in mammals

Proc Biol Sci. 1997 Dec 22;264(1389):1715-21. doi: 10.1098/rspb.1997.0238.

Abstract

Mammalian mastication is a process combining simultaneous food comminution and lubrication. The initiation of swallowing, which is voluntary, has been thought to depend on separate thresholds for food particle size and for particle lubrication. Instead of this duality, we suggest that swallowing is initiated when it is sensed that a batch of food particles is binding together under viscous forces so as to form a bolus. Bolus formation ensures that when the food mass is swallowed, it will pass the pharyngeal region safely without risk of inhaling small particles into the lower respiratory tract. Crucial for bolus formation is food particle size reduction by mastication. This allows the tongue to pack particles together tightly by pressure against the hard palate. A major function of salivation is to fill the gradually reducing spaces between particles, so increasing viscous cohesion and promoting bolus formation. If swallowing is delayed, excessive saliva floods the bolus, separating particles and reducing cohesion. Swallowing then becomes more precarious. Our model suggests that there is an optimum moment for a mammal to swallow, defined in terms of a peak cohesive force between food particles. The model is tested on human mastication with two foods, brazil nut and raw carrot, which have very different particle size breakdown rates. The peak cohesive force is much greater with brazil nuts but both foods are predicted to be swallowed after similar numbers of chews despite the very different food particle size reductions achieved at that stage. The predicted number of chews to swallow is in broad agreement with published data.

MeSH terms

  • Animals
  • Deglutition / physiology*
  • Humans
  • Mammals
  • Mastication / physiology*
  • Mathematical Computing*
  • Models, Biological*