The influence of predegenerated nerve grafts on axonal regeneration from prelesioned peripheral nerves

J Anat. 1996 Oct;189 ( Pt 2)(Pt 2):293-302.

Abstract

Recent in vitro work has indicated that predegenerated segments of peripheral nerve are more capable of supporting neurite growth from adult neurons than fresh segments of nerve, whereas previous in vivo studies which investigated whether predegenerated nerve segments used as grafts are capable of enhancing axonal regeneration produced conflicting results. We have reinvestigated this question by using predegenerated nerve grafts in combination with conditioning lesions of the host nerve to determine the optimal conditions for obtaining the maximal degree of regeneration of myelinated axons. The sciatic nerve of adult Dark Agouti rats were sectioned at midthigh level, and the distal portion was allowed to predegenerate for 0, 6 or 12 d in situ. 10-15 mm lengths of these distal nerve segments were then syngenically grafted onto the central stumps of sciatic nerves which had themselves received a conditioning lesion 0, 6, and 12 d previously, making a total of 9 different donor-host combinations. The grafts were assessed histologically 3 or 8 wk after grafting. Axonal regeneration in the 9 different donor-host combinations was determined by counting the numbers of myelinated axons in transverse sections through the grafts. All grafts examined contained regenerating myelinated axons. The rats given a 3 wk postgrafting survival period had an average of between 1400 and 5300 such axons. The rats given an 8 wk postgrafting survival period had between about 13,000 and 25,000 regenerating myelinated axons. Analysis of variance revealed significant main effects for both the Donor and Host conditions as well as Weeks (i.e. survival period after grafting). These results indicate that both a conditioning lesion of the host neurons and the degree of predegeneration of peripheral nerve segments to be used as grafts are of importance in influencing the degree of axonal regeneration. Of these 2 factors the conditioning lesion of the host appears to have the greater effect on the final number of regenerating myelinated axons.

MeSH terms

  • Animals
  • Axons / physiology
  • Axons / ultrastructure
  • Nerve Degeneration*
  • Nerve Fibers, Myelinated / physiology
  • Nerve Fibers, Myelinated / ultrastructure
  • Nerve Regeneration*
  • Peripheral Nerves / cytology
  • Peripheral Nerves / physiology*
  • Peripheral Nerves / transplantation*
  • Rats
  • Rats, Inbred Strains