A positron emission tomography study of the short-term maintenance of verbal information

J Neurosci. 1996 Jan 15;16(2):808-22. doi: 10.1523/JNEUROSCI.16-02-00808.1996.

Abstract

Positron emission tomography (PET) was used to investigate the functional brain anatomy associated with the short-term maintenance of linguistic information. Subjects were asked to retain five related words, unrelated words, or pseudowords silently for the duration of a 40 sec PET scan. When brain activity during these short-term maintenance tasks was compared with a visual fixation control task, increases were found bilaterally in the dorsolateral prefrontal cortex and cerebellum, and medially in the supplementary motor area. Furthermore, effects of stimulus condition and recall performance were found in the left frontal operculum. To investigate the role of articulatory systems in the maintenance of verbal information, regional activation was compared across the maintenance tasks and a covert articulation task (silent counting). The cerebellum was active in both task conditions, whereas activation in prefrontal regions was specific to the maintenance condition. Conversely, greater activation was found in a left middle insular region in the silent counting than in the maintenance tasks. Based on converging results in this and previous studies, dorsolateral prefrontal cortical areas appear to contribute to the maintenance of both verbal and nonverbal information, whereas left frontal opercular regions appear to be involved specifically in the rehearsal of verbal material. Contrary to results found in other studies of working memory, activation was not found in the inferior parietal cortex, suggesting that this area is involved in aspects of stimulus encoding and retrieval, which were minimized in the present study.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Female
  • Humans
  • Linguistics*
  • Male
  • Memory, Short-Term / physiology*
  • Prefrontal Cortex / diagnostic imaging*
  • Prefrontal Cortex / physiology
  • Psychomotor Performance / physiology
  • Tomography, Emission-Computed*