Synthesis, Photophysical, Photochromic, and Photomodulated Resistive Memory Studies of Dithienylethene-Containing Copper(I) Diimine Complexes

Inorg Chem. 2020 Oct 19;59(20):14785-14795. doi: 10.1021/acs.inorgchem.0c02089. Epub 2020 Sep 11.

Abstract

A series of dithienylethene-containing copper(I) diimine complexes have been synthesized and structurally characterized. Systematic studies on their photophysics, electrochemistry, and photochromism have been carried out. The photoinduced color changes of the copper(I) complexes have been achieved by photoexcitation into the metal-to-ligand charge-transfer (MLCT) absorption bands, indicating the photosensitization of light-induced cyclization by the 3MLCT excited state. In addition, by an increase in either the steric bulkiness around the copper(I) center or the structural rigidity of the complexes, the quantum efficiencies of photoluminescence and photocyclization can be effectively enhanced because of suppression of the flattening distortion of the complexes at the MLCT excited state. Furthermore, one of the complexes has been employed as an active component in the fabrication of solution-processed resistive memory devices. Notable lowering of the switching threshold voltage of the binary memory devices has been realized through photocyclization of the dithienylethene-containing copper(I) system.