Layer-resolved magnetic proximity effect in van der Waals heterostructures

Nat Nanotechnol. 2020 Mar;15(3):187-191. doi: 10.1038/s41565-019-0629-1. Epub 2020 Jan 27.

Abstract

Magnetic proximity effects are integral to manipulating spintronic1,2, superconducting3,4, excitonic5 and topological phenomena6-8 in heterostructures. These effects are highly sensitive to the interfacial electronic properties, such as electron wavefunction overlap and band alignment. The recent emergence of magnetic two-dimensional materials opens new possibilities for exploring proximity effects in van der Waals heterostructures9-12. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled9. Here we report a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we show that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. In combination with reflective magnetic circular dichroism measurements, these properties allow the use of monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains at finite magnetic fields. Our work reveals a way to control proximity effects and probe interfacial magnetic order via van der Waals engineering13.