MicroRNA-23a inhibits endometrial cancer cell development by targeting SIX1

Oncol Lett. 2019 Oct;18(4):3792-3802. doi: 10.3892/ol.2019.10694. Epub 2019 Jul 31.

Abstract

The present study focused on exploring the inhibitory mechanism of microRNA (miR)-23a in endometrial cancer. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to investigate miR-23a expression in endometrial tissues and endometrial cancer cells. A colony formation assay using crystal violet staining was performed to compare cell proliferation, while wound-healing and Transwell assays were performed to compare cell migration and invasion. Subsequently, bioinformatics and a luciferase reporter gene assay were used to investigate the effect of miR-23a on sine oculis homeobox homolog 1 (SIX1) expression, and the biological function of SIX1 was analyzed. Additionally, a nude mouse tumorigenicity assay was performed to test the inhibitory effect of miR-23a and Taxol® therapy in endometrial cancer. Finally, immunohistochemistry and RT-qPCR were used to explore the association between miR-23a and SIX1 expression in endometrial cancer tissues. miR-23a was underexpressed in endometrial cancer tissues compared with in para-carcinoma tissues, and the overexpression of miR-23a inhibited proliferation and invasion of endometrial cancer cells. Furthermore, SIX1 was demonstrated to be a downstream target of miR-23a, and miR-23a reduced SIX1 expression. Additionally, SIX1 inversely promoted cell proliferation, migration and invasion. In addition, the effects of reduced cell proliferation and increased cell invasion following miR-23a overexpression could be reversed by adding SIX1 to in vitro culture. Furthermore, the inhibitory effect of miR-23a and Taxol therapy, which reduced SIX1 expression in endometrial cancer, was demonstrated in vivo. Finally, a negative association between miR-23a and SIX1 expression was demonstrated in endometrial cancer tissues. The results of the present study revealed that miR-23a may inhibit endometrial cancer development by targeting SIX1.

Keywords: endometrial cancer; microRNA-23a; sine oculis homeobox homolog 1.