Revealing fermionic quantum criticality from new Monte Carlo techniques

J Phys Condens Matter. 2019 Nov 20;31(46):463001. doi: 10.1088/1361-648X/ab3295. Epub 2019 Aug 19.

Abstract

This review summarizes recent developments in the study of fermionic quantum criticality, focusing on new progress in numerical methodologies, especially quantum Monte Carlo methods, and insights that emerged from recently large-scale numerical simulations. Quantum critical phenomena in fermionic systems have attracted decades of extensive research efforts, partially lured by their exotic properties and potential technology applications, and partially awakened by the profound and universal fundamental principles that govern these quantum critical systems. Due to the complex and non-perturbative nature, these systems face the most difficult and challenging problems in the study of modern condensed matter physics, and many important fundamental problems remain open. Recently, new developments in model design and algorithm improvements enabled unbiased large-scale numerical solutions to be achieved in the close vicinity of these quantum critical points, which paves a new pathway towards achieving controlled conclusions through combined efforts of theoretical and numerical studies, as well as possible theoretical guidance for experiments in heavy-fermion compounds, Cu-based and Fe-based superconductors, ultra-cold fermionic atomic gas, twisted graphene layers, etc, where signatures of fermionic quantum criticality exist.