MicroRNA-217 functions as a tumor suppressor in cervical cancer cells through targeting Rho-associated protein kinase 1

Oncol Lett. 2018 Nov;16(5):5535-5542. doi: 10.3892/ol.2018.9335. Epub 2018 Aug 20.

Abstract

The abnormal expression of microRNAs (miRNAs/miRs) has been widely reported in various tumor types. miR-217 was demonstrated to be aberrantly expressed in a number of tumors, including pancreatic adenocarcinoma and osteosarcoma; however, its specific expression pattern has never been investigated in cervical cancer cells. Compared with normal control, the level of Rho-associated protein kinase 1 (ROCK1) expression was markedly increased in cervical cancer tissues and cells compared with that in non-cancerous tissues and cells. The expression of miR-217 was significantly reduced in cervical cancer tissues and cell lines. Overexpression of miR-217 could suppress colony formation and the cell invasion capacity of SiHa and HeLa cells. Flow cytometry indicated that miR-217 significantly increased cell apoptosis in SiHa and HeLa cells. Dual-luciferase reporter assays demonstrated that ROCK1 was a target gene of miR-217. In addition, overexpression of ROCK1 also led to an increased invasion capacity in SiHa cells, even when miR-217 was inhibited, indicating that the anti-invasive effects of miR-217 were mediated through ROCK1. In summary, the results of the present study indicated that miR-217 functions as a tumor suppressor in cervical cancer cells, primarily by targeting ROCK1.

Keywords: Rho-associated protein kinase 1; apoptosis; cervical cancer; invasion; microRNA-217.