MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca2+ and Mn2+

Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):E7960-E7969. doi: 10.1073/pnas.1807811115. Epub 2018 Aug 6.

Abstract

The mitochondrial uniporter is a Ca2+-activated Ca2+ channel complex that displays exceptionally high conductance and selectivity. Here, we report cellular metal toxicity screens highlighting the uniporter's role in Mn2+ toxicity. Cells lacking the pore-forming uniporter subunit, MCU, are more resistant to Mn2+ toxicity, while cells lacking the Ca2+-sensing inhibitory subunit, MICU1, are more sensitive than the wild type. Consistent with these findings, Caenorhabditis elegans lacking the uniporter's pore have increased resistance to Mn2+ toxicity. The chemical-genetic interaction between uniporter machinery and Mn2+ toxicity prompted us to hypothesize that Mn2+ can indeed be transported by the uniporter's pore, but this transport is prevented by MICU1. To this end, we demonstrate that, in the absence of MICU1, both Mn2+ and Ca2+ can pass through the uniporter, as evidenced by mitochondrial Mn2+ uptake assays, mitochondrial membrane potential measurements, and mitoplast electrophysiology. We show that Mn2+ does not elicit the conformational change in MICU1 that is physiologically elicited by Ca2+, preventing Mn2+ from inducing the pore opening. Our work showcases a mechanism by which a channel's auxiliary subunit can contribute to its apparent selectivity and, furthermore, may have implications for understanding how manganese contributes to neurodegenerative disease.

Keywords: EF hand; calcium; manganese; neurodegeneration; selectivity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Caenorhabditis elegans / genetics
  • Caenorhabditis elegans / metabolism
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism
  • Calcium / metabolism*
  • Calcium Channels / genetics
  • Calcium Channels / metabolism*
  • Calcium-Binding Proteins / genetics
  • Calcium-Binding Proteins / metabolism*
  • Cation Transport Proteins / genetics
  • Cation Transport Proteins / metabolism*
  • HEK293 Cells
  • Humans
  • Ion Transport / physiology
  • K562 Cells
  • Manganese / metabolism*
  • Mitochondrial Membrane Transport Proteins / genetics
  • Mitochondrial Membrane Transport Proteins / metabolism*

Substances

  • Caenorhabditis elegans Proteins
  • Calcium Channels
  • Calcium-Binding Proteins
  • Cation Transport Proteins
  • MICU1 protein, human
  • Mitochondrial Membrane Transport Proteins
  • mitochondrial calcium uniporter
  • Manganese
  • Calcium