Review: Revisiting the human cholinergic nucleus of the diagonal band of Broca

Neuropathol Appl Neurobiol. 2018 Dec;44(7):647-662. doi: 10.1111/nan.12513. Epub 2018 Aug 13.

Abstract

Although the nucleus of the vertical limb of the diagonal band of Broca (nvlDBB) is the second largest cholinergic nucleus in the basal forebrain, after the nucleus basalis of Meynert, it has not generally been a focus for studies of neurodegenerative disorders. However, the nvlDBB has an important projection to the hippocampus and discrete lesions of the rostral basal forebrain have been shown to disrupt retrieval memory function, a major deficit seen in patients with Lewy body disorders. One reason for its neglect is that the anatomical boundaries of the nvlDBB are ill defined and this area of the brain is not part of routine diagnostic sampling protocols. We have reviewed the history and anatomy of the nvlDBB and now propose guidelines for distinguishing nvlDBB from other neighbouring cholinergic cell groups for standardizing future clinicopathological work. Thorough review of the literature regarding neurodegenerative conditions reveals inconsistent results in terms of cholinergic neuronal loss within the nvlDBB. This is likely to be due to the use of variable neuronal inclusion criteria and omission of cholinergic immunohistochemical markers. Extrapolating from those studies showing a significant nvlDBB neuronal loss in Lewy body dementia, we propose an anatomical and functional connection between the cholinergic component of the nvlDBB (Ch2) and the CA2 subfield in the hippocampus which may be especially vulnerable in Lewy body disorders.

Keywords: Alzheimer's disease; Lewy body dementia; Parkinson's disease; basal forebrain; cholinergic system; diagonal band of Broca.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / pathology*
  • Cholinergic Neurons / pathology*
  • Diagonal Band of Broca / pathology*
  • Humans
  • Lewy Body Disease / pathology*
  • Parkinson Disease / pathology*