Immune profiling of NF1-associated tumors reveals histologic subtype distinctions and heterogeneity: implications for immunotherapy

Oncotarget. 2017 May 30;8(47):82037-82048. doi: 10.18632/oncotarget.18301. eCollection 2017 Oct 10.

Abstract

Successful treatment of neurofibromatosis type 1 (NF1)-associated tumors poses a significant clinical challenge. While the primary underlying genetic defect driving RAS signaling is well described, recent evidence suggests immune dysfunction contributes to tumor pathogenesis and malignant transformation. As immunologic characterizations, prognostic and predictive of immunotherapeutic clinical response in other cancers, are not fully described for benign and malignant NF1-related tumors, we sought to define their immunologic profiles. We determined the expression of human leukocyte antigen (HLA)-A/-B/-C, β-2-microglobulin (B2M), and T cell inhibitory ligands PD-L1 and CTLA-4 by microarray gene analysis and flow cytometry. We examined HLA-A/-B/-C, B2M, and PD-L1 expression on thirty-six NF1-associated tumor samples by immunohistochemistry, and correlated these with tumoral CD4+, CD8+, FOXP3+, CD56+, and CD45RO+ lymphocytic infiltrates. We evaluated several tumors from a single patient, observing trends of increasing immunogenicity over time, even with disease progression. We observed similarly immunogenic profiles for malignant peripheral nerve sheath tumors (MPNST) and nodular and plexiform neurofibromas, contrasting with diffuse neurofibromas. These studies suggest that while immunotherapies may offer some benefit for MPNST and nodular and plexiform neurofibromas, tumor heterogeneity might pose a significant clinical challenge to this novel therapeutic approach.

Keywords: MPNST; NF1; immunophenotype; immunotherapy; neurofibromas.