Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation

J Evol Biol. 2015 Nov;28(11):1986-96. doi: 10.1111/jeb.12714. Epub 2015 Aug 26.

Abstract

Variation in ecological selection pressures has been implicated to explain variation in brain size and architecture in fishes, birds and mammals, but little is known in this respect about amphibians. Likewise, the relative importance of constraint vs. mosaic hypotheses of brain evolution in explaining variation in brain size and architecture remains contentious. Using phylogenetic comparative methods, we studied interspecific variation in brain size and size of different brain parts among 43 Chinese anuran frogs and explored how much of this variation was explainable by variation in ecological factors (viz. habitat type, diet and predation risk). We also evaluated which of the two above-mentioned hypotheses best explains the observed patterns. Although variation in brain size explained on average 80.5% of the variation in size of different brain parts (supporting the constraint hypothesis), none of the three ecological factors were found to explain variation in overall brain size. However, habitat and diet type explained a significant amount of variation in telencephalon size, as well in three composite measures of brain architecture. Likewise, predation risk explained a significant amount of variation in bulbus olfactorius and optic tecta size. Our results show that evolution of anuran brain accommodates features compatible with both constraint (viz. strong allometry among brain parts) and mosaic (viz. independent size changes in response to ecological factors in certain brain parts) models of brain size evolution.

Keywords: amphibian; brain; comparative method; diet; habitat type; predation risk.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anura / anatomy & histology*
  • Anura / genetics*
  • Brain / anatomy & histology*
  • Ecosystem*
  • Phylogeny*
  • Species Specificity