Efficient imaging of midbrain nuclei using inverse double-echo steady-state acquisition

Med Phys. 2015 Jul;42(7):4367-74. doi: 10.1118/1.4922402.

Abstract

Purpose: Imaging of midbrain nuclei using T2- or T2*-weighted MRI often entails long echo time, leading to long scan time. In this study, an inverse double-echo steady-state (iDESS) technique is proposed for efficiently depicting midbrain nuclei.

Methods: Thirteen healthy subjects participated in this study. iDESS was performed along with two sets of T2*-weighted spoiled gradient-echo images (SPGR1, with scan time identical to iDESS and SPGR2, using clinical scanning parameters as a reference standard) for comparison. Generation of iDESS composite images combining two echo signals was optimized for maximal contrast-to-noise ratio (CNR) between the red nuclei and surrounding tissues. Signal-to-noise ratios (SNRs) were calculated from the occipital lobe. Comparison was also made using phase-enhanced images as in standard susceptibility-weighted imaging (SWI).

Results: The iDESS images present significantly higher SNR efficiency (171.3) than SPGR1 (158.7, p = 0.013) and SPGR2 (95.5, p < 10(-8)). iDESS CNR efficiency (19.2) is also significantly greater than SPGR1 (6.9, p < 10(-6)) and SPGR2 (14.3, p = 0.0016). Compared with DESS, iDESS provides further advantage on enhanced phase information and hence improved contrast on SWI-processed images.

Conclusions: iDESS efficiently depicts midbrain nuclei with improved CNR efficiency, increased SNR efficiency, and reduced scan time and is less prone to susceptibility signal loss from air-tissue interfaces.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods*
  • Male
  • Mesencephalon / anatomy & histology*
  • Occipital Lobe / anatomy & histology
  • Young Adult