The dynamics of cGMP metabolism in neuroblastoma N1E-115 cells determined by 18O labeling of guanine nucleotide alpha-phosphoryls

Neurochem Res. 1987 Jun;12(6):551-60. doi: 10.1007/BF01000240.

Abstract

The rates of phosphodiesterase-promoted hydrolysis of cGMP and cAMP have been measured in intact neuroblastoma N1E-115 cells by determining rates of 18O incorporation from 18O-water into the alpha-phosphoryls of guanine and adenine nucleotides. The basal rate of guanine nucleotide alpha-phosphoryl labeling ranged from 180 to 244 pmol X mg protein-1 X min-1. Sodium nitroprusside (SNP) caused a sustained 3.4-fold increase in this 18O-labeling rate in conjunction with 28- and 50-fold increases in cellular cGMP concentration at 3 and 6 min, respectively. This 18O-labeling rate (795 pmol X mg protein-1 X min-1) corresponded with the sum of the low (1.7 microM) and high (34 microM) Km phosphodiesterase activities assayable in cell lysates which exhibited a combined maximum velocity of 808 pmol X mg protein-1 X min-1 to which the high Km species contributed 84%. This information and the characteristics of the profile of 18O-labeled molecular species indicate that cGMP metabolism was restricted to a very discrete cellular compartment(s) of approximately 12% of the cell volume. Carbachol (1 mM) produced a transient increase (6-fold) in cellular cGMP concentration and a transient increase (90%) in the rate of 18O labeling of alpha-GTP during the first minute of treatment which translates into 30 additional cellular pools of cGMP hydrolyzed in this period. IBMX (1 mM) produced a relatively rapid increase in cellular cGMP (3- to 5-fold) and cAMP (2-fold) concentrations and a delayed inhibition of 18O labeling of guanine and adenine nucleotide alpha-phosphoryls without further elevation of cyclic nucleotide levels. These results indicate that besides inhibiting cyclic nucleotide hydrolysis, IBMX also imparts a time-dependent inhibitory influence on the generation of cyclic nucleotides. The data obtained show that measurement of 18O labeling of guanine and adenine nucleotide alpha-phosphoryls combined with measurements of cyclic nucleotide steady state levels provides a means to assess the rates of cyclic nucleotide synthesis and hydrolysis within intact cells and to identify the site(s) of action of agents that alter cellular cyclic nucleotide metabolism.

MeSH terms

  • 1-Methyl-3-isobutylxanthine / pharmacology
  • 3',5'-Cyclic-AMP Phosphodiesterases / antagonists & inhibitors
  • 3',5'-Cyclic-GMP Phosphodiesterases / antagonists & inhibitors
  • Adenine Nucleotides / metabolism
  • Animals
  • Carbachol / pharmacology
  • Cell Line
  • Cyclic AMP / metabolism
  • Cyclic GMP / metabolism*
  • Guanine Nucleotides / metabolism*
  • Guanosine Diphosphate / metabolism
  • Guanosine Triphosphate / metabolism
  • Isotope Labeling
  • Kinetics
  • Neuroblastoma / metabolism*
  • Nitroprusside / pharmacology
  • Oxygen Radioisotopes

Substances

  • Adenine Nucleotides
  • Guanine Nucleotides
  • Oxygen Radioisotopes
  • Guanosine Diphosphate
  • Nitroprusside
  • Guanosine Triphosphate
  • Carbachol
  • Cyclic AMP
  • 3',5'-Cyclic-AMP Phosphodiesterases
  • 3',5'-Cyclic-GMP Phosphodiesterases
  • Cyclic GMP
  • 1-Methyl-3-isobutylxanthine