YAP and TAZ regulate skin wound healing

J Invest Dermatol. 2014 Feb;134(2):518-525. doi: 10.1038/jid.2013.339. Epub 2013 Aug 9.

Abstract

The Hippo signaling pathway regulates organ size, tissue regeneration, and stem cell self-renewal. The two key downstream transcription coactivators in this pathway, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), mediate the major gene regulation and biological functions of the Hippo pathway. The biological functions of YAP and TAZ in many tissues are known; however, their roles in skin wound healing remain unclear. To analyze whether YAP and/or TAZ are required for cutaneous wound healing, we performed small interfering RNA (siRNA)-mediated knockdown of YAP/TAZ in full-thickness skin wounds. YAP is strongly expressed in the nucleus and cytoplasm in the epidermis and hair follicle. Interestingly, YAP is expressed in the nucleus in the dermis at 2 and 7 days after wounding. TAZ normally localizes to the cytoplasm in the dermis but is distributed in both the nucleus and cytoplasm at 1 day after wounding. The knockdown of YAP and TAZ markedly delayed the rate of wound closure and reduced the transforming growth factor-β1 (TGF-β1) expression in the wound. YAP and TAZ also modulate the expression of TGF-β1 signaling pathway components such as Smad-2, p21, and Smad-7. These results suggest that YAP and TAZ localization to the nucleus is required for skin wound healing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyltransferases
  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Cell Cycle Proteins
  • Dermis / injuries*
  • Dermis / pathology
  • Dermis / physiology
  • Epidermis / injuries*
  • Epidermis / pathology
  • Epidermis / physiology
  • Hippo Signaling Pathway
  • Male
  • Mice
  • Mice, Inbred ICR
  • NIH 3T3 Cells
  • Phosphoproteins / genetics
  • Phosphoproteins / metabolism*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • RNA, Small Interfering / genetics
  • Signal Transduction / physiology
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Transforming Growth Factor beta1 / genetics
  • Transforming Growth Factor beta1 / metabolism
  • Wound Healing / physiology*
  • YAP-Signaling Proteins

Substances

  • Adaptor Proteins, Signal Transducing
  • Cell Cycle Proteins
  • Phosphoproteins
  • RNA, Small Interfering
  • Transcription Factors
  • Transforming Growth Factor beta1
  • YAP-Signaling Proteins
  • Yap1 protein, mouse
  • Acyltransferases
  • tafazzin protein, mouse
  • Protein Serine-Threonine Kinases