Epithelial machines of morphogenesis and their potential application in organ assembly and tissue engineering

Biomech Model Mechanobiol. 2012 Nov;11(8):1109-21. doi: 10.1007/s10237-012-0423-6. Epub 2012 Aug 2.

Abstract

Sheets of embryonic epithelial cells coordinate their efforts to create diverse tissue structures such as pits, grooves, tubes, and capsules that lead to organ formation. Such cells can use a number of cell behaviors including contractility, proliferation, and directed movement to create these structures. By contrast, tissue engineers and researchers in regenerative medicine seeking to produce organs for repair or replacement therapy can combine cells with synthetic polymeric scaffolds. Tissue engineers try to achieve these goals by shaping scaffold geometry in such a way that cells embedded within these scaffold self-assemble to form a tissue, for instance aligning to synthetic fibers, and assembling native extracellular matrix to form the desired tissue-like structure. Although self-assembly is a dominant process that guides tissue assembly both within the embryo and within artificial tissue constructs, we know little about these critical processes. Here, we compare and contrast strategies of tissue assembly used by embryos to those used by engineers during epithelial morphogenesis and highlight opportunities for future applications of developmental biology in the field of tissue engineering.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Epithelial Cells / physiology*
  • Epithelial Cells / transplantation*
  • Epithelium / embryology*
  • Epithelium / growth & development*
  • Humans
  • Morphogenesis / physiology
  • Organogenesis / physiology*
  • Tissue Engineering / methods*
  • Tissue Engineering / trends*