Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal Elderly adults at 3-tesla

J Alzheimers Dis. 2012;31(1):33-44. doi: 10.3233/JAD-2012-111877.

Abstract

QUASAR arterial spin labeling (ASL) was used to investigate the role of vascular impairment in Alzheimer's disease (AD). We hypothesized that the hemodynamic parameters monitoring cerebrovascular integrity, i.e., cerebral blood flow (CBF), arterial blood volume (aBV), and arterial transit time (aTT), would be affected. 13 AD patients and 15 healthy control (HC) subjects underwent 3T MRI scanning. Two separate blood flow acquisitions were obtained with 1 slice overlap for whole brain coverage. CBF, aBV, and aTT maps were calculated using in-house software. Preprocessing and statistical analyses were performed on SPM5. Region-of-interest (ROI) studies of ten selected cerebral regions were also conducted. There were significant differences in mini mental status exam (MMSE) (AD: 16.3 ± 4.55, HC: 28.5 ± 2.00) and Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) scores (AD: 25.25 ± 9.64, HC: 5.51 ± 2.62) between the 2 groups (p < 0.001) but none in age (p = 0.068). CBF decreased significantly (p < 0.01) in AD compared to controls in the right middle cingulate, left cuneus, left inferior and middle frontal, right superior frontal, left inferior parietal, and right supramarginal gyri. ROI studies confirmed significant hemodynamic impairments in AD compared to HC (p < 0.05): CBF in middle and posterior cingulate, aBV in left superior temporal, right inferior parietal, and posterior cingulate, and aTT in left inferior frontal and middle cingulate gyri. CBF correlated positively while aTT correlated negatively to MMSE, and vice versa for ADAS-cog. Using QUASAR ASL, we found patterns of regional hemodynamic impairment typical of moderate AD, suggesting underlying vascular abnormality. As potential biomarkers, these hemodynamic parameters could differentiate patients from volunteers, and possibly indicate the conversion from healthy aging to mild cognitive impairment to AD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alzheimer Disease / diagnostic imaging*
  • Alzheimer Disease / pathology
  • Alzheimer Disease / physiopathology*
  • Arteries / diagnostic imaging
  • Brain / diagnostic imaging*
  • Brain / pathology
  • Cerebrovascular Circulation*
  • Female
  • Functional Laterality
  • Hemodynamics / physiology*
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Mental Status Schedule
  • Middle Aged
  • Neuropsychological Tests
  • Regional Blood Flow / physiology
  • Spin Labels
  • Tomography, Emission-Computed, Single-Photon / methods

Substances

  • Spin Labels