Human ether-à-go-go gene potassium channels are regulated by EGFR tyrosine kinase

Biochim Biophys Acta. 2012 Feb;1823(2):282-9. doi: 10.1016/j.bbamcr.2011.10.010. Epub 2011 Oct 28.

Abstract

Human ether á-go-go gene potassium channels (hEAG1 or Kv10.1) are expressed in brain and various human cancers and play a role in neuronal excitement and tumor progression. However, the functional regulation of hEAG channels by signal transduction is not fully understood. The present study was therefore designed to investigate whether hEAG1 channels are regulated by protein tyrosine kinases (PTKs) in HEK 293 cells stably expressing hEAG1 gene using whole-cell patch voltage-clamp, immunoprecipitation, Western blot, and mutagenesis approaches. We found that the selective epidermal growth factor receptor (EGFR) kinase inhibitor AG556 (10 μM), but not the platelet growth factor receptor (PDGFR) kinase inhibitor AG1295 (10 μM) or the Src-family inhibitor PP2 (10 μM), can inhibit hEAG1 current, and the inhibitory effect can be reversed by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. Immunoprecipitation and Western blot analysis revealed that tyrosine phosphorylation level of hEAG1 channels was reduced by AG556, and the reduction was significantly countered by orthovanadate. The hEAG1 mutants Y90A, Y344A and Y485A, but not Y376A and Y479A, exhibited reduced response to AG556. Interestingly, the inhibition effect of AG556 was lost in triple mutant hEAG1 channels at Y90, Y344, and Y485 with alanine. These results demonstrate for the first time that hEAG1 channel activity is regulated by EGFR kinase at the tyrosine residues Tyr90, Try344, and Try485. This effect is likely involved in regulating neuronal activity and/or tumor growth.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism*
  • Ether-A-Go-Go Potassium Channels / genetics
  • Ether-A-Go-Go Potassium Channels / metabolism*
  • HEK293 Cells
  • Humans
  • Patch-Clamp Techniques
  • RNA Interference
  • Signal Transduction / physiology
  • Tyrosine / metabolism
  • Tyrphostins / metabolism
  • Vanadates / metabolism

Substances

  • Ether-A-Go-Go Potassium Channels
  • Tyrphostins
  • AG 556
  • Vanadates
  • Tyrosine
  • ErbB Receptors