Synthesis, characterization, and single-molecule metamagnetism of new Co(II) polynuclear complexes of pyridine-2-ylmethanol

Dalton Trans. 2011 Oct 28;40(40):10526-34. doi: 10.1039/c1dt10631g. Epub 2011 Aug 19.

Abstract

The reaction between pyridine-2-ylmethanol (HL), anhydrous CoCl(2) and NaH afforded polynuclear Co(II) complexes [Co(7)(L)(12)]Cl(2) (1), [Co(6)Na(L)(12)]Cl (2) and [Co(4)Cl(2)(L)(6)] (3), depending on the HL:CoCl(2) ratio set in the reaction. The core structures of the centrosymmetric complexes 1 and 2 are of the M@Co(6) type (M = Co or Na, respectively) with a coplanar arrangement of the metals whereas that of centrosymmetric 3 is of an incomplete dicubane type. The experimental conditions allowing interconversions between these polynuclear complexes have been determined, which provides a more rational control of their synthesis. Thus, 1 transforms to 3 when reacted with CoCl(2) in a 1 : 1 ratio, whereas the same reaction performed with a large excess of CoCl(2) gave the tetranuclear pseudo-cubane complex [Co(4)(L)(4)Cl(2)(MeOH)(4)] upon recrystallization. Conversely, 1 was isolated from the reaction of 3 with HL and NaH. The crystal structure of these compounds is reported, along with the magnetic behaviour of 1 and 3. The analysis of the magnetism using the effective spin-1/2 Hamiltonian approach revealed single-molecule metamagnetic behavior in 3.