Electronic transport through a graphene-based ferromagnetic/normal/ferromagnetic junction

J Phys Condens Matter. 2010 Jan 27;22(3):035301. doi: 10.1088/0953-8984/22/3/035301. Epub 2009 Dec 21.

Abstract

Electronic transport in a graphene-based ferromagnetic/normal/ferromagnetic junction is investigated by means of the Landauer-Büttiker formalism and the nonequilibrium Green function technique. For the zigzag edge case, the results show that the conductance is always larger than e(2)/h for the parallel configuration of lead magnetizations, but for the antiparallel configuration the conductance becomes zero because of the band-selective rule. Therefore, a magnetoresistance (MR) plateau emerges with the value 100% when the Fermi energy is located around the Dirac point. In addition, choosing narrower graphene ribbons can yield wider 100% MR plateaus and the length change of the central graphene region does not affect the 100% MR plateaus. Although the disorder will reduce the MR plateau, the plateau value can still be kept about 50% even in a large disorder strength case. In addition, when the magnetizations of the left and right leads have a relative angle, the conductance changes as a cosine function of the angle. What is more, for the armchair edge case, the MR is usually small. So, it is more favorable to fabricate a graphene-based spin valve device by using a zigzag edge graphene ribbon.

Publication types

  • Research Support, Non-U.S. Gov't