Neuroprotective effect of preadministration with Ganoderma lucidum spore on rat hippocampus

Exp Toxicol Pathol. 2012 Nov;64(7-8):673-80. doi: 10.1016/j.etp.2010.12.011. Epub 2011 Jan 15.

Abstract

The aim of this study was to investigate if preadministration with Ganoderma lucidum spore (GLS) could (1) alleviate oxidative stress and mitochondrial dysfunction in rat hippocampus of intracerebroventricular (ICV) injection of streptozotocin (STZ), (2) protect neurons from apoptosis, and (3) improve cognitive dysfunction. Three groups of Sprague-Dawley rats were preadministrated with GLS at doses of 2.0, 4.0 and 8.0 g/kg, respectively, for 3 weeks before the ICV STZ injury. Thereafter the rats were operated with ICV STZ (1.5 mg/kg) bilaterally on days 1 and 3. The behavioral alterations, oxidative stress indexes, ATP, cytochrome oxidase (CytOx), and histopathology of hippocampal neurons were studied. The results showed that ICV STZ model rats exhibited a significant increase of malondialdehyde (MDA), a significant decrease of glutathione reductase (GR), reduced glutathione (GSH), ATP and CytOx, accompanied with marked impairments in spatial learning and memory, and severe damage of hippocampal neuron. In conclusion, preadministration with GLS at dose of 8.0 g/kg in ICV STZ rats significantly reversed these abnormalities. In conclusion, preadministration with GLS might protect hippocampus from oxidative impairment and energy metabolism disturbance of ICV STZ. This may also provide useful information for future research on the pathogenesis and prevention of Alzheimer's disease (AD).

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Behavior, Animal / drug effects
  • Brain Mapping
  • Dose-Response Relationship, Drug
  • Drug Administration Schedule
  • Energy Metabolism / drug effects
  • Hippocampus / drug effects*
  • Hippocampus / enzymology
  • Hippocampus / metabolism
  • Hippocampus / pathology
  • Injections, Intraventricular
  • Male
  • Maze Learning / drug effects
  • Microscopy, Electron
  • Microscopy, Fluorescence
  • Mitochondria / drug effects
  • Mitochondria / metabolism
  • Neurons / drug effects
  • Neurons / metabolism
  • Neurons / pathology
  • Neuroprotective Agents / administration & dosage
  • Neuroprotective Agents / isolation & purification
  • Neuroprotective Agents / pharmacology*
  • Oxidative Stress / drug effects
  • Rats
  • Rats, Sprague-Dawley
  • Reishi / chemistry*
  • Reishi / physiology
  • Spores, Fungal / chemistry*
  • Streptozocin / toxicity

Substances

  • Neuroprotective Agents
  • Streptozocin