A magneto-optic route toward the in vivo diagnosis of malaria: preliminary results and preclinical trial data

Biophys J. 2008 Jul;95(2):994-1000. doi: 10.1529/biophysj.107.128140. Epub 2008 Apr 4.

Abstract

We report the development of magneto-optic technology for the rapid quantitative diagnosis of malaria that may also be realizable in a noninvasive format. Hemozoin, the waste product of malarial parasitic action on hemoglobin, is produced in a form that under the action of an applied magnetic field gives rise to an induced optical dichroism characteristic of the hemozoin concentration. Here we show that precise measurement of this induced dichroism may be used to determine the level of malarial infection because this correlates, albeit in a complex manner throughout the infection cycle, with the concentration of hemozoin in the blood and tissues of infected patients. Under conservative assumptions for the production of hemozoin as a function of parasitemia, initial results indicate that the technique can match or exceed other current diagnostic techniques. The validity of the approach is confirmed by a small preliminary clinical trial on 13 patients, and measurements on live parasitized cells obtained from in vitro culture verify the possibility of producing in vivo diagnostic instrumentation.

MeSH terms

  • Biomarkers / blood
  • Blood Chemical Analysis / methods*
  • Hemeproteins / analysis*
  • Humans
  • Magnetics*
  • Malaria / blood*
  • Malaria / diagnosis*
  • Optics and Photonics*
  • Pilot Projects
  • Reproducibility of Results
  • Sensitivity and Specificity

Substances

  • Biomarkers
  • Hemeproteins
  • hemozoin