Resonance Raman and density functional theory investigation of the photodissociation dynamics of the A-band absorption of (E)-beta-nitrostyrene in cyclohexane solution

J Chem Phys. 2007 May 21;126(19):194505. doi: 10.1063/1.2736685.

Abstract

Resonance Raman spectra were obtained for (E)-beta-nitrostyrene in cyclohexane solution with excitation wavelengths in resonance with the charge transfer (CT)-band absorption spectrum. These spectra indicate that the Franck-Condon region photodissociation dynamics have multidimensional character with motion predominantly along the nominal NO(2) symmetric stretch mode (nu(14)), the nominal C=C stretch mode (nu(8)), the nominal benzene ring stretch mode (nu(9)), accompanied by a smaller amount of motion along the nominal ONO symmetric bend/benzene ring stretch mode (nu(34)), the nominal CCH in-plane bending mode (nu(20)), the nominal HC=CH in-plane bending mode (nu(18)), the nominal NO(2) asymmetric stretch mode (nu(11)), the nominal C-N stretch/benzene ring breathing mode (nu(27)), and the nominal CCC trigonal bending mode (nu(25)). A preliminary resonance Raman intensity analysis was done and these results for (E)-beta-nitrostyrene were compared to results previously reported for several nitrobenzene and trans-stilbene compounds. The differences and similarities between the CT-band resonance Raman spectra and vibrational reorganizational energies for (E)-beta-nitrostyrene relative to those for nitrobenzene and trans-stilbene were briefly discussed.