Simulating water with the self-consistent-charge density functional tight binding method: from molecular clusters to the liquid state

J Phys Chem A. 2007 Jul 5;111(26):5685-91. doi: 10.1021/jp070308d. Epub 2007 May 3.

Abstract

The recently developed self-consistent-charge density functional tight binding (SCCDFTB) method provides an accurate and inexpensive quantum mechanical solution to many molecular systems of interests. To examine the performance of the SCCDFTB method on (liquid) water, the most fundamental yet indispensable molecule in biological systems, we report here the simulation results of water in sizes ranging from molecular clusters to the liquid state. The latter simulation was achieved through the use of the linear scaling divide-and-conquer approach. The results of liquid water simulation indicate that the SCCDFTB method can describe the structural and energetics of liquid water in qualitative agreement with experiments, and the results for water clusters suggest potential future improvements of the SCCDFTB method.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Computer Simulation*
  • Models, Molecular
  • Molecular Conformation
  • Oxygen / chemistry
  • Water / chemistry*

Substances

  • Water
  • Oxygen