Rotation forest: A new classifier ensemble method

IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1619-30. doi: 10.1109/TPAMI.2006.211.

Abstract

We propose a method for generating classifier ensembles based on feature extraction. To create the training data for a base classifier, the feature set is randomly split into K subsets (K is a parameter of the algorithm) and Principal Component Analysis (PCA) is applied to each subset. All principal components are retained in order to preserve the variability information in the data. Thus, K axis rotations take place to form the new features for a base classifier. The idea of the rotation approach is to encourage simultaneously individual accuracy and diversity within the ensemble. Diversity is promoted through the feature extraction for each base classifier. Decision trees were chosen here because they are sensitive to rotation of the feature axes, hence the name "forest." Accuracy is sought by keeping all principal components and also using the whole data set to train each base classifier. Using WEKA, we examined the Rotation Forest ensemble on a random selection of 33 benchmark data sets from the UCI repository and compared it with Bagging, AdaBoost, and Random Forest. The results were favorable to Rotation Forest and prompted an investigation into diversity-accuracy landscape of the ensemble models. Diversity-error diagrams revealed that Rotation Forest ensembles construct individual classifiers which are more accurate than these in AdaBoost and Random Forest, and more diverse than these in Bagging, sometimes more accurate as well.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Artificial Intelligence*
  • Cluster Analysis*
  • Computer Simulation
  • Information Storage and Retrieval / methods*
  • Models, Statistical*
  • Numerical Analysis, Computer-Assisted
  • Pattern Recognition, Automated / methods*
  • Principal Component Analysis
  • Reproducibility of Results
  • Sensitivity and Specificity