Endothelial mediators of the acetylcholine-induced relaxation of the rat femoral artery

Vascul Pharmacol. 2006 May;44(5):299-308. doi: 10.1016/j.vph.2006.01.010. Epub 2006 Mar 9.

Abstract

This study examined endothelium-derived mediators of acetylcholine-induced relaxation in male rat femoral arteries. Arterial rings were suspended in a myograph for the measurement of isometric force. The generation of hydrogen peroxide (H2O2) in endothelial cells was detected using the fluorescent probe, 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. N(G)-nitro-L-arginine methyl ester (L-NAME, NOS inhibitor) and 1H-[1,2,4]oxadiazolo[4,2-alpha]quinoxalin-1-one (ODQ, guanylate cyclase inhibitor) alone or in combination with indomethacin (cycloxygenase inhibitor) diminished acetylcholine-induced endothelium-dependent relaxation to a similar extent. A small relaxation to acetylcholine in 60 mM KCl-constricted rings was abolished by L-NAME. Acetylcholine-induced relaxation was reduced by charybdotoxin plus apamin (intermediate- and small-conductance Ca2+-activated K+ channel blockers, respectively) or by 30 mM KCl. Both ouabain (Na+/K+ ATPase inhibitor) and BaCl2 (K(IR) channel blocker) also inhibited the relaxation albeit to a lesser degree. In the presence of L-NAME, ODQ plus indomethacin, charybdotoxin plus apamin or ouabain plus BaCl2 produced further inhibition. Catalase attenuated acetylcholine-induced relaxations and this attenuation was prevented by 3-amino-1,2,4-triazole (catalase inhibitor). Catalase did not affect acetylcholine-induced relaxations in rings treated with L-NAME or ODQ. Acetylcholine increased the dichlorofluorescein fluorescence intensity in native endothelial cells and this effect was abolished by catalase and by L-NAME. Exogenous H2O2 caused endothelium-independent relaxation that was slightly inhibited by iberiotoxin, ODQ or significantly reduced by elevated KCl, and abolished by catalase. The present results indicate that in addition to nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF, sensitive to charybdotoxin plus apamin, ouabain, and BaCl2), the endothelium of rat femoral artery can release H2O2 in response to acetylcholine, which was sensitive to L-NAME. Thus, the eNOS-dependent H2O2 is likely to be the third mediator of acetylcholine-mediated relaxations in rat femoral arteries.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylcholine / pharmacology*
  • Animals
  • Biological Factors / metabolism
  • Dose-Response Relationship, Drug
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / metabolism
  • Epoprostenol / metabolism
  • Femoral Artery / drug effects*
  • Femoral Artery / metabolism
  • Hydrogen Peroxide / metabolism
  • Hydrogen Peroxide / pharmacology*
  • In Vitro Techniques
  • Male
  • Nitric Oxide / metabolism
  • Rats
  • Vasodilation*
  • Vasodilator Agents / pharmacology*

Substances

  • Biological Factors
  • Vasodilator Agents
  • endothelium-dependent hyperpolarization factor
  • Nitric Oxide
  • Hydrogen Peroxide
  • Epoprostenol
  • Acetylcholine