The influence of different cultivation conditions on the metabolome of Fusarium oxysporum

J Biotechnol. 2005 Aug 22;118(3):304-15. doi: 10.1016/j.jbiotec.2005.05.004.

Abstract

The two most widespread pentose sugars found in the biosphere are d-xylose and l-arabinose. They are both potential substrates for ethanol production. The purpose of this study was to better understand the redox constraints imposed to Fusarium oxysporum during utilization of pentoses. In order to increase ethanol yield and decrease by-product formation, nitrate was used as nitrogen source. The use of NADH, the cofactor in denitrification process when using nitrate as a nitrogen source, improved the ethanol yield on xylose to 0.89 mol mol(-1) compared to the ethanol yield achieved using ammonium as nitrogen source 0.44 mol mol(-1). The improved ethanol yield was followed by a 28% decrease in yield of the by-product xylitol. In order to investigate the metabolic pathway of arabinose and the metabolic limitations for the efficient ethanol production from this sugar, the extracellular and intracellular metabolite profiles were determined under aerobic and anaerobic cultivation conditions. The results of this study clearly show difficulties in channelling of glucose-1-P (G1P) to pentose phosphate pathway (PPP) and reduced NADPH regeneration, suggesting that NADPH becomes a limiting factor for arabinose conversion, resulting in excessive acetate production. Variations of the fungus intracellular amino and non-amino acid pool, under different culture conditions, were evaluated using principal component analysis (PCA). PCA projection of the metabolome data collected from F. oxysporum subjected to environmental perturbations succeeded to visualize different physiological states and the conclusions of this study were that the metabolite profile is unique according to: (1) the carbon source and (2) the oxygen supply, and to a lesser extent to the cultivation phase.

Publication types

  • Comparative Study

MeSH terms

  • Adaptation, Physiological / physiology
  • Cell Culture Techniques / methods*
  • Fungal Proteins / metabolism*
  • Fusarium / metabolism*
  • Gene Expression Profiling*
  • Gene Expression Regulation, Fungal / physiology*
  • Proteome / metabolism*

Substances

  • Fungal Proteins
  • Proteome