The effect of particle size distribution on an experimental glass-ionomer cement

Dent Mater. 2005 Jun;21(6):505-10. doi: 10.1016/j.dental.2004.07.016. Epub 2004 Dec 10.

Abstract

Objectives: The role of particle size and size distribution of glass powders in glass-ionomer cements (GICs) has been largely overlooked, being limited to demonstrations of the classical inverse size-strength relationship. This study investigated variation in properties of an experimental glass-ionomer cement when a combination of large ('Powder A') and small ('Powder B') particles was used.

Methods: Large- (mean size 9.60mum) and small-particle (3.34mum) glass powders were blended in various proportions and mixed with powdered polyacrylic acid to make a range of glass-ionomer powders. These powders were mixed with a glass-ionomer liquid (SDI Ltd, Australia) at powder to liquid ratios of 2:1, 2.5:1, and 3:1, and the resultant cements evaluated for working time, setting time, clinical handling, and compressive strength. Results were analysed by ANOVA.

Results: An increased proportion of smaller particles corresponded to higher strengths, and an increased proportion of larger particles with a decrease in viscosity of the unset cement. When 20-30% by weight of small particles was used, the paste demonstrated a peak in cohesion and working time, with a viscosity similar to commercial restorative GICs.

Significance: Optimisation of particle sizing and distribution may thus lead to glass-ionomer cements with improved clinical handling characteristics and greater strength, which may increase the longevity of the restoration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Compressive Strength
  • Glass Ionomer Cements / chemistry*
  • Hardness
  • Materials Testing
  • Particle Size
  • Powders
  • Viscosity

Substances

  • Glass Ionomer Cements
  • Powders