Balloon injury and interleukin-1 beta induce nitric oxide synthase activity in rat carotid arteries

Circ Res. 1992 Aug;71(2):331-8. doi: 10.1161/01.res.71.2.331.

Abstract

Experiments were performed to investigate whether balloon injury induces nitric oxide synthase activity in the blood vessel wall. Contractions to phenylephrine were compared in left carotid arteries of the rat, previously injured by balloon catheterization and excised either immediately (t = 0), 6, or 24 hours after the procedure, with those in control right carotid arteries (with and without endothelium). Phenylephrine evoked comparable concentration-dependent contractions in balloon-injured (t = 0) and control carotid arteries without endothelium, whereas those in control arteries with endothelium were depressed. In the balloon-injured carotid arteries (6 and 24 hours), the concentration-contraction curves to phenylephrine were shifted to the right compared with those observed in balloon-injured arteries (t = 0). In balloon-injured carotid arteries (6 hours), the hyporeactivity to phenylephrine was enhanced by superoxide dismutase. In balloon-injured carotid arteries (24 hours), nitro-L-arginine and methylene blue restored full contractions, whereas superoxide dismutase potentiated the hyporesponsiveness to phenylephrine. The depressed contractions were associated with a concomitant increase in the basal level of cGMP; this production was abolished by nitro-L-arginine. The depression of the concentration-contraction curves to phenylephrine and the increase of the tissue level of cGMP induced by interleukin-1 beta (4 hours) were more pronounced in balloon-injured arteries (24 hours) than in control arteries without endothelium. The effects of interleukin-1 beta were inhibited by nitro-L-arginine. These observations indicate that in vivo endothelial injury of the rat carotid arteries induces the production of nitric oxide from L-arginine in the blood vessel wall, an effect which is potentiated by interleukin-1 beta.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Oxidoreductases / biosynthesis*
  • Animals
  • Arginine / analogs & derivatives
  • Arginine / pharmacology
  • Carotid Arteries / enzymology*
  • Carotid Artery Injuries
  • Catheterization / adverse effects*
  • Cyclic GMP / metabolism
  • Endothelium, Vascular / enzymology
  • Endothelium, Vascular / injuries
  • In Vitro Techniques
  • Interleukin-1 / physiology*
  • Male
  • Nitric Oxide Synthase
  • Nitroarginine
  • Phenylephrine / pharmacology
  • Rats
  • Rats, Inbred Strains
  • Superoxide Dismutase / pharmacology

Substances

  • Interleukin-1
  • Phenylephrine
  • Nitroarginine
  • Arginine
  • Nitric Oxide Synthase
  • Superoxide Dismutase
  • Amino Acid Oxidoreductases
  • Cyclic GMP