Right ventricular volume measurement by conductance catheter

Am J Physiol Heart Circ Physiol. 2003 Oct;285(4):H1774-85. doi: 10.1152/ajpheart.00048.2003. Epub 2003 May 22.

Abstract

Continuous ventricular volume measurement by the conductance method assumes a homogeneous electrical field dispersed throughout and contained within the ventricle. Because of dense trabeculation and complex geometry, right ventricular (RV) volume description by this method may be seriously compromised. This study sought to determine the accuracy and limitations of RV volume measurement by conductance, with magnetic resonance (MR) imaging (MRI) used as a reference, in the porcine RV. Anesthetized pigs (n = 5, 45-55 kg) were placed in a 1.5-T magnet, and ECG-gated transverse MR images (5-mm slices) were acquired during the complete cardiac cycle. RV cavity volumes were subsequently determined by Simpson's technique. Animals were then instrumented with an RV conductance catheter and an ultrasonic pulmonary artery flow probe. Conductance catheter signals were recorded using single- and dual-field (SF and DF) excitation, and the saline-dilution technique was used to correct volumes for parallel conductance. The gain factor (alpha) was calculated as the ratio of conductance- to MRI-derived stroke volume (alpha SV). Variation of alpha during the cardiac cycle was computed by comparing RV conductance volumes with 1) MRI volumes at isochronal time points within the cardiac cycle [alpha(t)] and 2) the pulmonary flow integral during ejection. After calibration, the conductance-MRI volume relation was modeled linearly with good correlation [r = 0.96 (SF) and r = 0.94 (DF)], close to the line of identity. Individual conductance-MRI plots displayed a slight curvilinear relation that was concave toward the MRI axis. Consistent with this finding, alpha(t) varied significantly during the cardiac cycle (0.49 and 0.39 by SF for end systole and end diastole, respectively, P = 0.011). DF excitation resulted in improved volume measurement [alpha SV = 0.41 (SF) and 0.96 (DF)], with less variation in alpha(t) (1.0 and 0.92 by DF for end systole and end diastole, respectively, P = 0.66). These results indicate that, with calibration, the conductance method can measure absolute RV volume under steady-state conditions. However, the curvilinearity and alpha(t) variation would indicate the potential for nonlinearity when RV volumes are varied over a wider range.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Physiological Phenomena*
  • Cardiac Catheterization*
  • Cardiac Volume*
  • Electric Conductivity
  • Heart / anatomy & histology*
  • Magnetic Resonance Imaging / standards
  • Models, Cardiovascular
  • Swine
  • Systole
  • Ventricular Function, Right*