Half-sandwich titanium(IV) complexes with Kläui's tripod ligand

Inorg Chem. 2003 Mar 24;42(6):1842-7. doi: 10.1021/ic020287w.

Abstract

Treatment of [Ti(O-i-Pr)(2)Cl(2)] with NaL(OEt) (L(OEt)(-) = [CpCo[P(O)(OEt)(2)](3)](-), Cp = eta(5)-C(5)H(5)) afforded [L(OEt)Ti(O-i-Pr)(2)Cl] that reacted with HCl in ether to give [L(OEt)TiCl(3)] (1). The average Ti-O and Ti-Cl distances in 1 are 1.975 and 2.293 A, respectively. Reaction of titanyl sulfate with NaL(OEt) in water followed by addition of HBF(4) afforded [L(OEt)TiF(3)] (2), the Ti-O and Ti-F distances of which are 2.020(2) and 1.792(2) A, respectively. The Zr(IV) analogue [L(OEt)ZrF(3)] (3) was prepared similarly from zirconyl nitrate, NaL(Oet), and HBF(4) in water. The Zr-O and average Zr-F distances in 3 are 2.139(2) and 1.938(2) A, respectively. Treatment of 1 with tetrachlorocatechol (H(2)Cl(4)cat) afforded [L(OEt)Ti(Cl(4)cat)Cl] (4). The average Ti-O(P), Ti-O(C), and Ti-Cl distances in 4 are 1.972, 1.926, and 2.334 A, respectively. Hydrolysis of 4 in the presence of Et(3)N yielded the mu-oxo dimer [(L(OEt))(2)Ti(2)(Cl(4)cat)(2)(mu-O)] (5). The average Ti-O(P), Ti-O(C), and Ti-O(Ti) distances in 5 are 2.027, 1.926, and 1.7977(9) A. Treatment of 1 with 1,1'-binaphthol (BINOLH(2)) in the presence of Et(3)N afforded [(L(OEt))(2)Ti(2)(mu-O)(2)(mu-BINOL)] x 2BINOLH(2) (6.2BINOLH(2)). Complex 1 is capable of catalyzing ring opening of epoxides with Me(3)SiN(3) under solvent-free conditions presumably via a Ti-azide intermediate.