Proto-oncogenes and p53 protein expression in normal cervical stratified squamous epithelium and cervical intra-epithelial neoplasia

Eur J Cancer. 1999 Oct;35(10):1546-50. doi: 10.1016/s0959-8049(99)00166-5.

Abstract

The aim of this study was to study the protein expression of six proto-oncogenes (epidermal growth factor receptor (EGFR), c-fms, c-myc, c-kit, c-erbB-2 and pan-ras) and one tumour suppressor gene (TP53), by immunohistochemical staining of normal cervical stratified squamous epithelium and cervical intra-epithelial neoplasia (CIN). Paraffin sections of 45 normal cervical specimens, 38 CIN grade one (CIN1), 37 CIN2 and 43 CIN3 were studied. An immunohistochemical (IHC) score was derived from the intensity of staining and the percentages of cells stained. In normal cervical specimens, a higher IHC score was found with EGFR and c-fms in superficial (S), intermediate (I) and parabasal (PB) cells compared with basal cells. In contrast, a higher IHC score was found with c-erbB-2 in basal cells in normal cervical specimens. Dysplastic cells in CIN had a higher IHC score with c-myc and c-erbB-2 than normal S/I and PB cells. Dysplastic cells had a higher score with EGFR than normal basal cells. However, a higher IHC score with EGFR and c-fms was found in normal S/I cells than dysplastic cells. These findings suggested that EGFR and c-fms were activated in more differentiated normal cells but were less active in less differentiated normal basal cells. However, EGFR was reactivated in dysplastic cells. Meanwhile, c-erbB-2 was activated in less differentiated normal basal cells and dysplastic cells, and was less active in differentiated normal cells. c-myc was activated in dysplastic cells. c-fms was more active in more differentiated normal cells and was not activated in less differentiated or dysplastic cells. c-kit, pan-ras and TP53 were not activated in normal nor dysplastic cervical cells. These results suggest EGFR, c-erbB-2 and c-myc may be important proto-oncogenes in CIN and that antibodies or anti-genes targeted against them may alter the progress of CIN to invasive cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Female
  • Humans
  • Immunohistochemistry
  • Proto-Oncogenes / physiology*
  • Tumor Suppressor Protein p53 / metabolism*
  • Uterine Cervical Dysplasia / genetics*
  • Uterine Cervical Dysplasia / metabolism*
  • Uterine Cervical Neoplasms / genetics*
  • Uterine Cervical Neoplasms / metabolism*

Substances

  • Tumor Suppressor Protein p53