U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Guideline Centre (UK). Venous thromboembolism in over 16s: Reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism. London: National Institute for Health and Care Excellence (NICE); 2018 Mar. (NICE Guideline, No. 89.)

  • December 2019: In recommendation 1.3.5 the British Standards for anti-embolism hosiery were updated because BS 6612 and BS 7672 have been withdrawn. August 2019: Recommendation 1.12.11 (1.5.30 in this document) was amended to clarify when anti-embolism stockings can be used for VTE prophylaxis for people with spinal injury.

December 2019: In recommendation 1.3.5 the British Standards for anti-embolism hosiery were updated because BS 6612 and BS 7672 have been withdrawn. August 2019: Recommendation 1.12.11 (1.5.30 in this document) was amended to clarify when anti-embolism stockings can be used for VTE prophylaxis for people with spinal injury.

Cover of Venous thromboembolism in over 16s

Venous thromboembolism in over 16s: Reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism.

Show details

Appendix MNetwork meta-analyses (NMAs)

M.1. Network meta-analysis for elective hip replacement surgery

M.1.1. Introduction

The results of conventional meta-analyses of direct evidence alone (as presented in the GRADE profiles in appendix K and forest plots in appendix L) does not help inform which intervention is most effective as VTE prophylaxis in patients undergoing elective hip replacement surgery. The challenge of interpretation has arisen for two reasons:

  • In isolation, each pair-wise comparison does not inform the choice among the different treatments; in addition direct evidence is not available for some pair-wise comparisons in a randomised controlled trial.
  • There are frequently multiple overlapping comparisons that could potentially give inconsistent estimates of effect.

To overcome these problems, a hierarchical Bayesian network meta-analysis (NMA) was performed. This type of analysis allows for the synthesis of data from direct and indirect comparisons without breaking randomisation and allows for the ranking of different interventions. In this case the outcomes were defined as:

The analysis also provided estimates of effect (with 95% credible intervals) for each intervention compared to one another and compared to a single baseline risk (in this case the baseline treatment was no prophylaxis or in the case of the major bleeding outcome a combination of no prophylaxis and mechanical prophylaxis). These estimates provide a useful clinical summary of the results and facilitate the formation of recommendations based on the best available evidence.

Conventional fixed effects meta-analysis assumes that the relative effect of one treatment compared to another is the same across an entire set of trials. In a random effects model, it is assumed that the relative effects are different in each trial but that they are from a single common distribution and that this distribution is common across all sets of trials.

Network meta-analysis requires an additional assumption over conventional meta-analysis. The additional assumption is that intervention A has the same effect on people in trials of intervention A compared to intervention B as it does for people in trials of intervention A versus intervention C, and so on. Thus, in a random effects network meta-analysis, the assumption is that intervention A has the same effect distribution across trials of A versus B, A versus C and so on.

This specific method is usually referred to as mixed-treatment comparisons analysis but we will continue to use the term network meta-analysis to refer generically to this kind of analysis. We do so since the term “network” better describes the data structure, whereas “mixed treatments” could easily be misinterpreted as referring to combinations of treatments.

M.1.2. Methods

M.1.2.1. Study selection

To estimate the relative risks, we performed an NMA that simultaneously used all the relevant RCT evidence from the clinical evidence review. As with conventional meta-analyses, this type of analysis does not break the randomisation of the evidence, nor does it make any assumptions about adding the effects of different interventions. The effectiveness of a particular treatment strategy combination will be derived only from randomised controlled trials that had that particular combination in a trial arm.

M.1.2.2. Outcome measures

The NMA evidence reviews for interventions considered three clinical efficacy outcomes identified from the clinical evidence review; number of people with DVT, number of people with PE and number of people with major bleeding. Other outcomes were not considered for the NMA as they were infrequently reported across the studies. The guideline committee considered that these outcomes were the most critical clinical outcomes for testing effectiveness of VTE prophylaxis.

M.1.2.3. Comparability of interventions

The interventions compared in the model were those found in the randomised controlled trials and included in the clinical evidence review already presented in Chapter 26 of the full guideline and in appendix H. If an intervention was evaluated in a study that met the inclusion criteria for the network (that is if it reported at least one of the outcomes of interest and matched the inclusion criteria for the meta-analysis) then it was included in the network meta-analysis, otherwise it was excluded.

The treatments included in each network are shown in Table 237.

Table 237Treatments included in network meta-analysis

Network 1:

Number of people with DVT

Network 2:

Number of people with PE

Network 3:

Number of people with major bleeding

No prophylaxisNo prophylaxisNo prophylaxis/mechanical
LMWH (standard dose; standard duration)LMWH (standard dose; standard duration)UFH (standard duration)
UFH (standard duration)LMWH (standard dose) + AESLMWH (high dose; standard duration)
LMWH (standard dose) + AESIPCD (length unspecified)LMWH (standard dose; standard duration)
LMWH (high dose; standard duration)UFH (standard duration)Fondaparinux
IPCDRivaroxabanLMWH (low dose; post-op)
LMWH (standard dose; extended duration)LMWH (standard dose; extended duration)VKA (standard duration)
DabigatranLMWH (high dose; standard duration)Dabigatran
Foot pumpDabigatranApixaban
ApixabanFoot pumpRivaroxaban
RivaroxabanApixabanLMWH (standard dose; extended duration)
VKA (standard duration)AES (length unspecified)LMWH (low dose; pre-op)
UFH (extended duration)LMWH (low dose) + AESVKA (extended duration)
AspirinFondaparinux + AESLMWH (standard dose; standard duration) followed by aspirin (extended duration)
LMWH (low dose) + AESLMWH (standard dose; extended duration) + AESLMWH (high dose; extended duration)
LMWH (extended duration) + AESAspirin (standard duration)-
Fondaparinux + AESLMWH (standard dose; standard duration) followed by aspirin (extended duration)-
AES (length unspecified)VKA (standard duration)-
LMWH (low dose; pre-op)UFH + AES-
LMWH (low dose; post-op)AES (above-knee)-
VKA (extended duration)LMWH (high dose) + AES-
AES (above-knee)VKA (extended duration)-
LMWH (high dose) + AESLMWH (high dose; extended duration)
UFH + AES--
Foot pump + AES--
LMWH (high dose; extended duration)-

M.1.2.4. Baseline risks

The baseline risk is defined as the risk of achieving the outcome of interest in the baseline treatment arm of the included trials. This figure is useful because it allows us to convert the results of the NMA from odds ratios to relative risks. However, the majority of the trials were old studies that reported very high risk of DVT and PE in the no prophylaxis arm that the orthopaedic subgroup considered to be not reflective of the baseline risk in the UK. Hence, for the purpose of calculating the relative risks of these events for presentation in this appendix, the baseline risk values were obtained from a large observational study that used data from the UK National Joint Registry (NJR).451 For full details please refer to HE write-up (appendix P, section P.1.3.3).

M.1.2.5. Statistical analysis

A hierarchical Bayesian network meta-analysis (NMA) was performed using the software WinBUGS. We adapted a three-arm random effects model template for the networks, from the University of Bristol website (https://www.bris.ac.uk/cobm/research/mpes/mtc.html). This model accounts for the correlation between study level effects induced by multi-arm trials.

In order to be included in the analysis, a fundamental requirement is that each treatment is connected directly or indirectly to every other intervention in the network. For each outcome subgroup, a diagram of the evidence network is presented in section M.1.3.

The model used was a random effects logistic regression model, with parameters estimated by Markov chain Monte Carlo simulation. As it was a Bayesian analysis, for each parameter the evidence distribution is weighted by a distribution of prior beliefs. Due to the sparse nature of the networks (few studies per direct treatment comparison), the between-study heterogeneity parameter is imprecisely estimated in a random effects model. Therefore it is beneficial to apply informative priors in order to restrict the prior distribution for heterogeneity to avoid unreasonably wide credible intervals. Turner et al (2015)946 derived a novel set of predictive distributions for the degree of heterogeneity across 80 different settings. Appropriate predictive distributions for heterogeneity were chosen from Turner et al (2015)946 and used directly as informative priors. The log normal (µ, ơ2) predictive distributions obtained for the between-study heterogeneity in a future meta-analysis presented in Table IV946 were selected according to the outcome and treatment comparison. For the DVT and PE NMAs the distributions defined by the outcome of “general physical health indicators” and by the intervention/comparison type “non-pharmacological vs. pharmacological” were chosen (LN[−1.26, 1.252]). For the major bleeding NMA the distributions defined by the outcome of “adverse events” and by the intervention/comparison type “non-pharmacological vs. pharmacological” were chosen (LN[−0.84, 1.242]). These distributions were chosen as they represented outcomes measured by an assessor, whose method of measurement as well as judgement may influence the outcome (as studies provided slightly variable ways of defining these critical outcomes), and the interaction aspect encompassed both the pharmacological and mechanical prophylaxis options covered in our review protocol.

For the analyses, a series of 60,000 burn-in simulations were run to allow convergence and then a further 60,000 simulations were run to produce the outputs. Convergence was assessed by examining the history and kernel density plots.

We tested the goodness of fit of the model by calculating the residual deviance. If the residual deviance is close to the number of unconstrained data points (the number of trial arms in the analysis) then the model is explaining the data well.

The results, in terms of relative risk, of pair-wise meta-analyses are presented in the clinical evidence review (Chapter 26, and appendix H).

The aim of the NMA was to calculate treatment specific log odds ratios and relative risks for response to be consistent with the comparative effectiveness results presented elsewhere in the clinical evidence review and for ease of interpretation. Let BO, θ˜, OR˜ and p denote the baseline odds, treatment specific odds, treatment specific log odds ratio and treatment specific absolute probability respectively. Then:

θ˜=Ln(OR˜)+Ln(BO)

And:

p=eθ˜1+eθ˜

Once the treatment specific probabilities for response are calculated, we divide them by the baseline probability (pb) to get treatment specific relative risks (rrb):

pb=eBO1+eBO
rrb=ppb

This approach has the advantage that baseline and relative effects are both modelled on the same log odds scale, and also ensures that the uncertainty in the estimation of both baseline and relative effects is accounted for in the model.

We also calculated the overall ranking of interventions according to their relative risk compared to control group. Due to the skewness of the data, the NMA relative risks and rank results are reported as medians rather than means (as in the direct comparisons) to give a more accurate representation of the ‘most likely’ value. The median rank for each intervention was derived from the resulting distribution and these are presented on a rank plot with the associated 95% credible intervals.

A key assumption behind NMA is that the network is consistent. In other words, it is assumed that the direct and indirect treatment effect estimates do not disagree with one another. Discrepancies between direct and indirect estimates of effect may result from several possible causes. First, there is chance and if this is the case then the network meta-analysis results are likely to be more precise as they pool together more data than conventional meta-analysis estimates alone. Second, there could be differences between the trials included in terms of their clinical or methodological characteristics.

This heterogeneity is a problem for network meta-analysis but may be dealt with by subgroup analysis, meta-regression or by carefully defining inclusion criteria. Inconsistency, caused by heterogeneity, was assessed subjectively by comparing the relative risks from the direct evidence (from pair-wise meta-analysis) to the relative risks from the combined direct and indirect evidence (from NMA). We further tested for inconsistency by developing inconsistency models for networks of binary outcomes using the TSD 4 template from the University of Bristol website (https://www.bris.ac.uk/cobm/research/mpes/mtc.html). We compared the posterior mean of the residual deviance between the consistency and inconsistency models to see which was a better fit to the data (closest to the number of trial arms in each network) and checked the difference in deviance information criterion (DIC) values between the two models was small (less than 3–5) or if it was larger, that the smaller DIC and hence better fitting model was the consistency model. No inconsistency was identified.

M.1.3. Results

M.1.3.1. Deep vein thrombosis (symptomatic and asymptomatic)

Included studies

44 studies were identified as reporting on DVT outcomes. After excluding papers that reported zero events in each arm and papers reporting on combinations that did not connect to any other intervention in the network, 42 studies involving 26 treatments were included in the network for DVT (symptomatic and asymptomatic). The network can be seen in Figure 827 and the trial data for each of the studies included in the NMA are presented in Table 238.

Figure 827. Network diagram for DVT (symptomatic and asymptomatic).

Figure 827Network diagram for DVT (symptomatic and asymptomatic)

Table 238Study data for DVT network meta-analysis

StudyComparisonIntervention 1Intervention 2ComparisonIntervention 1Intervention 2
NNANNANNA
Kalodiki 1996472No prophylaxisLMWH (standard dose; standard duration)LMWH (standard dose) + AES13141232832
Bergqvist 1996B92No prophylaxisLMWH (standard dose; standard duration)-4311621117--
Tørholm 1991941No prophylaxisLMWH (standard dose; standard duration)-1954958--
Hampson 1974382No prophylaxisUFH (standard duration)-28522248--
Mannucci 1976604No prophylaxisUFH (standard duration)-36751468--
Turpie 1986952No prophylaxisLMWH (high dose; standard duration)-2039437--
Hull 1990No prophylaxisIPCD (length unspecified)-3615277158--
Gallus 1983334No prophylaxisIPCD (length unspecified)-25471543--
Colwell 1994204LMWH (standard dose; standard duration)UFH (standard duration)-28136211428136
Avikainen 199557LMWH (standard dose; standard duration)UFH (standard duration)-179479--
Eriksson 1991A289LMWH (standard dose; standard duration)UFH (standard duration)-19632559--
Planes 1990A (Trial3)758LMWH (standard dose; standard duration)UFH (standard duration)-1512027106--
Planes 1990A (Trial1)758LMWH (standard dose; standard duration)LMWH (high dose; standard duration)-12150578--
Hardwick 2011389LMWH (standard dose; standard duration)IPCD (length unspecified)-81908196--
Comp 2001209LMWH (standard dose; standard duration)LMWH (standard dose; extended duration)-3913815152--
Lassen 1998528LMWH (standard dose; standard duration)LMWH (standard dose; extended duration)-121025113--
Planes 1996757LMWH (standard dose; standard duration)LMWH (standard dose; extended duration)-1788685--
Eriksson 2011292LMWH (standard dose; standard duration)Dabigatran-6778360791--
Eriksson 2007288LMWH (standard dose; standard duration)Dabigatran-5789745880--
Warwick 1998994LMWH (standard dose; standard duration)Foot pump-1813824136--
Lassen 2010535LMWH (standard dose; standard duration)Apixaban-681911221944--
Kakkar 2008467LMWH (standard dose; standard duration)Rivaroxaban-7186914864--
Francis 1997A315LMWH (standard dose; standard duration)VKA (standard duration)-4919028192--
Kakkar 2000468UFH (standard duration)LMWH (high dose; standard duration)-241169101--
Levine 1991551UFH (standard duration)LMWH (high dose; standard duration)-6126350258--
Manganelli 1998601UFH (standard duration)UFH (extended duration)-433628--
Zanasi 19881039UFH (standard duration)Aspirin-1025719--
Fuji 2008A328LMWH (standard dose) + AESLMWH (low dose) + AESAES (length unspecified)278021813686
Dahl 1997226LMWH (standard dose) + AESLMWH (extended duration) + AES-3310422114--
Lassen 2002526LMWH (standard dose) + AESFondaparinux + AES-8391836908--
Samama 1997844LMWH (standard dose) + AESAES (length unspecified)-11782875--
Warwick 1995A996LMWH (standard dose) + AESAES (length unspecified)-22783378--
Paeiment 1987722IPCD (length unspecified)VKA (standard duration)-11661272--
Lassen 1991529AES (above-knee)LMWH (low dose) + AES-531558121595--
Eriksson 2008291LMWH (standard dose; extended duration)Rivaroxaban-813383633744336
Hull 2000440VKA (standard duration)LMWH (low dose; pre-op)LMWH (low dose; post-op)81763184--
Prandoni 2002771VKA (standard duration)VKA (extended duration)-29934497--
Turpie 2002K954Fondaparinux + AESLMWH (high dose) + AES-4478465796--
Moskovitz 1978657AES (length unspecified)UFH + AES-1928832--
Fordyce 1992312AES (length unspecified)Foot pump + AES4391640--
Samama 2002845LMWH (high dose; extended duration)VKA (extended duration)-2063615643--
Santori 1994850UFH + AESFoot pump + AES2365967--

N; number of events, NA; number analysed

NMA results

Table 239 summarises the results of the conventional meta-analyses in terms of risk ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of risk ratios for every possible treatment comparison.

Table 239Risk ratios for DVT (symptomatic and asymptomatic)

InterventionDirect (mean with 95% confidence interval)NMA (median with 95% credible interval)
Versus no prophylaxisLMWH (standard dose; standard duration)0.46 (0.33, 0.63)0.46 (0.23, 0.81)
UFH (standard duration)0.61 (0.45, 0.85)0.60 (0.28, 1.03)
LMWH (standard dose) + AES0.27 (0.15, 0.50)0.14 (0.07, 0.59)
LMWH (high dose; standard duration)0.21 (0.08, 0.56)0.28 (0.10, 0.67)
IPCD0.53 (0.40, 0.69)0.80 (0.34, 1.41)
LMWH (standard dose; extended duration)-0.19 (0.05, 0.57)
Dabigatran-0.40 (0.11, 1.05)
Foot pump-0.62 (0.11, 1.83)
Apixaban-0.16 (0.03, 0.76)
Rivaroxaban-0.06 (0.01, 0.29)
VKA (standard duration)-0.44 (0.11, 1.13)
UFH (extended duration)-0.96 (0.15, 2.92)
Aspirin-0.54 (0.07, 1.87)
LMWH (low dose) + AES-0.13 (0.02, 0.89)
LMWH (extended duration) + AES-0.08 (0.01, 0.61)
Fondaparinux + AES-0.07 (0.01, 0.49)
AES (length unspecified)-0.30 (0.08, 1.46)
LMWH (low dose; pre-op)-0.19 (0.02, 1.00)
LMWH (low dose; post-op)-0.23 (0.03, 1.12)
VKA (extended duration)-0.16 (0.01, 1.08)
AES (above-knee)-0.23 (0.02, 2.04)
LMWH (high dose) + AES-0.10 (0.01, 1.07)
UFH + AES0.27 (0.04, 1.82)
Foot pump + AES-0.32 (0.04, 2.11)
LMWH (high dose; extended duration)0.12 (0.00, 1.20)
Versus LMWH (standard dose; standard duration)UFH (standard duration)1.27 (0.95, 1.70)*1.28 (0.72, 2.36)
LMWH (standard dose) + AES0.67 (0.32, 1.41)*0.33 (0.10, 1.65)
LMWH (high dose; standard duration)0.40 (0.22, 0.72)*0.61 (0.26, 1.28)
IPCD0.97 (0.37, 2.53)*1.67 (0.77, 3.74)
LMWH (standard dose; extended duration)0.36 (0.23, 0.55)0.41 (0.16, 0.95)
Dabigatran0.85 (0.66, 1.09)*0.87 (0.30, 2.06)
Foot pump1.35 (0.77, 2.38)*1.30 (0.29, 4.12)
Apixaban0.32 (0.20, 0.51)*0.36 (0.07, 1.43)
Rivaroxaban0.20 (0.11, 0.35)*0.14 (0.04, 0.51)
VKA (standard duration)0.57 (0.37, 0.86)*0.94 (0.29, 2.52)
UFH (extended duration)-1.97 (0.35, 7.54)
Aspirin-1.15 (0.17, 4.55)
LMWH (low dose) + AES-0.28 (0.04, 2.39)
LMWH (extended duration) + AES-0.18 (0.02, 1.61)
Fondaparinux + AES-0.14 (0.02, 1.31)
AES (length unspecified)-0.66 (0.14, 4.01)
LMWH (low dose; pre-op)-0.41 (0.05, 2.13)
LMWH (low dose; post-op)-0.50 (0.07, 2.46)
VKA (extended duration)-0.34 (0.03, 2.37)
AES (above-knee)-0.50 (0.07, 5.45)
LMWH (high dose) + AES-0.21 (0.02, 2.79)
UFH + AES-0.58 (0.07, 4.94)
Foot pump + AES-0.69 (0.08, 5.68)
LMWH (high dose; extended duration)-0.25 (0.01, 2.65)
Versus UFH (standard duration)LMWH (standard dose) + AES-0.25 (0.08, 1.32)
LMWH (high dose; standard duration)0.66 (0.50, 0.87)0.48 (0.21, 0.94)
IPCD-1.30 (0.54, 3.17)
LMWH (standard dose; extended duration)-0.32 (0.10, 0.89)
Dabigatran-0.68 (0.20, 1.88)
Foot pump-1.03 (0.20, 3.55)
Apixaban-0.28 (0.05, 1.25)
Rivaroxaban-0.11 (0.03, 0.45)
VKA (standard duration)-0.74 (0.20, 2.17)
UFH (extended duration)0.57 (0.18, 1.81)1.53 (0.31, 5.36)
Aspirin4.17 (0.88, 19.66)*0.90 (0.14, 3.17)
LMWH (low dose) + AES-0.22 (0.03, 1.88)
LMWH (extended duration) + AES-0.14 (0.02, 1.27)
Fondaparinux + AES-0.11 (0.01, 1.02)
AES (length unspecified)-0.51 (0.11, 3.17)
LMWH (low dose; pre-op)-0.32 (0.04, 1.76)
LMWH (low dose; post-op)-0.39 (0.03, 4.24)
VKA (extended duration)-0.27 (0.02, 1.93)
AES (above-knee)-0.39 (0.03, 4.24)
LMWH (high dose) + AES-0.17 (0.01, 2.17)
UFH + AES-0.45 (0.05, 3.89)
Foot pump + AES-0.53 (0.06, 4.48)
LMWH (high dose; extended duration)-0.20 (0.01, 2.16)
Versus LMWH (standard dose) + AESLMWH (high dose; standard duration)-1.82 (0.28, 8.24)
IPCD-5.36 (0.99, 13.82)
LMWH (standard dose; extended duration)-1.21 (0.17, 6.59)
Dabigatran-2.61 (0.36, 10.81)
Foot pump-4.10 (0.43, 14.18)
Apixaban-1.06 (0.10, 7.73)
Rivaroxaban-0.42 (0.05, 3.30)
VKA (standard duration)-2.85 (0.38, 11.60)
UFH (extended duration)-6.67 (0.60, 16.55)
Aspirin-3.54 (0.27, 14.52)
LMWH (low dose) + AES0.77 (0.48, 1.24)0.84 (0.18, 3.53)
LMWH (extended duration) + AES0.610.52 (0.10, 2.59)
Fondaparinux + AES0.44 (0.30, 0.64)*0.43 (0.08, 2.03)
AES (length unspecified)1.58 (1.22, 2.06)*2.00 (0.79, 4.61)
LMWH (low dose; pre-op)-1.19 (0.08, 9.72)
LMWH (low dose; post-op)-1.49 (0.11, 10.76)
VKA (extended duration)-1.00 (0.05, 10.12)
AES (above-knee)-1.51 (0.16, 8.73)
LMWH (high dose) + AES-0.63 (0.06, 4.95)
UFH + AES-1.74 (0.29, 7.26)
Foot pump + AES-2.07 (0.36, 8.34)
LMWH (high dose; extended duration)-0.74 (0.02, 10.73)
Versus LMWH (high dose; standard duration)IPCD-2.76 (1.01, 8.59)
LMWH (standard dose; extended duration)-0.68 (0.20, 2.20)
Dabigatran-1.41 (0.40, 4.90)
Foot pump-2.10 (0.41, 9.28)
Apixaban-0.60 (0.10, 3.03)
Rivaroxaban0.24 (0.05, 1.03)
VKA (standard duration)1.35 (0.70, 2.61)*1.53 (0.40, 5.64)
UFH (extended duration)-3.18 (0.58, 15.07)
Aspirin-1.83 (0.28, 8.93)
LMWH (low dose) + AES-0.47 (0.05, 4.83)
LMWH (extended duration) + AES-0.29 (0.03, 3.28)
Fondaparinux + AES-0.24 (0.02, 2.66)
AES (length unspecified)-1.10 (0.18, 8.35)
LMWH (low dose; pre-op)-0.67 (0.08, 4.33)
LMWH (low dose; post-op)-0.83 (0.10, 5.05)
VKA (extended duration)-0.57 (0.04, 4.71)
AES (above-knee)-0.83 (0.05, 10.87)
LMWH (high dose) + AES-0.36 (0.02, 5.52)
UFH + AES-0.96 (0.09, 9.94)
Foot pump + AES-1.14 (0.11, 11.68)
LMWH (high dose; extended duration)-0.42 (0.02, 5.12)
Versus IPCDLMWH (standard dose; extended duration)-0.25 (0.07, 0.79)
Dabigatran-0.52 (0.14, 1.62)
Foot pump-0.79 (0.14, 2.94)
Apixaban-0.21 (0.03, 1.05)
Rivaroxaban0.08 (0.02, 0.39)
VKA (standard duration)1.00 (0.47, 2.11)*0.56 (0.17, 1.48)
UFH (extended duration)-1.19 (0.19, 4.86)
Aspirin-0.69 (0.09, 3.01)
LMWH (low dose) + AES-0.17 (0.02, 1.43)
LMWH (extended duration) + AES-0.10 (0.01, 0.98)
Fondaparinux + AES-0.08 (0.01, 0.79)
AES (length unspecified)-0.38 (0.09, 2.44)
LMWH (low dose; pre-op)-0.24 (0.03, 1.27)
LMWH (low dose; post-op)-0.30 (0.04, 1.46)
VKA (extended duration)-0.20 (0.02, 1.39)
AES (above-knee)-0.30 (0.02, 3.21)
LMWH (high dose) + AES-0.13 (0.01, 1.65)
UFH + AES-0.34 (0.04, 2.95)
Foot pump + AES-0.40 (0.05, 3.44)
LMWH (high dose; extended duration)-0.15 (0.01, 1.55)
Versus LMWH (standard dose; extended duration)Dabigatran-2.06 (0.56, 7.82)
Foot pump-3.07 (0.59, 14.78)
Apixaban0.87 (0.14, 4.73)
Rivaroxaban0.22 (0.12, 0.41)*0.35 (0.10, 1.18)
VKA (standard duration)-2.24 (0.55, 9.29)
UFH (extended duration)-4.68 (0.74, 26.51)
Aspirin-2.67 (0.35, 15.99)
LMWH (low dose) + AES-0.70 (0.07, 7.90)
LMWH (extended duration) + AES-0.43 (0.04, 5.27)
Fondaparinux + AES-0.36 (0.03, 4.31)
AES (length unspecified)-1.64 (0.24, 13.76)
LMWH (low dose; pre-op)-0.98 (0.11, 6.93)
LMWH (low dose; post-op)-1.21 (0.14, 8.14)
VKA (extended duration)-0.83 (0.06, 7.45)
AES (above-knee)-1.23 (0.07, 17.59)
LMWH (high dose) + AES-0.52 (0.03, 8.87)
UFH + AES-1.42 (0.12, 16.35)
Foot pump + AES-1.68 (0.15, 18.95)
LMWH (high dose; extended duration)-0.62 (0.03, 8.12)
Versus DabigatranFoot pump-1.49 (0.27, 7.25)
Apixaban-0.42 (0.06, 2.34)
Rivaroxaban-0.17 (0.03, 0.82)
VKA (standard duration)-1.09 (0.25, 4.63)
UFH (extended duration)-2.24 (0.35, 13.01)
Aspirin-1.31 (0.16, 7.71)
LMWH (low dose) + AES-0.33 (0.04, 3.71)
LMWH (extended duration) + AES-0.21 (0.02, 2.50)
Fondaparinux + AES-0.17 (0.02, 2.00)
AES (length unspecified)-0.77 (0.14, 6.46)
LMWH (low dose; pre-op)-0.48 (0.05, 3.38)
LMWH (low dose; post-op)-0.59 (0.04, 8.23)
VKA (extended duration)-0.40 (0.03, 3.63)
AES (above-knee)-0.59 (0.04, 8.28)
LMWH (high dose) + AES-0.25 (0.02, 4.14)
UFH + AES-0.68 (0.07, 7.66)
Foot pump + AES-0.80 (0.08, 8.80)
LMWH (high dose; extended duration)-0.30 (0.01, 3.96)
Versus Foot pumpApixaban-0.28 (0.04, 2.07)
Rivaroxaban-0.11 (0.02, 0.74)
VKA (standard duration)-0.73 (0.14, 4.23)
UFH (extended duration)-1.49 (0.20, 11.19)
Aspirin-0.88 (0.10, 6.72)
LMWH (low dose) + AES-0.22 (0.03, 2.93)
LMWH (extended duration) + AES-0.14 (0.01, 1.97)
Fondaparinux + AES-0.11 (0.01, 1.58)
AES (length unspecified)-0.50 (0.10, 5.34)
LMWH (low dose; pre-op)-0.32 (0.03, 2.84)
LMWH (low dose; post-op)-0.40 (0.04, 3.41)
VKA (extended duration)-0.27 (0.02, 3.07)
AES (above-knee)-0.39 (0.03, 6.37)
LMWH (high dose) + AES-0.17 (0.01, 3.15)
UFH + AES-0.44 (0.05, 6.03)
Foot pump + AES-0.52 (0.06, 7.07)
LMWH (high dose; extended duration)-0.20 (0.01, 3.16)
Versus ApixabanRivaroxaban-0.40 (0.06, 3.02)
VKA (standard duration)-2.57 (0.43, 17.96)
UFH (extended duration)-5.35 (0.64, 48.48)
Aspirin-3.04 (0.30, 28.57)
LMWH (low dose) + AES-0.80 (0.06, 12.74)
LMWH (extended duration) + AES-0.50 (0.04, 8.55)
Fondaparinux + AES-0.41 (0.03, 6.87)
AES (length unspecified)-1.88 (0.21, 23.11)
LMWH (low dose; pre-op)-1.13 (0.09, 11.98)
LMWH (low dose; post-op)-1.38 (0.12, 14.17)
VKA (extended duration)-0.95 (0.05, 12.43)
AES (above-knee)-1.41 (0.07, 28.04)
LMWH (high dose) + AES-0.61 (0.03, 13.84)
UFH + AES-1.63 (0.11, 26.26)
Foot pump + AES-1.92 (0.14, 30.62)
LMWH (high dose; extended duration)-0.71 (0.02, 12.98)
Versus RivaroxabanVKA (standard duration)-6.41 (1.23, 35.36)
UFH (extended duration)-13.43 (1.70, 96.91)
Aspirin-7.61 (0.84, 58.00)
LMWH (low dose) + AES-2.01 (0.15, 27.57)
LMWH (extended duration) + AES-1.26 (0.09, 18.53)
Fondaparinux + AES-1.03 (0.07, 14.83)
AES (length unspecified)-4.78 (0.50, 49.19)
LMWH (low dose; pre-op)-2.79 (0.27, 24.81)
LMWH (low dose; post-op)-3.42 (0.34, 29.03)
VKA (extended duration)-2.35 (0.15, 26.30)
AES (above-knee)-3.55 (0.17, 60.68)
LMWH (high dose) + AES-1.52 (0.07, 30.36)
UFH + AES-4.11 (0.27, 56.89)
Foot pump + AES-4.83 (0.34, 66.14)
LMWH (high dose; extended duration)-1.75 (0.07, 27.90)
Versus VKA (standard duration)UFH (extended duration)-2.06 (0.31, 12.35)
Aspirin-1.20 (0.14, 7.43)
LMWH (low dose) + AES-0.30 (0.03, 3.47)
LMWH (extended duration) + AES-0.19 (0.02, 2.32)
Fondaparinux + AES-0.15 (0.02, 1.87)
AES (length unspecified)-0.71 (0.13, 6.14)
LMWH (low dose; pre-op)0.45 (0.31, 0.64)0.44 (0.09, 1.64)
LMWH (low dose; post-op)0.55 (0.39, 0.76)0.54 (0.11, 1.91)
VKA (extended duration)0.36 (0.10, 1.33)0.37 (0.04, 1.94)
AES (above-knee)-0.54 (0.04, 7.78)
LMWH (high dose) + AES-0.23 (0.01, 3.87)
UFH + AES-0.62 (0.06, 7.21)
Foot pump + AES-0.74 (0.07, 8.33)
LMWH (high dose; extended duration)0.74 (0.38, 1.44)0.28 (0.02, 2.29)
Versus UFH (extended duration)Aspirin-0.59 (0.06, 4.37)
LMWH (low dose) + AES-0.14 (0.02, 1.98)
LMWH (extended duration) + AES-0.09 (0.01, 1.33)
Fondaparinux + AES-0.07 (0.01, 1.09)
AES (length unspecified)-0.31 (0.07, 3.72)
LMWH (low dose; pre-op)-0.21 (0.02, 2.09)
LMWH (low dose; post-op)-0.26 (0.02, 2.48)
VKA (extended duration)-0.18 (0.01, 2.13)
AES (above-knee)-0.25 (0.02, 4.28)
LMWH (high dose) + AES0.11 (0.01, 2.13)
UFH + AES-0.29 (0.03, 4.15)
Foot pump + AES-0.34 (0.04, 4.88)
LMWH (high dose; extended duration)-0.13 (0.00, 2.17)
Versus AspirinLMWH (low dose) + AES-0.25 (0.03, 4.42)
LMWH (extended duration) + AES-0.16 (0.01, 2.93)
Fondaparinux + AES-0.13 (0.01, 2.36)
AES (length unspecified)-0.57 (0.10, 8.17)
LMWH (low dose; pre-op)-0.37 (0.03, 4.39)
LMWH (low dose; post-op)-0.46 (0.04, 5.28)
VKA (extended duration)-0.31 (0.02, 4.50)
AES (above-knee)-0.45 (0.03, 9.51)
LMWH (high dose) + AES-0.19 (0.01, 4.71)
UFH + AES-0.51 (0.05, 9.06)
Foot pump + AES-0.60 (0.06, 10.77)
LMWH (high dose; extended duration)-0.23 (0.01, 4.53)
Versus LMWH (low dose) + AESLMWH (extended duration) + AES-0.62 (0.07, 5.81)
Fondaparinux + AES-0.51 (0.06, 4.65)
AES (length unspecified)1.61 (1.04, 2.52)2.35 (0.56, 10.69)
LMWH (low dose; pre-op)-1.41 (0.07, 19.95)
LMWH (low dose; post-op)-1.75 (0.09, 22.86)
VKA (extended duration)-1.18 (0.04, 19.61)
AES (above-knee)1.45 (1.00, 2.11)1.75 (0.35, 7.07)
LMWH (high dose) + AES-0.75 (0.05, 9.99)
UFH + AES-2.04 (0.26, 14.28)
Foot pump + AES-2.40 (0.32, 16.79)
LMWH (high dose; extended duration)-0.87 (0.02, 19.76)
Versus LMWH (standard dose; extended duration) + AESFondaparinux + AES-0.81 (0.08, 8.23)
AES (length unspecified)-3.80 (0.60, 25.16)
LMWH (low dose; pre-op)-2.25 (0.11, 35.36)
LMWH (low dose; post-op)-2.78 (0.13, 40.08)
VKA (extended duration)-1.89 (0.06, 35.03)
AES (above-knee)-2.84 (0.18, 33.96)
LMWH (high dose) + AES-1.20 (0.07, 17.55)
UFH + AES-3.28 (0.30, 30.52)
Foot pump + AES-3.88 (0.37, 35.78)
LMWH (high dose; extended duration)-1.39 (0.03, 35.31)
Versus fondaparinux + AESAES (length unspecified)-4.65 (0.76, 29.22)
LMWH (low dose; pre-op)-2.76 (0.13, 41.55)
LMWH (low dose; post-op)-3.41 (0.16, 47.41)
VKA (extended duration)-2.30 (0.08, 41.24)
AES (above-knee)-3.46 (0.22, 39.92)
LMWH (high dose) + AES1.46 (1.01, 2.11)1.47 (0.29, 6.50)
UFH + AES-4.04 (0.38, 35.80)
Foot pump + AES-4.75 (0.47, 41.79)
LMWH (high dose; extended duration)-1.70 (0.04, 41.28)
Versus AES (length unspecified)LMWH (low dose; pre-op)-0.60 (0.04, 6.00)
LMWH (low dose; post-op)-0.74 (0.05, 6.71)
VKA (extended duration)-0.50 (0.02, 6.09)
AES (above-knee)-0.76 (0.08, 4.60)
LMWH (high dose) + AES-0.32 (0.03, 3.00)
UFH + AES1.46 (1.01, 2.11)0.87 (0.20, 3.00)
Foot pump + AES0.26 (0.09, 0.70)1.03 (0.24, 3.48)
LMWH (high dose; extended duration)-0.37 (0.01, 6.24)
Versus LMWH (low dose; standard duration; pre-op)LMWH (low dose; post-op)1.23 (0.81, 1.85)*1.22 (0.28, 5.44)
VKA (extended duration)-0.85 (0.07, 8.65)
AES (above-knee)-1.25 (0.06, 31.23)
LMWH (high dose) + AES-0.54 (0.02, 15.05)
UFH + AES-1.45 (0.09, 29.53)
Foot pump + AES-1.70 (0.11, 34.69)
LMWH (high dose; extended duration)-0.64 (0.03, 9.39)
Versus LMWH (low dose; standard duration; post-op)VKA (extended duration)-0.70 (0.06, 6.90)
AES (above-knee)-1.01 (0.05, 24.79)
LMWH (high dose) + AES-0.44 (0.02, 11.93)
UFH + AES-1.17 (0.08, 23.26)
Foot pump + AES-1.38 (0.10, 27.44)
LMWH (high dose; extended duration)-0.52 (0.02, 7.44)
Versus VKA (extended duration)AES (above-knee)-1.48 (0.06, 50.45)
LMWH (high dose) + AES-0.65 (0.02, 24.76)
UFH + AES-1.73 (0.09, 49.88)
Foot pump + AES-2.03 (0.11, 58.64)
LMWH (high dose; extended duration)0.74 (0.38, 1.44)0.76 (0.14, 3.29)
Versus AES (above-knee)LMWH (high dose) + AES-0.43 (0.02, 8.95)
UFH + AES-1.15 (0.11, 14.62)
Foot pump + AES-1.36 (0.13, 17.26)
LMWH (high dose; extended duration)-0.50 (0.01, 17.17)
Versus LMWH (high dose + AES)UFH + AES-2.72 (0.18, 40.86)
Foot pump + AES-3.20 (0.22, 48.42)
LMWH (high dose; extended duration)-1.16 (0.02, 42.98)
Versus UFH + AESFoot pump + AES0.38 (0.19, 0.76)1.18 (0.32, 4.50)
LMWH (high dose; extended duration)-0.43 (0.01, 11.02)
Versus Foot pump + AESLMWH (high dose; extended duration)-0.37 (0.01, 8.98)
*

Intervention and comparison numbers have been switched in Review Manager

Figure 828 shows the rank of each intervention compared to the others. The rank is based on the relative risk compared to baseline and indicates the probability of being the best treatment, second best, third best and so on among the 26 different interventions being evaluated.

Figure 828. Rank order for interventions based on the relative risk of experiencing DVT.

Figure 828Rank order for interventions based on the relative risk of experiencing DVT

LD = low dose; SD = standard dose; HD = high dose; sd = standard duration; ed = extended duration

Goodness of fit and inconsistency

Both fixed effects and random effects models were fitted to the data. The random effects model had a DIC of 570 compared with 634 for the fixed effects model. The random effects model used for the NMA is a good fit, with a residual deviance of 90 reported. This corresponds well to the total number of trial arms, 88. The between trial standard deviation in the random effects analysis was 0.78 (95% CI 0.52 to 1.16). On evaluating inconsistency by comparing risk ratios, eight inconsistencies were identified. The NMA estimated risk ratio for:

  • LMWH at a standard dose for a standard duration plus AES versus no prophylaxis (0.14 [0.07, 0.59]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (0.27 [0.15, 0.50])
  • IPCD versus no prophylaxis (0.80 [0.34, 1.41]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (0.53 [0.40, 0.69])
  • VKA at a standard duration versus LMWH at a standard dose and standard duration (0.94 [0.29, 2.52]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (0.57 [0.37, 0.86])
  • LMWH at a high dose and standard duration versus UFH (0.48 [0.21, 0.94]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (0.66 [0.50, 0.87])
  • LMWH at a high dose and extended duration versus VKA at a standard duration (0.28 [0.02, 2.29]) lay outside of the confidence interval of the risk ration estimated for the direct comparison (0.74 [0.38, 1.44])
  • Foot pump plus AES (length unspecified) versus AES (length unspecified) (1.03 [0.24, 3.48]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (0.26 [0.09, 0.70])
  • UFH plus AES (length unspecified) versus AES (length unspecified) (0.87 [0.20, 3.00]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (1.46 [1.01, 2.11])
  • Foot pump plus AES (length unspecified) versus UFH plus AES (length unspecified) (1.18 [0.32, 4.50]) lay outside of the confidence interval of the risk ration estimated for the direct comparison (0.38 [0.19, 0.76])

An inconsistency model was run and the DIC statistics were as follows in Table 240. The difference in the DIC is small (<3–5) with the consistency model having the lower DIC value. This suggests that it fits the data better than the inconsistency model.

Table 240Posterior mean of the residual deviance (resdev) and DIC for the RE network meta-analysis and inconsistency models – DVT

DICResDev
Consistency model570.09290
Inconsistency model570.26890

M.1.3.2. Pulmonary embolism

Included studies

37 studies were identified as reporting on PE outcomes. After excluding papers that reported zero events in each arm and papers reporting on combinations that did not connect to any other intervention in the network, 30 studies involving 23 treatments were included in the network for PE. The network can be seen in Figure 829 and the trial data for each of the studies included in the NMA are presented in Table 241.

Figure 829. Network diagram for PE.

Figure 829Network diagram for PE

Table 241Study data for PE network meta-analysis

StudyComparisonIntervention 1Intervention 2ComparisonIntervention 1Intervention 2
NNANNANNA
Kalodiki 1996472No prophylaxisLMWH (standard dose; standard duration)LMWH (standard dose) + AES514332232
Bergqvist 199692No prophylaxisLMWH (standard dose; standard duration)-21160117--
Torholm 1991941No prophylaxisLMWH (standard dose; standard duration)-154058--
Hull 1990441No prophylaxisIPCD (length unspecified)-11581152--
Hardwick 2011389LMWH (standard dose; standard duration)IPCD (length unspecified)-21962194--
Avikainen 199557LMWH (standard dose; standard duration)UFH (standard duration)-084183--
Colwell 1994204LMWH (standard dose; standard duration)UFH (standard duration)LMWH (high dose; standard duration)120342090195
Eriksson 1991A289LMWH (standard dose; standard duration)UFH (standard duration)-167269--
Planès 1990758LMWH (standard dose; standard duration)UFH (standard duration)-01201106--
Comp 2001208LMWH (standard dose; standard duration)LMWH (standard dose; extended duration)-12110224--
Eriksson 2011292LMWH (standard dose; standard duration)Dabigatran-299211001--
Eriksson 2007288LMWH (standard dose; standard duration)Dabigatran-38975880--
Warwick 1998994LMWH (standard dose; standard duration)Foot pump-01381136--
Lassen 2010534LMWH (standard dose; standard duration)Apixaban-5269932708--
Kakkar 2008467LMWH (standard dose; standard duration)Rivaroxaban-48691864--
Dahl 1997227LMWH (standard dose) + AESLMWH (extended duration) + AES-31060111--
Lassen 2002526LMWH (standard dose) + AESFondaparinux + AES-3112331129--
Fuji 2008A328LMWH (standard dose) + AESLMWH (low dose) + AESAES (length unspecified)180081086
Warwick 1995A992LMWH (standard dose) + AESAES (length unspecified)-178278--
Kakkar 2000468LMWH (high dose; standard duration)UFH (standard duration)-11252134--
Levine 1991551LMWH (high dose; standard duration)UFH (standard duration)-13321333--
Colwell 1999203LMWH (high dose; standard duration)VKA (standard duration)-6151691495--
Samama 2002845LMWH (high dose; extended duration)VKA (extended duration)-06434636--
Zanasi 19881039UFH (standard duration)Aspirin (standard duration)-125119--
Eriksson 2008291LMWH (standard dose; extended duration)Rivaroxaban-1155841595--
Anderson 201340LMWH (standard dose; extended duration)LMWH (standard dose; standard duration) + aspirin (extended duration)-33980380--
Turpie 2002K954Fondaparinux + AESLMWH (high dose) + AES-5112601128--
Moskovtiz 1978657AES (length unspecified)UFH + AES-132335--
Lassen 1991529LMWH (low dose) + AESAES (above-knee)-293197--
Prandoni 2002771VKA (standard duration)VKA (extended duration)-11760184--

N; number of events, NA; number analysed

NMA results

Table 242 summarises the results of the conventional meta-analyses in terms of risk ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of risk ratios for every possible treatment comparison.

Table 242Risk ratios for PE

InterventionDirect (mean with 95% confidence interval)NMA (median with 95% credible interval)
Versus no prophylaxisLMWH (standard dose; standard duration)0.15 (0.04, 0.58)0.25 (0.06, 0.89)
LMWH (standard dose) + AES0.17 (0.04, 0.80)0.12 (0.02, 0.82)
IPCD (length unspecified)1.04 (0.07, 16.47)0.41 (0.05, 2.97)
UFH (standard duration)-0.65 (0.10, 4.02)
Rivaroxaban-0.07 (0.00, 0.78)
LMWH (standard dose; extended duration)-0.02 (0.00, 0.34)
LMWH (high dose; standard duration)-0.21 (0.02, 2.09)
Dabigatran-0.29 (0.04, 1.87)
Foot pump-1.18 (0.03, 29.88)
Apixaban-0.14 (0.01, 1.21)
AES (length unspecified)-0.12 (0.01, 2.08)
LMWH (low dose) + AES-0.03 (0.00, 1.87)
Fondaparinux + AES-0.12 (0.01, 1.95)
LMWH (extended duration) + AES-0.01 (0.00, 0.31)
Aspirin (standard duration)-3.43 (0.09, 45.71)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.00 (0.00, 0.10)
VKA (standard duration)-0.33 (0.02, 4.32)
UFH + AES-0.45 (0.01, 18.78)
AES (above-knee)-0.17 (0.00, 24.69)
LMWH (high dose) + AES-0.00 (0.00, 0.30)
VKA (extended duration)0.06 (0.00, 4.46)
LMWH (high dose; extended duration)0.00 (0.00, 0.81)
Versus LMWH (standard dose; standard duration)LMWH (standard dose) + AES0.67 (0.12, 3.73)0.52 (0.05, 3.82)
IPCD (length unspecified)1.01 (0.14, 7.10)*1.63 (0.23, 11.08)
UFH (standard duration)3.01 (0.82, 11.03)*2.60 (0.73, 10.33)
Rivaroxaban0.25 (0.03, 2.25)*0.29 (0.02, 2.14)
LMWH (standard dose; extended duration)0.30 (0.01, 7.37)0.08 (0.00, 1.00)
LMWH (high dose; standard duration)0.35 (0.01, 8.47)0.87 (0.11, 5.55)
Dabigatran1.21 (0.37, 3.96)*1.19 (0.27, 4.76)
Foot pump-4.51 (0.15, 118.90)
Apixaban0.60 (0.14, 2.50)*0.57 (0.08, 3.18)
AES (length unspecified)-0.49 (0.02, 9.58)
LMWH (low dose) + AES-0.14 (0.00, 8.53)
Fondaparinux + AES0.25 (0.03, 2.25)*0.51 (0.03, 8.51)
LMWH (extended duration) + AES-0.03 (0.00, 1.41)
Aspirin (standard duration)-13.34 (0.44, 181.20)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.00 (0.00, 0.33)
VKA (standard duration)-1.34 (0.11, 12.45)
UFH + AES-1.88 (0.03, 83.70)
AES (above-knee)-0.69 (0.00, 109.60)
LMWH (high dose) + AES-0.02 (0.00, 1.26)
VKA (extended duration)-0.25 (0.00, 14.26)
LMWH (high dose; extended duration)-0.01 (0.00, 2.76)
Versus LMWH (standard dose; standard duration) + AESIPCD (length unspecified)-3.22 (0.22, 45.98)
UFH (standard duration)-5.30 (0.48, 54.12)
Rivaroxaban-0.53 (0.02, 11.48)
LMWH (standard dose; extended duration)-0.15 (0.00, 4.70)
LMWH (high dose; standard duration)0.97 (0.17, 5.47)*1.71 (0.09, 28.52)
Dabigatran-2.32 (0.19, 29.85)
Foot pump-10.44 (0.16, 143.60)
Apixaban-1.10 (0.07, 18.05)
AES (length unspecified)0.97 (0.17, 21.61)*0.97 (0.11, 8.04)
LMWH (low dose) + AES0.33 (0.01, 7.96)0.29 (0.00, 9.28)
Fondaparinux + AES-1.00 (0.13, 7.52)
LMWH (extended duration) + AES-0.07 (0.00, 1.37)
Aspirin (standard duration)-34.54 (0.52, 148.70)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.01 (0.00, 1.13)
VKA (standard duration)-2.66 (0.10, 50.54)
UFH + AES-3.64 (0.13, 90.72)
AES (above-knee)-1.38 (0.00, 128.90)
LMWH (high dose) + AES-0.04 (0.00, 1.49)
VKA (extended duration)-0.47 (0.00, 48.12)
LMWH (high dose; extended duration)-0.02 (0.00, 8.29)
Versus IPCDUFH (standard duration)-1.61 (0.16, 16.85)
Rivaroxaban-0.17 (0.01, 2.96)
LMWH (standard dose; extended duration)-0.05 (0.00, 1.21)
LMWH (high dose; standard duration)-0.54 (0.03, 7.90)
Dabigatran-0.73 (0.06, 7.96)
Foot pump-2.88 (0.05, 123.10)
Apixaban-0.35 (0.02, 4.70)
AES (length unspecified)-0.30 (0.01, 9.30)
LMWH (low dose) + AES-0.08 (0.00, 7.49)
Fondaparinux + AES-0.31 (0.01, 8.70)
LMWH (extended duration) + AES-0.02 (0.00, 1.30)
Aspirin (standard duration)-8.03 (0.16, 206.90)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.00 (0.00, 0.31)
VKA (standard duration)-0.83 (0.04, 15.75)
UFH + AES-1.16 (0.02, 74.21)
AES (above-knee)-0.42 (0.00, 96.92)
LMWH (high dose) + AES-0.01 (0.00, 1.17)
VKA (extended duration)-0.15 (0.00, 14.26)
LMWH (high dose; extended duration)-0.01 (0.00, 2.22)
Versus UFH (standard duration)Rivaroxaban-0.11 (0.01, 1.19)
LMWH (standard dose; extended duration)-0.03 (0.00, 0.52)
LMWH (high dose; standard duration)0.35 (0.08, 1.47)0.34 (0.05, 1.40)
Dabigatran-0.45 (0.06, 2.97)
Foot pump-1.77 (0.04, 56.95)
Apixaban-0.21 (0.02, 1.85)
AES (length unspecified)-0.18 (0.01, 4.70)
LMWH (low dose) + AES-0.05 (0.00, 3.85)
Fondaparinux + AES-0.19 (0.01, 4.11)
LMWH (extended duration) + AES0.01 (0.00, 0.65)
Aspirin (standard duration)2.88 (0.46, 18.06)*4.66 (0.21, 75.89)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.00 (0.00, 0.15)
VKA (standard duration)-0.52 (0.05, 3.60)
UFH + AES-0.70 (0.01, 39.25)
AES (above-knee)-0.26 (0.00, 48.78)
LMWH (high dose) + AES-0.01 (0.00, 0.57)
VKA (extended duration)0.10 (0.00, 4.67)
LMWH (high dose; extended duration)0.00 (0.00, 0.92)
Versus RivaroxabanLMWH (standard dose; extended duration)0.31 (0.05, 1.78)0.28 (0.02, 2.17)
LMWH (high dose; standard duration)-3.06 (0.18, 75.17)
Dabigatran-4.20 (0.33, 82.88)
Foot pump-16.83 (0.30, 1021.00)
Apixaban-2.01 (0.12, 45.80)
AES (length unspecified)-1.81 (0.04, 86.58)
LMWH (low dose) + AES-0.50 (0.00, 64.91)
Fondaparinux + AES-1.88 (0.05, 79.40)
LMWH (extended duration) + AES-0.11 (0.00, 11.74)
Aspirin (standard duration)-47.43 (0.94, 1872.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.02 (0.00, 0.84)
VKA (standard duration)-4.77 (0.20, 143.70)
UFH + AES-6.97 (0.07, 664.60)
AES (above-knee)-2.56 (0.00, 697.00)
LMWH (high dose) + AES-0.07 (0.00, 9.59)
VKA (extended duration)-0.88 (0.00, 113.30)
LMWH (high dose; extended duration)-0.04 (0.00, 18.95)
Versus LMWH (standard dose; extended duration)LMWH (high dose; standard duration)-11.42 (0.41, 493.60)
Dabigatran-15.57 (0.77, 598.20)
Foot pump-64.15 (0.82, 6018.00)
Apixaban-7.48 (0.29, 311.80)
AES (length unspecified)-6.64 (0.12, 558.20)
LMWH (low dose) + AES-1.84 (0.00, 346.30)
Fondaparinux + AES3.91 (0.44, 34.92)*6.99 (0.13, 512.20)
LMWH (extended duration) + AES-0.40 (0.00, 63.43)
Aspirin (standard duration)-175.90 (2.45, 12110.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)0.15 (0.01, 2.89)*0.07 (0.00, 1.46)
VKA (standard duration)-17.66 (0.48, 931.10)
UFH + AES-25.95 (0.21, 4081.00)
AES (above-knee)-9.84 (0.01, 3985.00)
LMWH (high dose) + AES-0.27 (0.00, 54.28)
VKA (extended duration)3.27 (0.00, 650.10)
LMWH (high dose; extended duration)0.13 (0.00, 96.85)
Versus LMWH (high dose; standard duration)Dabigatran-1.36 (0.13, 16.37)
Foot pump-5.31 (0.10, 274.50)
Apixaban-0.65 (0.05, 9.72)
AES (length unspecified)-0.57 (0.02, 20.87)
LMWH (low dose) + AES-0.15 (0.00, 16.59)
Fondaparinux + AES-0.59 (0.02, 18.62)
LMWH (extended duration) + AES-0.04 (0.00, 2.89)
Aspirin (standard duration)-14.19 (0.47, 387.50)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.01 (0.00, 0.62)
VKA (standard duration)0.66 (0.23, 1.84)1.53 (0.37, 6.16)
UFH + AES-2.22 (0.03, 162.40)
AES (above-knee)-0.78 (0.00, 205.60)
LMWH (high dose) + AES-0.02 (0.00, 2.37)
VKA (extended duration)-0.30 (0.00, 10.82)
LMWH (high dose; extended duration)-0.01 (0.00, 2.07)
Versus DabigatranFoot pump-3.85 (0.10, 142.40)
Apixaban-0.48 (0.04, 4.69)
AES (length unspecified)-0.41 (0.02, 11.16)
LMWH (low dose) + AES-0.11 (0.00, 9.14)
Fondaparinux + AES-0.43 (0.02, 10.35)
LMWH (extended duration) + AES-0.03 (0.00, 1.57)
Aspirin (standard duration)-11.07 (0.29, 226.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.00 (0.00, 0.36)
VKA (standard duration)-1.13 (0.07, 16.88)
UFH + AES-1.60 (0.02, 92.90)
AES (above-knee)-0.58 (0.00, 114.40)
LMWH (high dose) + AES-0.02 (0.00, 1.42)
VKA (extended duration)-0.21 (0.00, 16.13)
LMWH (high dose; extended duration)-0.01 (0.00, 2.81)
Versus Foot pumpApixaban-0.12 (0.00, 5.59)
AES (length unspecified)-0.09 (0.00, 9.71)
LMWH (low dose) + AES-0.03 (0.00, 6.62)
Fondaparinux + AES-0.10 (0.00, 9.98)
LMWH (extended duration) + AES-0.01 (0.00, 1.18)
Aspirin (standard duration)-2.49 (0.03, 224.30)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.00 (0.00, 0.26)
VKA (standard duration)-0.29 (0.00, 17.57)
UFH + AES-0.38 (0.00, 69.71)
AES (above-knee)-0.14 (0.00, 78.93)
LMWH (high dose) + AES-0.00 (0.00, 1.08)
VKA (extended duration)-0.05 (0.00, 12.09)
LMWH (high dose; extended duration)-0.00 (0.00, 1.54)
Versus ApixabanAES (length unspecified)-0.87 (0.03, 30.52)
LMWH (low dose) + AES-0.24 (0.00, 23.71)
Fondaparinux + AES-0.90 (0.03, 27.94)
LMWH (extended duration) + AES-0.06 (0.00, 4.03)
Aspirin (standard duration)-22.98 (0.56, 601.70)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.01 (0.00, 0.89)
VKA (standard duration)-2.38 (0.12, 44.65)
UFH + AES-3.36 (0.04, 231.40)
AES (above-knee)-1.23 (0.00, 292.10)
LMWH (high dose) + AES-0.04 (0.00, 3.49)
VKA (extended duration)-0.43 (0.00, 37.71)
LMWH (high dose; extended duration)-0.02 (0.00, 6.53)
Versus AES (length unspecified)LMWH (low dose) + AES-0.30 (0.00, 9.69)
Fondaparinux + AES-1.02 (0.06, 19.24)
LMWH (extended duration) + AES-0.06 (0.00, 2.97)
Aspirin (standard duration)-31.53 (0.32, 593.60)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.01 (0.00, 1.87)
VKA (standard duration)-2.75 (0.06, 106.00)
UFH + AES2.74 (0.30, 25.05)3.59 (0.30, 63.62)
AES (above-knee)-1.43 (0.00, 186.90)
LMWH (high dose) + AES-0.04 (0.00, 2.98)
VKA (extended duration)-0.47 (0.00, 76.14)
LMWH (high dose; extended duration)-0.02 (0.00, 11.98)
Versus LMWH (low dose) + AESFondaparinux + AES-3.57 (0.07, 1617.00)
LMWH (extended duration) + AES-0.22 (0.00, 154.80)
Aspirin (standard duration)-105.40 (0.46, 51270.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.03 (0.00, 53.02)
VKA (standard duration)-10.18 (0.08, 5399.00)
UFH + AES-13.70 (0.16, 8649.00)
AES (above-knee)1.00 (0.06, 15.76)4.55 (0.14, 390.60)
LMWH (high dose) + AES-0.14 (0.00, 130.20)
VKA (extended duration)1.71 (0.00, 2387.00)
LMWH (high dose; extended duration)0.07 (0.00, 248.80)
Versus fondaparinux + AESLMWH (extended duration) + AES-0.06 (0.00, 2.67)
Aspirin (standard duration)-30.57 (0.33, 561.70)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.01 (0.00, 1.73)
VKA (standard duration)-2.65 (0.06, 93.52)
UFH + AES-3.69 (0.08, 153.80)
AES (above-knee)1.00 (0.06, 15.76)1.38 (0.00, 216.10)
LMWH (high dose) + AES0.09 (0.01, 1.64)0.05 (0.00, 0.76)
VKA (extended duration)-0.46 (0.00, 70.47)
LMWH (high dose; extended duration)-0.02 (0.00, 11.65)
Versus LMWH (standard dose; extended duration) + AESAspirin (standard duration)-464.20 (2.80, 242800.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.15 (0.00, 254.00)
VKA (standard duration)-43.65 (0.43, 30520.00)
UFH + AES-64.47 (0.55, 48030.00)
AES (above-knee)-26.19 (0.01, 37000.00)
LMWH (high dose) + AES-0.66 (0.00, 571.60)
VKA (extended duration)-8.20 (0.00, 13090.00)
LMWH (high dose; extended duration)-0.34 (0.00, 1307.00)
Versus aspirin (standard duration)LMWH (standard dose; standard duration) + aspirin (extended duration)-0.00 (0.00, 0.08)
LMWH (high dose) + AES-0.11 (0.00, 4.01)
UFH + AES-0.13 (0.00, 20.61)
AES (above-knee)-0.05 (0.00, 24.21)
VKA (standard duration)-0.00 (0.00, 0.32)
VKA (extended duration)-0.02 (0.00, 2.85)
LMWH (high dose; extended duration)-0.00 (0.00, 0.44)
Versus LMWH (standard dose; standard duration) + aspirin (extended duration)LMWH (high dose) + AES-291.70 (2.02, 392100.00)
UFH + AES-437.20 (1.06, 869900.00)
AES (above-knee)-169.70 (0.05, 610700.00)
VKA (standard duration)-4.35 (0.00, 11340.00)
VKA (extended duration)-51.11 (0.02, 143200.00)
LMWH (high dose; extended duration)-2.14 (0.00, 12350.00)
Versus LMWH (high dose) + AESUFH + AES-1.43 (0.02, 133.70)
AES (above-knee)-0.51 (0.00, 161.90)
VKA (standard duration)-0.01 (0.00, 1.86)
VKA (extended duration)-0.20 (0.00, 5.27)
LMWH (high dose; extended duration)-0.01 (0.00, 1.07)
Versus UFH + AESAES (above-knee)-0.39 (0.00, 99.84)
VKA (standard duration)-0.01 (0.00, 1.58)
VKA (extended duration)-0.12 (0.00, 41.97)
LMWH (high dose; extended duration)-0.00 (0.00, 5.61)
Versus AES (above-knee)VKA (standard duration)-0.03 (0.00, 57.82)
VKA (extended duration)-0.33 (0.00, 1053.00)
LMWH (high dose; extended duration)-0.01 (0.00, 100.60)
Versus VKA (standard duration)VKA (extended duration)0.32 (0.01, 7.78)12.18 (0.01, 23630.00)
LMWH (high dose; extended duration)0.11 (0.01, 2.04)0.54 (0.00, 2480.00)
Versus VKA (extended durationLMWH (high dose; extended duration)-0.06 (0.00, 0.99)
*

Intervention and comparison numbers have been switched in Review Manager

Figure 830 shows the rank of each intervention compared to the others. The rank is based on the relative risk compared to baseline and indicates the probability of being the best treatment, second best, third best and so on among the 23 different interventions being evaluated.

Figure 830. Rank order for interventions based on the relative risk of experiencing PE.

Figure 830Rank order for interventions based on the relative risk of experiencing PE

LD = low dose; SD = standard dose; HD = high dose; sd = standard duration; ed = extended duration

Goodness of fit and inconsistency

Both fixed effects and random effects models were fitted to the data. The random effects model had a DIC of 255 compared with 276 for the fixed effects model. The random effects model used for the NMA is a good fit, with a residual deviance of 61 reported. This corresponds well to the total number of trial arms, 62. The between trial standard deviation in the random effects analysis was 0.41 (95% CI 0.14 to 1.04). On evaluating inconsistency by comparing risk ratios, one inconsistency was identified. The NMA estimated risk ratio for VKA at an extended duration versus VKA at a standard duration (12.18 [1.01, 23630.00]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (0.32 [0.01, 7.78]). An inconsistency model was run and the DIC statistics were as follows in Table 243. The difference in the DIC is small (<3–5) with the consistency model having the lower DIC value. This suggests that it fits the data better than the inconsistency model.

Table 243Posterior mean of the residual deviance (resdev) and DIC for the RE network meta-analysis and inconsistency models – PE

DICResDev
Consistency model255.02561
Inconsistency model258.38663

M.1.3.3. Major bleeding

Included studies

28 studies were identified as reporting on major bleeding outcomes. After excluding papers that reported zero events in each arm and papers reporting on combinations that did not connect to any other intervention in the network, 24 studies involving 15 treatments were included in the network for PE. The network can be seen in Figure 831 and the trial data for each of the studies included in the NMA are presented in Table 244.

Figure 831. Network diagram for major bleeding.

Figure 831Network diagram for major bleeding

Table 244Study data for major bleeding network meta-analysis

StudyComparisonIntervention 1Intervention 2ComparisonIntervention 1Intervention 2
NNANNANNA
Moskovitz 1978657No prophylaxis/mechanicalUFH (standard duration)-335032--
Turpie 1986952No prophylaxis/mechanicalLMWH (high dose; standard duration)-150250--
Fuji 2008A328No prophylaxis/mechanicalLMWH (standard dose; standard duration)LMWH (low dose; post-op)010121021100
Hardwick 2011389No prophylaxis/mechanicalLMWH (standard dose; standard duration)-019811194--
Samama 1997844No prophylaxis/mechanicalLMWH (standard dose; standard duration)-175178--
Fuji 2008325No prophylaxis/mechanicalFondaparinux-082281--
Levine 1991551UFH (standard duration)LMWH (high dose; standard duration)-1933211333--
Colwell 1994204UFH (standard duration)LMWH (high dose; standard duration)LMWH (standard dose; standard duration)1320981953203
Eriksson 1991A289UFH (standard duration)LMWH (standard dose; standard duration)-569167--
Plànes 1990758UFH (standard duration)LMWH (standard dose; standard duration)-01062120--
Turpie 2002K954LMWH (high dose; standard duration)Fondaparinux-111129201128--
Colwell 1999203LMWH (high dose; standard duration)VKA (standard duration)-6151641495--
Lassen 2002526LMWH (standard dose; standard duration)Fondaparinux-321133471140--
Francis 1997315LMWH (standard dose; standard duration)VKA (standard duration)-62714279--
Eriksson 2011292LMWH (standard dose; standard duration)Dabigatran-91003141010--
Eriksson 2007288LMWH (standard dose; standard duration)Dabigatran-181154231146--
Lassen 2010534LMWH (standard dose; standard duration)Apixaban-182659222673--
Kakkar 2008467LMWH (standard dose; standard duration)Rivaroxaban-191257231252--
Lassen 1998527LMWH (standard dose; standard duration)LMWH (standard dose; extended duration)-11410140--
Hull 2000440LMWH (low dose; post-op)VKA (standard duration)LMWH (low dose; pre-op)324872248944496
Prandoni 2002771VKA (standard duration)VKA (extended duration)-01761184--
Eriksson 2008291LMWH (standard dose; extended duration)Rivaroxaban-332225402266--
Anderson 201340LMWH (standard dose; extended duration)LMWH (st; st duration) + aspirin (extended)-14000386--
Samama 2002845LMWH (high dose; extended duration)VKA (extended duration)-1064337636--

N; number of events, NA; number analysed

NMA results

Table 245 summarises the results of the conventional meta-analyses in terms of odd ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of odd ratios for every possible treatment comparison. Relative risks were not calculated for this outcome as data was only available for non-surgical site bleeding (intracranial haemorrhage + gastrointestinal bleeding) from the observational study used as the source of baseline risk.451

Table 245Odd ratios for major bleeding

InterventionDirect (mean with 95% confidence interval)NMA (median with 95% credible interval)
Versus no prophylaxis/mechanicalUFH (standard duration)7.00 (0.35, 140.99)3.58 (0.89, 13.67)
LMWH (high dose; standard duration)0.49 (0.04, 5.58)2.47 (0.67, 9.56)
LMWH (standard dose; standard duration)7.66 (1.76, 33.31)2.55 (0.82, 8.70)
Fondaparinux5.19 (0.25, 109.77)4.28 (1.07, 18.66)
LMWH (low dose; post-op)3.06 (0.12, 76.02)2.20 (0.35, 13.35)
VKA (standard duration)-1.54 (0.31, 7.94)
Dabigatran-3.63 (0.74, 18.48)
Apixaban-3.16 (0.47, 21.15)
Rivaroxaban-2.74 (0.42, 16.16)
LMWH (standard dose; extended duration)-1.99 (0.21, 14.60)
LMWH (low dose; pre-op)-3.13 (0.41, 23.59)
VKA (extended duration)-8.21 (0.13, 7883.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.37 (0.00, 26.96)
LMWH (high dose; extended duration)-2.06 (0.02, 2194.00)
Versus UFHLMWH (high dose; standard duration)0.60 (0.33, 1.06)0.69 (0.28, 2.01)
LMWH (standard dose; standard duration)0.34 (0.14, 0.84)0.71 (0.28, 2.13)
Fondaparinux-1.18 (0.36, 5.06)
LMWH (low dose; post-op)-0.61 (0.11, 3.68)
VKA (standard duration)-0.43 (0.10, 2.01)
Dabigatran-1.00 (0.25, 4.99)
Apixaban-0.87 (0.16, 5.91)
Rivaroxaban-0.76 (0.14, 4.22)
LMWH (standard dose; extended duration)-0.55 (0.07, 3.86)
LMWH (low dose; pre-op)-0.87 (0.13, 6.53)
VKA (extended duration)-2.29 (0.04, 2198.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.10 (0.00, 7.53)
LMWH (high dose; extended duration)-0.57 (0.01, 621.20)
Versus LMWH (high dose; standard duration)LMWH (standard dose; standard duration)0.35 (0.09, 1.34)1.04 (0.38, 2.83)
Fondaparinux1.83 (0.87, 3.85)*1.71 (0.58, 5.66)
LMWH (low dose; post-op)-0.89 (0.17, 4.54)
VKA (standard duration)0.68 (0.19, 2.40)0.62 (0.16, 2.36)
Dabigatran-1.46 (0.34, 6.58)
Apixaban-1.27 (0.21, 7.77)
Rivaroxaban-1.11 (0.19, 5.73)
LMWH (standard dose; extended duration)-0.80 (0.09, 5.27)
LMWH (low dose; pre-op)-1.26 (0.20, 8.08)
VKA (extended duration)-3.28 (0.06, 2993.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.15 (0.00, 10.57)
LMWH (high dose; extended duration)-0.83 (0.01, 851.90)
Versus LMWH (standard dose; standard duration)Fondaparinux1.48 (0.94, 2.34)*1.66 (0.58, 5.15)
LMWH (low dose; post-op)0.51 (0.05, 5.66)0.86 (0.18, 3.95)
VKA (standard duration)0.64 (0.18, 2.30)*0.60 (0.16, 2.14)
Dabigatran1.38 (0.84, 2.28)*1.41 (0.48, 4.27)
Apixaban1.22 (0.65, 2.26)*1.23 (0.27, 5.51)
Rivaroxaban1.22 (0.65, 2.28)*1.07 (0.25, 3.97)
LMWH (standard dose; extended duration)0.33 (0.01, 8.25)0.78 (0.11, 3.85)
LMWH (low dose; pre-op)-1.22 (0.20, 7.15)
VKA (extended duration)-3.14 (0.06, 2820.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.14 (0.00, 8.94)
LMWH (high dose; extended duration)-0.79 (0.01, 815.60)
Versus FondaparinuxLMWH (low dose; post-op)-0.51 (0.08, 2.97)
VKA (standard duration)-0.36 (0.07, 1.67)
Dabigatran-0.85 (0.18, 3.89)
Apixaban-0.74 (0.11, 4.58)
Rivaroxaban-0.64 (0.10, 3.42)
LMWH (standard dose; extended duration)-0.47 (0.05, 3.11)
LMWH (low dose; pre-op)-0.73 (0.09, 5.23)
VKA (extended duration)-1.90 (0.03, 1816.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.09 (0.00, 6.02)
LMWH (high dose; extended duration)-0.48 (0.01, 500.80)
Versus LMWH (low dose; post-op)VKA (standard duration)-0.70 (0.20, 2.61)
Dabigatran-1.66 (0.26, 11.40)
Apixaban-1.43 (0.17, 12.73)
Rivaroxaban-1.25 (0.15, 9.64)
LMWH (standard dose; extended duration)-0.90 (0.08, 8.49)
LMWH (low dose; pre-op)1.38 (0.86, 2.22)1.42 (0.35, 5.91)
VKA (extended duration)-3.68 (0.07, 3220.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.17 (0.00, 14.06)
LMWH (high dose; extended duration)-0.93 (0.01, 927.10)
Versus VKA (standard duration)Dabigatran-2.36 (0.45, 12.91)
Apixaban-2.05 (0.29, 14.69)
Rivaroxaban-1.77 (0.26, 11.11)
LMWH (standard dose; extended duration)-1.29 (0.13, 10.07)
LMWH (low dose; pre-op)2.07 (1.22, 3.50)2.03 (0.49, 8.27)
VKA (extended duration)2.89 (0.12, 71.31)5.18 (0.12, 4147.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.24 (0.00, 18.31)
LMWH (high dose; extended duration)0.26 (0.13, 0.52)1.30 (0.02, 1200.00)
Versus DabigatranApixaban-0.87 (0.13, 5.46)
Rivaroxaban-0.76 (0.12, 4.06)
LMWH (standard dose; extended duration)-0.55 (0.06, 3.69)
LMWH (low dose; pre-op)-0.86 (0.10, 6.78)
VKA (extended duration)-2.26 (0.04, 2161.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.10 (0.00, 7.14)
LMWH (high dose; extended duration)0.57 (0.01, 607.50)
Versus ApixabanRivaroxaban-0.88 (0.10, 6.31)
LMWH (standard dose; extended duration)-0.63 (0.05, 5.52)
LMWH (low dose; pre-op)-0.99 (0.10, 9.99)
VKA (extended duration)-2.64 (0.04, 2645.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.12 (0.00, 9.43)
LMWH (high dose; extended duration)-0.66 (0.01, 737.70)
Versus RivaroxabanLMWH (standard dose; extended duration)0.82 (0.51, 1.30)0.73 (0.18, 2.54)
LMWH (low dose; pre-op)-1.14 (0.12, 11.40)
VKA (extended duration)-3.01 (0.05, 3189.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.14 (0.00, 7.28)
LMWH (high dose; extended duration)-0.76 (0.01, 905.60)
Versus LMWH (standard dose; extended duration)LMWH (low dose; pre-op)-1.58 (0.15, 21.45)
VKA (extended duration)-4.24 (0.06, 4892.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)0.35 (0.01, 8.51)*0.20 (0.00, 8.19)
LMWH (high dose; extended duration)-1.06 (0.01, 1347.00)
Versus LMWH (low dose; standard duration; preop)VKA (extended duration)-2.62 (0.05, 2269.00)
LMWH (standard dose; standard duration) + aspirin (extended duration)-0.12 (0.00, 10.62)
LMWH (high dose; extended duration)-0.66 (0.01, 652.50)
Versus VKA (extended durationLMWH (standard dose; standard duration) + aspirin (extended duration)-0.04 (0.00, 15.62)
LMWH (high dose; extended duration)-0.25 (0.05, 1.14)
Versus LMWH (standard dose; standard duration) + aspirin (extended duration)LMWH (high dose; extended duration)-6.97 (0.01, 64290.00)
*

Intervention and comparison numbers have been switched in Review Manager

Figure 832 shows the rank of each intervention compared to the others. The rank is based on the relative risk compared to baseline and indicates the probability of being the best treatment, second best, third best and so on among the 14 different interventions being evaluated.

Figure 832. Rank order for interventions based on the relative risk of experiencing major bleeding.

Figure 832Rank order for interventions based on the relative risk of experiencing major bleeding

LD = low dose; SD = standard dose; HD = high dose; sd = standard duration; ed = extended duration

Goodness of fit and inconsistency

Both fixed effects and random effects models were fitted to the data. The random effects model had a DIC of 275 compared with 276 for the fixed effects model. The random effects model used for the NMA is a good fit, with a residual deviance of 55 reported. This corresponds well to the total number of trial arms, 51. The between trial standard deviation in the random effects analysis was 0.56 (95% CI 0.19 to 1.27). On evaluating inconsistency by comparing odd ratios, one inconsistency was identified. The NMA estimated odd ratio for LMWH at a standard dose for an extended duration versus VKA at a standard duration (1.30 [0.02, 1200.00]) lay outside of the confidence interval of the odd ratio estimated for the direct comparison (0.26 [0.13, 0.52]). An inconsistency model was run and the DIC statistics were as follows in Table 246. The difference in the DIC is small (<3–5) which suggests that there is no obvious inconsistency in the network. The consistency model has a smaller DIC suggesting that it is a better fit to the data than the inconsistency model.

Table 246Posterior mean of the residual deviance (resdev) and DIC for the RE network meta-analysis and inconsistency models – major bleeding

DICResDev
Consistency model275.3455
Inconsistency model277.69555

M.1.4. Discussion

Based on the results of conventional meta-analyses of direct evidence, as has been previously presented in Chapter 26 and appendix H, deciding upon the most clinical and cost effective prophylaxis intervention in patients undergoing elective hip replacement surgery is challenging. In order to overcome the difficulty of interpreting the conclusions from numerous separate comparisons, network meta-analysis of the direct evidence was performed. The findings of the NMA were used to facilitate the committee in their decision-making when developing recommendations.

Our analyses were divided into three critical outcomes. 42 studies informed the DVT network where 26 different individual or combination treatments were evaluated including five mechanical interventions, fourteen pharmacological interventions, and six interventions that combined both mechanical and pharmacological prophylaxis. 30 studies informed the PE network of 23 different treatments, including four mechanical interventions, eleven pharmacological interventions, and six interventions that combined both mechanical and pharmacological prophylaxis. The major bleeding network included 24 studies evaluating 15 treatments, 14 of which were pharmacological as for this outcome any mechanical prophylaxis measures were combined with the no prophylaxis intervention as it is believed that mechanical prophylaxis has no associated bleeding risk.

In the DVT network, the top three interventions were rivaroxaban, fondaparinux plus AES and LMWH at a standard dose for an extended duration plus AES. The bottom three interventions were no prophylaxis, UFH at an extended duration and IPCD (length unspecified). Five of the six interventions that represented a combination of mechanical and pharmacological prophylaxis featured in the top ten best ranked treatments. The treatment believed to most represent standard practice, LMWH at a standard dose for a standard duration plus AES, ranked at 7. There was a lot of uncertainty about the estimates with the credible intervals for some of the interventions being very wide, some interventions’ ranks spanning across from 1 to 26.

In the PE network, the top intervention was the combination treatment of LMWH at a standard dose for a standard duration followed by aspirin at an extended duration. The second and third ranked treatments were LMWH at a high dose for an extended duration and LMWH at a high dose for a standard duration plus AES. The bottom three interventions were aspirin at a standard duration, foot pump and no prophylaxis. The intervention LMWH at a standard dose for a standard duration with AES was ranked eleventh. There was also considerable uncertainty in the PE network with wide credible intervals for a majority of the interventions, particularly for LMWH (high dose, standard duration) plus AES and LMWH (low dose, standard duration) plus AES with credible intervals spanning from 1 to 20.; and for AES (above-knee) and apixaban with credible intervals spanning from 2 to 23.

In the major bleeding network the highest ranked intervention was the combination treatment of LMWH at a standard dose for a standard duration followed by aspirin at an extended duration. This was followed by no prophylaxis and VKA at a standard duration.. The bottom three interventions were VKA at an extended duration, fondaparinux and dabigatran. There was a lot of uncertainty within the major bleeding network with very wide credible intervals for all of the interventions. These very wide credible intervals account for the unusual rank of no prophylaxis as the second best intervention in terms of major bleeding.

In summary, the three outcomes chosen for analyses were considered to be among the most critical for assessing clinical effectiveness of different VTE prophylaxis strategies. All three networks seemed to fit well, as demonstrated by DIC and residual deviance statistics. However due to the sparse nature of the networks, and low event rates, the credible intervals around the ranking of treatments in all three networks were wide suggesting considerable uncertainty about these results.

M.1.5. Conclusion

This analysis allowed us to combine findings from many different comparisons presented in the review even when direct comparative data was lacking.

The committee and orthopaedic subgroup noted the wide credible intervals particularly for the PE and major bleeding network meta-analyses. They both also noted that even with the high levels of uncertainty, interventions such as LMWH at a standard dose for a standard duration followed by aspirin for an extended duration and LMWH in combination with AES, present possible clinical effectiveness in terms of the outcomes of DVT (symptomatic and asymptomatic), PE and major bleeding.

For details of the rationale and discussion leading to recommendations, please refer to the section linking the evidence to the recommendations (section 26.6, chapter 26).

M.1.6. WinBUGS codes

M.1.6.1. WinBUGS code for number of patients with DVT (symptomatic and asymptomatic)

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
#sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
#tau <- 1/pow(sd,2) 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
#A ~ dnorm(meanA, precA)  # A is on log-odds scale 
#precA <- pow(sdA,-2)     # turn st dev into precision 
 
v[4] ~ dbeta(a, b)    # distribution for prob event on LMWH (std/std)+AES 
b <- N-a 
N <- 85642 
a <- 4746 
for (k in 1:3){        # treatments below 4 
  logit(v[k]) <- logit(v[4]) - lor[k,4]       # note change in sign 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
for (k in 5:NT){    # treatments above 4 
  logit(v[k]) <- logit(v[4]) + lor[4,k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
rr[4] <- v[4]/v[1] 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 3. 
 
 
list(NT=26, NS=42,  
# meanA and sdA are the  posterior mean and sd of log-odds of event  
#meanA=-1.673, sdA=0.2529, 
#Empirical prior Table IV (Turner et al) intervention: Non-Pharma v Pharma;  
# outcome type: general physical health indicators 
m.tau= -1.26, sd.tau=1.25 ) 
 
 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
13 14   12 32   8  32  NA NA NA NA 1  2  4  NA NA 3 
43 116  21 117  NA NA  NA NA NA NA 1  2  NA NA NA 2 
19 54   9  58   NA NA  NA NA NA NA 1  2  NA NA NA 2 
28 52   22 48   NA NA  NA NA NA NA 1  3  NA NA NA 2 
36 75   14 68   NA NA  NA NA NA NA 1  3  NA NA NA 2 
20 39   4  37   NA NA  NA NA NA NA 1  5  NA NA NA 2 
36 152  77 158  NA NA  NA NA NA NA 1  6  NA NA NA 2 
25 47   15 43   NA NA  NA NA NA NA 1  6  NA NA NA 2 
28 136  21 142  8  136 NA NA NA NA 2  3  5  NA NA 3 
1  79   4  79   NA NA  NA NA NA NA 2  3  NA NA NA 2 
19 63   25 59   NA NA  NA NA NA NA 2  3  NA NA NA 2 
15 120  27 106  NA NA  NA NA NA NA 2  3  NA NA NA 2 
12 150  5  78   NA NA  NA NA NA NA 2  5  NA NA NA 2 
8  190  8  196  NA NA  NA NA NA NA 2  6  NA NA NA 2 
39 138  15 152  NA NA  NA NA NA NA 2  7  NA NA NA 2 
12 102  5  113  NA NA  NA NA NA NA 2  7  NA NA NA 2 
17 88   6  85   NA NA  NA NA NA NA 2  7  NA NA NA 2 
67 783  60 791  NA NA  NA NA NA NA 2  8  NA NA NA 2 
57 897  45 880  NA NA  NA NA NA NA 2  8  NA NA NA 2 
18 138  24 136  NA NA  NA NA NA NA 2  9  NA NA NA 2 
68 1911 22 1944 NA NA  NA NA NA NA 2  10 NA NA NA 2 
71 869  14 864  NA NA  NA NA NA NA 2  11 NA NA NA 2 
49 190  28 192  NA NA  NA NA NA NA 2  12 NA NA NA 2 
24 116  9  101  NA NA  NA NA NA NA 3  5  NA NA NA 2 
61 263  50 258  NA NA  NA NA NA NA 3  5  NA NA NA 2 
4  33   6  28   NA NA  NA NA NA NA 3  13 NA NA NA 2 
10 25   7  19   NA NA  NA NA NA NA 3  14 NA NA NA 2 
27 80   21 81   36 86  NA NA NA NA 4  15 18 NA NA 3 
33 104  22 114  NA NA  NA NA NA NA 4  16 NA NA NA 2 
83 918  36 908  NA NA  NA NA NA NA 4  17 NA NA NA 2 
11 78   28 75   NA NA  NA NA NA NA 4  18 NA NA NA 2 
22 78   33 78   NA NA  NA NA NA NA 4  18 NA NA NA 2 
11 66   12 72   NA NA  NA NA NA NA 6  12 NA NA NA 2 
53 1558 12 1595 NA NA  NA NA NA NA 7  11 NA NA NA 2 
81 338  36 337  44 336 NA NA NA NA 12 19 20 NA NA 3 
8  176  3  184  NA NA  NA NA NA NA 12 21 NA NA NA 2 
29 93   44 97   NA NA  NA NA NA NA 15 22 NA NA NA 2 
44 784  65 796  NA NA  NA NA NA NA 17 23 NA NA NA 2 
19 28   8  32   NA NA  NA NA NA NA 18 24 NA NA NA 2 
4  39   16 40   NA NA  NA NA NA NA 18 25 NA NA NA 2 
20 636  15 643  NA NA  NA NA NA NA 21 26 NA NA NA 2 
23 65   9  67   NA NA  NA NA NA NA 24 25 NA NA NA 2 
END  
  
 INITS 
list( 
d=c(NA,0,0,0,0,   0,0,0,1,2,    3,4,2,4,2,    1,2,-1,-2,0,    2,3,1,4,0,   -1), # one for each treatment, 
sd.sq=1, 
mu=c(-2,0,2,0,0,    0,3,0,1,0,    0,2,1,1, 3,     2,-2,0,2,0,    0,0,3,0,1,    0,0,2,1, 1,    3, 2,1,0,4,   1, 2,0,2,-3,   1,1) ) 
list( 
d=c(NA,0,0,4,0,   0,3,0,0,3,    4,4,1,0,-1,    -3,0,2,1,4,   2,1,2,2,1,    0), # one for each treatment, 
sd.sq=0.1, 
mu=c(0,0,-2,0,3,    0,0,2,0,0,  0,2,0,2,1,    4,0,0,-2,0,    3,0,0,2,0,     0,0,2,0,2,    1,4, 2,0, -3,     1,2,1,0,0,     1,1) ) 
list( 
d=c(NA,0,1,1,0,  0,0,0,1,2,   3,4,2,1,0,   3,1,3,4,-2,   0,1,-3,4,2,   1), # one for each treatment, 
sd.sq=2, 
mu=c(0,0,3,0,0,    0,0,0,3,3,  0,0,4,2,1,     1,0,0,3,0,     0,0,0,0,3,    3,0,0,4,2,    1,1,1, 2,4,        0,-1,2,1,3,     2,1) )  

M.1.6.2. WinBUGS code for inconsistency model for number of patients with DVT

VTE - inconsistency model - Elective hip DVT 
==============================   
42 studies  
26 treatments 
=============================== 
# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
#sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
#var <- pow(sd,2) # between-trial variance 
#tau <- 1/var     # between-trial precision 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
} # *** PROGRAM ENDS 
 
 Data 
# DVT 
# nt=no. treatments, ns=no. studies 
list(nt=26,ns=42, m.tau= -1.26, sd.tau=1.25) 

 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
13 14   12 32   8  32  NA NA NA NA 1  2  4  NA NA 3 
43 116  21 117  NA NA  NA NA NA NA 1  2  NA NA NA 2 
19 54   9  58   NA NA  NA NA NA NA 1  2  NA NA NA 2 
28 52   22 48   NA NA  NA NA NA NA 1  3  NA NA NA 2 
36 75   14 68   NA NA  NA NA NA NA 1  3  NA NA NA 2 
20 39   4  37   NA NA  NA NA NA NA 1  5  NA NA NA 2 
36 152  77 158  NA NA  NA NA NA NA 1  6  NA NA NA 2 
25 47   15 43   NA NA  NA NA NA NA 1  6  NA NA NA 2 
28 136  21 142  8  136 NA NA NA NA 2  3  5  NA NA 3 
1  79   4  79   NA NA  NA NA NA NA 2  3  NA NA NA 2 
19 63   25 59   NA NA  NA NA NA NA 2  3  NA NA NA 2 
15 120  27 106  NA NA  NA NA NA NA 2  3  NA NA NA 2 
12 150  5  78   NA NA  NA NA NA NA 2  5  NA NA NA 2 
8  190  8  196  NA NA  NA NA NA NA 2  6  NA NA NA 2 
39 138  15 152  NA NA  NA NA NA NA 2  7  NA NA NA 2 
12 102  5  113  NA NA  NA NA NA NA 2  7  NA NA NA 2 
17 88   6  85   NA NA  NA NA NA NA 2  7  NA NA NA 2 
67 783  60 791  NA NA  NA NA NA NA 2  8  NA NA NA 2 
57 897  45 880  NA NA  NA NA NA NA 2  8  NA NA NA 2 
18 138  24 136  NA NA  NA NA NA NA 2  9  NA NA NA 2 
68 1911 22 1944 NA NA  NA NA NA NA 2  10 NA NA NA 2 
71 869  14 864  NA NA  NA NA NA NA 2  11 NA NA NA 2 
49 190  28 192  NA NA  NA NA NA NA 2  12 NA NA NA 2 
24 116  9  101  NA NA  NA NA NA NA 3  5  NA NA NA 2 
61 263  50 258  NA NA  NA NA NA NA 3  5  NA NA NA 2 
4  33   6  28   NA NA  NA NA NA NA 3  13 NA NA NA 2 
10 25   7  19   NA NA  NA NA NA NA 3  14 NA NA NA 2 
27 80   21 81   36 86  NA NA NA NA 4  15 18 NA NA 3 
33 104  22 114  NA NA  NA NA NA NA 4  16 NA NA NA 2 
83 918  36 908  NA NA  NA NA NA NA 4  17 NA NA NA 2 
11 78   28 75   NA NA  NA NA NA NA 4  18 NA NA NA 2 
22 78   33 78   NA NA  NA NA NA NA 4  18 NA NA NA 2 
11 66   12 72   NA NA  NA NA NA NA 6  12 NA NA NA 2 
53 1558 12 1595 NA NA  NA NA NA NA 7  11 NA NA NA 2 
81 338  36 337  44 336 NA NA NA NA 12 19 20 NA NA 3 
8  176  3  184  NA NA  NA NA NA NA 12 21 NA NA NA 2 
29 93   44 97   NA NA  NA NA NA NA 15 22 NA NA NA 2 
44 784  65 796  NA NA  NA NA NA NA 17 23 NA NA NA 2 
19 28   8  32   NA NA  NA NA NA NA 18 24 NA NA NA 2 
4  39   16 40   NA NA  NA NA NA NA 18 25 NA NA NA 2 
20 636  15 643  NA NA  NA NA NA NA 21 26 NA NA NA 2 
23 65   9  67   NA NA  NA NA NA NA 24 25 NA NA NA 2 
 
END 
 
 
 
 INITS 
#chain 1 
list(sd.sq=1,  mu=c(-2,0,2,0,0,    0,3,0,1,0,   0,2,1,1, 3,    2,-2,0,2,0,   0,0,3,0,1,   0,0,2,1,1,   3, 2,1,0,4,  1, 2,0,2,0,  1,2), 
d = structure(.Data = c( 
            NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0, 
           NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0, 
        NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0, 
     NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0, 
 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, NA,0,0, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0  ), 
.Dim = c(25,26))   ) 
 
# chain 2 
list(sd.sq=1.5,  mu=c(0,0,-2,0,3,    0,0,2,0,0,  0,2,0,2,1,   4,0,0,-2,0,   3,0,0,2,0,    0,0,2,0,2,  1,4,2,0,-3,   1,2,1,0, 2,    2,0), 
d = structure(.Data = c( 
            NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5, 
           NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5, 
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,          NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,     
NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA, NA,NA,5 ), 
.Dim = c(25,26))  ) 
 
 
# chain 3 
list(sd.sq=3,  mu=c(0,0,3,0,0,  0,0,0,3,3,  0,0,4,2,1,1,0,0,3,0,0,  0,0,0,3,3,  0,0,4,2,1,1, 1, 2,4, 0,-1,2,1,1, 0,-1), 
d = structure(.Data = c( 
            NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3, 
   NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3, 
   NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3, 
   NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3, 
   NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,   
     NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,    NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,  
  NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3  ), 
.Dim = c(25,26))  ) 

M.1.6.3. WinBUGS code for number of patients with PE

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
#sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
#tau <- 1/pow(sd,2) 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
#A ~ dnorm(meanA, precA)  # A is on log-odds scale 
#precA <- pow(sdA,-2)     # turn st dev into precision 
 
v[3] ~ dbeta(a, b)    # distribution for prob event on LMWH (std/std)+AES 
b <- N-a 
N <- 85642 
a <- 583 
for (k in 1:2){        # treatments below 3 
  logit(v[k]) <- logit(v[3]) - lor[k,3]       # note change in sign 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
for (k in 4:NT){    # treatments above 3 
  logit(v[k]) <- logit(v[3]) + lor[3,k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 

rr[3] <- v[3]/v[1] 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 4. 
 
list(NT=23, NS=30,  
# meanA and sdA are the  posterior mean and sd of log-odds of event  
#meanA=-1.673, sdA=0.2529, 
#Empirical prior Table IV (Turner et al) intervention: Non-Pharma v Pharma;  
# outcome type: general physical health indicators 
m.tau= -1.26, sd.tau=1.25  ) 
 
  r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
 5   14   3   32   2   32  NA NA NA NA 1  2  3  NA NA 3 
 2.5 117  0.5 118  NA  NA  NA NA NA NA 1  2  NA NA NA 2 
 1.5 55   0.5 59   NA  NA  NA NA NA NA 1  2  NA NA NA 2 
 1   158  1   152  NA  NA  NA NA NA NA 1  4  NA NA NA 2 
 2   196  2   194  NA  NA  NA NA NA NA 2  4  NA NA NA 2 
 1.5 204  4.5 210  0.5 196 NA NA NA NA 2  5  8  NA NA 3 
 0.5 85   1.5 84   NA  NA  NA NA NA NA 2  5  NA NA NA 2 
 1   67   2   69   NA  NA  NA NA NA NA 2  5  NA NA NA 2 
 0.5 121  1.5 107  NA  NA  NA NA NA NA 2  5  NA NA NA 2 
 4   869  1   864  NA  NA  NA NA NA NA 2  6  NA NA NA 2 
 1.5 212  0.5 225  NA  NA  NA NA NA NA 2  7  NA NA NA 2 
 2   992  1   1001 NA  NA  NA NA NA NA 2  9  NA NA NA 2 
 3   897  5   880  NA  NA  NA NA NA NA 2  9  NA NA NA 2 
 0.5 139  1.5 137  NA  NA  NA NA NA NA 2  10 NA NA NA 2 
 5   2699 3   2708 NA  NA  NA NA NA NA 2  11 NA NA NA 2 
 1.5 81   0.5 87   0.5 82  NA NA NA NA 3  12 13 NA NA 3 
 1   78   2   78   NA  NA  NA NA NA NA 3  12 NA NA NA 2 
 3   1123 3   1129 NA  NA  NA NA NA NA 3  14 NA NA NA 2 
 3.5 107  0.5 112  NA  NA  NA NA NA NA 3  15 NA NA NA 2 
 2   134  1   125  NA  NA  NA NA NA NA 5  8  NA NA NA 2 
 1   332  1   333  NA  NA  NA NA NA NA 5  8  NA NA NA 2 
 0.5 26   1.5 20   NA  NA  NA NA NA NA 5  16 NA NA NA 2 
 4   1595 1   1558 NA  NA  NA NA NA NA 6  7  NA NA NA 2 
 3.5 399  0.5 381  NA  NA  NA NA NA NA 7  17 NA NA NA 2 
 6   1516 9   1495 NA  NA  NA NA NA NA 8  18 NA NA NA 2 
 1   32   3   35   NA  NA  NA NA NA NA 12 19 NA NA NA 2 
 0.5 94   1.5 98   NA  NA  NA NA NA NA 13 20 NA NA NA 2 
 5.5 1127 0.5 1129 NA  NA  NA NA NA NA 14 21 NA NA NA 2 
 1.5 177  0.5 185  NA  NA  NA NA NA NA 18 22 NA NA NA 2 
 4.5 637  0.5 644  NA  NA  NA NA NA NA 22 23 NA NA NA 2 
 
 
END  

list( 
d=c(NA,0,0,0,0,   0,0,0,0,0,  0,0,0,0,0,   0,0,0,0,0,  0,0, 0), # one for each treatment, 
sd.sq=1, 
mu=c(0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,   0, 0,0,0,0,   0,0,0,0,0,    0,0,0,0,0) ) 
 
list( 
d=c(NA,0,0,0,0,   0,0,0,0,1,  0,0,0,0,-1,   0,0,0,0,1,  0,-1, 0), # one for each treatment, 
sd.sq=0.1, 
mu=c(-1,-1,-1,-1,-1,   -1,-1,-1,-1,-1,   -1,-1,-1,-1,-1,   -1, -1,-1,-1,-1,   -1,-1,-1,-1,-1,   -1,-1,-1,-1,-1) ) 
 
list( 
d=c(NA,0,0,0,2,   -2,0,0,0,1,  0,0,0,0,-1,   2,0,0,0,1,  -2,-1, -1), # one for each treatment, 
sd.sq=2, 
mu=c(0,1,-1,0,2,   0,1,-1,-2,0,   1,2,0,2,0,   0, 2,1,0,-2,  0,2,1,-2,0,  2,1,1,0,0) ) 

M.1.6.4. WinBUGS code for inconsistency model for number of patients with PE

VTE - inconsistency model - Elective hip PE 
==============================   
30 studies  
23 treatments 
=============================== 
# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
#sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
#var <- pow(sd,2) # between-trial variance 
#tau <- 1/var     # between-trial precision 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
} # *** PROGRAM ENDS 
 
 Data 
# DVT 
# nt=no. treatments, ns=no. studies 
list(nt=23,ns=30, m.tau= -1.26, sd.tau=1.25) 
 
  r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
 5   14   3   32   2   32  NA NA NA NA 1  2  3  NA NA 3 
 2.5 117  0.5 118  NA  NA  NA NA NA NA 1  2  NA NA NA 2 
 1.5 55   0.5 59   NA  NA  NA NA NA NA 1  2  NA NA NA 2 
 1   158  1   152  NA  NA  NA NA NA NA 1  4  NA NA NA 2 
 2   196  2   194  NA  NA  NA NA NA NA 2  4  NA NA NA 2 
 1.5 204  4.5 210  0.5 196 NA NA NA NA 2  5  8  NA NA 3 
 0.5 85   1.5 84   NA  NA  NA NA NA NA 2  5  NA NA NA 2 
 1   67   2   69   NA  NA  NA NA NA NA 2  5  NA NA NA 2 
 0.5 121  1.5 107  NA  NA  NA NA NA NA 2  5  NA NA NA 2 
 4   869  1   864  NA  NA  NA NA NA NA 2  6  NA NA NA 2 
 1.5 212  0.5 225  NA  NA  NA NA NA NA 2  7  NA NA NA 2 
 2   992  1   1001 NA  NA  NA NA NA NA 2  9  NA NA NA 2 
 3   897  5   880  NA  NA  NA NA NA NA 2  9  NA NA NA 2 
 0.5 139  1.5 137  NA  NA  NA NA NA NA 2  10 NA NA NA 2 
 5   2699 3   2708 NA  NA  NA NA NA NA 2  11 NA NA NA 2 
 1.5 81   0.5 87   0.5 82  NA NA NA NA 3  12 13 NA NA 3 
 1   78   2   78   NA  NA  NA NA NA NA 3  12 NA NA NA 2 
 3   1123 3   1129 NA  NA  NA NA NA NA 3  14 NA NA NA 2 
 3.5 107  0.5 112  NA  NA  NA NA NA NA 3  15 NA NA NA 2 
 2   134  1   125  NA  NA  NA NA NA NA 5  8  NA NA NA 2 
 1   332  1   333  NA  NA  NA NA NA NA 5  8  NA NA NA 2 
 0.5 26   1.5 20   NA  NA  NA NA NA NA 5  16 NA NA NA 2 
 4   1595 1   1558 NA  NA  NA NA NA NA 6  7  NA NA NA 2 
 3.5 399  0.5 381  NA  NA  NA NA NA NA 7  17 NA NA NA 2 
 6   1516 9   1495 NA  NA  NA NA NA NA 8  18 NA NA NA 2 
 1   32   3   35   NA  NA  NA NA NA NA 12 19 NA NA NA 2 
 0.5 94   1.5 98   NA  NA  NA NA NA NA 13 20 NA NA NA 2 
 5.5 1127 0.5 1129 NA  NA  NA NA NA NA 14 21 NA NA NA 2 
 1.5 177  0.5 185  NA  NA  NA NA NA NA 18 22 NA NA NA 2 
 4.5 637  0.5 644  NA  NA  NA NA NA NA 22 23 NA NA NA 2 
END 
 
 INITS 
#chain 1 
list(sd.sq=1,  mu=c(0,0,3,0,0,   0,2,0,-1,0,   4,0,3,1,0,    0, 2,1,3,-2,   4,2,1,-3,0,   3,1,0,3,-2), 
d = structure(.Data = c( 
            NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0, 
           NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0, 
           NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0, 
           NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0, 
           NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0 
), 
.Dim = c(22,23))   ) 
 
# chain 2 
list(sd.sq=1.5,  mu=c(0,2,1,0,-2,   0,3,0,4,0,    2,0,1,3,0,    0, 2,1,3,-2,    4,2,1,-3,0,   3,2,-1,0,0), 
d = structure(.Data = c( 
            NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5    
), 
.Dim = c(22,23))  ) 
 
# chain 3 
list(sd.sq=3,  mu=c(0,3,3,0,4,   0,1,0,-2,0,   1,2,0,2,0,   0, 2,1,3,-2,    4,2,1,-3,0,   3,1,1,0,-1), 
d = structure(.Data = c( 
            NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3    
), 
.Dim = c(22,23))  ) 

M.1.6.5. WinBUGS code for number of patients with major bleeding

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
#sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
#tau <- 1/pow(sd,2) 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
#A ~ dnorm(meanA, precA)  # A is on log-odds scale 
#precA <- pow(sdA,-2)     # turn st dev into precision 
 
v[4] ~ dbeta(a, b)    # distribution for prob event on LMWH (std/std)+AES 
b <- N-a 
N <- 85642 
a <- 620 
for (k in 1:3){        # treatments below 4 
  logit(v[k]) <- logit(v[4]) - lor[k,4]       # note change in sign 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
for (k in 5:NT){    # treatments above 4 
  logit(v[k]) <- logit(v[4]) + lor[4,k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
rr[4] <- v[4]/v[1] 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 3. 
 
list(NT=15, NS=24,  
# meanA and sdA are the  posterior mean and sd of log-odds of event  
#meanA=-1.673, sdA=0.2529, 
#Empirical prior Table IV (Turner et al) intervention: Non-Pharma v Pharma;  
# outcome type: adverse events 
m.tau= -0.84, sd.tau=1.24 ) 
 
r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
3.5 36   0.5  33   NA  NA  NA NA NA NA 1  2  NA NA NA 2 
1   50   2    50   NA  NA  NA NA NA NA 1  3  NA NA NA 2 
0.5 102  2.5  103  1.5 101 NA NA NA NA 1  4  6  NA NA 3 
0.5 199  11.5 195  NA  NA  NA NA NA NA 1  4  NA NA NA 2 
1   75   1    78   NA  NA  NA NA NA NA 1  4  NA NA NA 2 
0.5 83   2.5  82   NA  NA  NA NA NA NA 1  5  NA NA NA 2 
19  332  11   333  NA  NA  NA NA NA NA 2  3  NA NA NA 2 
13  209  8    195  3   203 NA NA NA NA 2  3  4  NA NA 3 
5   69   1    67   NA  NA  NA NA NA NA 2  4  NA NA NA 2 
0.5 107  2.5  121  NA  NA  NA NA NA NA 2  4  NA NA NA 2 
11  1129 20   1128 NA  NA  NA NA NA NA 3  5  NA NA NA 2 
6   1516 4    1495 NA  NA  NA NA NA NA 3  7  NA NA NA 2 
32  1133 47   1140 NA  NA  NA NA NA NA 4  5  NA NA NA 2 
6   271  4    279  NA  NA  NA NA NA NA 4  7  NA NA NA 2 
9   1003 14   1010 NA  NA  NA NA NA NA 4  8  NA NA NA 2 
18  1154 23   1146 NA  NA  NA NA NA NA 4  8  NA NA NA 2 
18  2659 22   2673 NA  NA  NA NA NA NA 4  9  NA NA NA 2 
19  1257 23   1252 NA  NA  NA NA NA NA 4  10 NA NA NA 2 
1.5 142  0.5  141  NA  NA  NA NA NA NA 4  11 NA NA NA 2 
32  487  22   489  44  496 NA NA NA NA 6  7  12 NA NA 3 
0.5 177  1.5  185  NA  NA  NA NA NA NA 7  13 NA NA NA 2 
40  2266 33   2275 NA  NA  NA NA NA NA 10 11 NA NA NA 2 
1.5 401  0.5  386  NA  NA  NA NA NA NA 11 14 NA NA NA 2 
37  636  10   643  NA  NA  NA NA NA NA 13 15 NA NA NA 2 
END  
 
 INITS 
list( 
d=c(NA,0,0,0,0,   0,0,0,1,2,    3,4,1,0,0), # one for each treatment  
sd.sq=1, 
mu=c(-2,0,2,0,0,    0,3,0,1,0,   0,2,1, 1, 3,     2,0, 0,1,2,    1,2,1,1) ) 
 
list( 
d=c(NA,0,0,4,0,   0,3,0,0,3,   4,4,2,1,2), # one for each treatment  
sd.sq=0.1, 
mu=c(0,0,-2,0,3,     0,0,2,0,0,  0,2,0,2,1,     4,3,0,3,4,    1,0,-1,0) ) 
 
list( 
d=c(NA,0,1,1,0,   0,0,0,1,2,   3,4,1,2,1), # one for each treatment  
sd.sq=2, 
mu=c(0,0,3,0,0,    0,0,0,3,3,  0,0,4,2,1,    1,-1,0,2,3,     2,-3,0,2) )   

M.1.6.6. WinBUGS code for inconsistency model for number of patients with major bleeding

VTE - inconsistency model - Elective hip - major bleeding 
==============================   
24 studies  
15 treatments 
=============================== 
# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
#sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
#var <- pow(sd,2) # between-trial variance 
#tau <- 1/var     # between-trial precision 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
} # *** PROGRAM ENDS 
 
 Data 
# DVT 
# nt=no. treatments, ns=no. studies 
list(nt=15,ns=24, m.tau= -0.84, sd.tau=1.24) 
 
 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
3.5 36   0.5  33   NA  NA  NA NA NA NA 1 2   NA NA NA 2 
1   50   2    50   NA  NA  NA NA NA NA 1  3  NA NA NA 2 
0.5 102  2.5  103  1.5 101 NA NA NA NA 1  4  6  NA NA 3 
0.5 199  11.5 195  NA  NA  NA NA NA NA 1  4  NA NA NA 2 
1   75   1    78   NA  NA  NA NA NA NA 1  4  NA NA NA 2 
0.5 83   2.5  82   NA  NA  NA NA NA NA 1  5  NA NA NA 2 
19  332  11   333  NA  NA  NA NA NA NA 2  3  NA NA NA 2 
13  209  8    195  3   203 NA NA NA NA 2  3  4  NA NA 3 
5   69   1    67   NA  NA  NA NA NA NA 2  4  NA NA NA 2 
0.5 107  2.5  121  NA  NA  NA NA NA NA 2  4  NA NA NA 2 
11  1129 20   1128 NA  NA  NA NA NA NA 3  5  NA NA NA 2 
6   1516 4    1495 NA  NA  NA NA NA NA 3  7  NA NA NA 2 
32  1133 47   1140 NA  NA  NA NA NA NA 4  5  NA NA NA 2 
6   271  4    279  NA  NA  NA NA NA NA 4  7  NA NA NA 2 
9   1003 14   1010 NA  NA  NA NA NA NA 4  8  NA NA NA 2 
18  1154 23   1146 NA  NA  NA NA NA NA 4  8  NA NA NA 2 
18  2659 22   2673 NA  NA  NA NA NA NA 4  9  NA NA NA 2 
19  1257 23   1252 NA  NA  NA NA NA NA 4  10 NA NA NA 2 
1.5 142  0.5  141  NA  NA  NA NA NA NA 4  11 NA NA NA 2 
32  487  22   489  44  496 NA NA NA NA 6  7  12 NA NA 3 
0.5 177  1.5  185  NA  NA  NA NA NA NA 7  13 NA NA NA 2 
40  2266 33   2275 NA  NA  NA NA NA NA 10 11 NA NA NA 2 
1.5 401  0.5  386  NA  NA  NA NA NA NA 11 14 NA NA NA 2 
37  636  10   643  NA  NA  NA NA NA NA 13 15 NA NA NA 2 
 
END 
 
INITS 
#chain 1 
list(sd.sq=1,  mu=c(-2,0,2,0,0,    0,3,0,1,0,      0,2,1,1,3,       2,-2,1,1,0,     0,0,0,0), 
d = structure(.Data = c( 
            NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0), 
.Dim = c(14,15))   ) 
 
# chain 2 
list(sd.sq=1.5,  mu=c(0,0,-2,0,3,  0,0,2,0,0,   0,2,0,2,1,  4,0,2,-1,1,    0,1,0,0), 
d = structure(.Data = c( 
            NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5 ), 
.Dim = c(14,15))  ) 

# chain 3 
list(sd.sq=3,  mu=c(0,0,3,0,0,  0,0,0,3,3,  0,0,4,2,1,  1,0,3,0,0,     2,1,0,0), 
d = structure(.Data = c( 
            NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3), 
.Dim = c(14,15))  ) 

M.2. Network meta-analysis for elective knee replacement surgery

M.2.1. Introduction

The results of conventional meta-analyses of direct evidence alone (as presented in the GRADE profiles for Chapter 27 and forest plots in appendix L) does not help inform which intervention is most effective as VTE prophylaxis in patients undergoing elective knee replacement surgery. The challenge of interpretation has arisen for two reasons:

  • In isolation, each pair-wise comparison does not inform the choice among the different treatments; in addition direct evidence is not available for some pair-wise comparisons in a randomised controlled trial.
  • There are frequently multiple overlapping comparisons that could potentially give inconsistent estimates of effect.

To overcome these problems, a hierarchical Bayesian network meta-analysis (NMA) was performed. This type of analysis allows for the synthesis of data from direct and indirect comparisons without breaking randomisation and allows for the ranking of different interventions. In this case the outcomes were defined as:

The analysis also provided estimates of effect (with 95% credible intervals) for each intervention compared to one another and compared to a single baseline risk (in this case the baseline treatment was no prophylaxis or in the case of the major bleeding outcome a combination of no prophylaxis and mechanical prophylaxis). These estimates provide a useful clinical summary of the results and facilitate the formation of recommendations based on the best available evidence.

Conventional fixed effects meta-analysis assumes that the relative effect of one treatment compared to another is the same across an entire set of trials. In a random effects model, it is assumed that the relative effects are different in each trial but that they are from a single common distribution and that this distribution is common across all sets of trials.

Network meta-analysis requires an additional assumption over conventional meta-analysis. The additional assumption is that intervention A has the same effect on people in trials of intervention A compared to intervention B as it does for people in trials of intervention A versus intervention C, and so on. Thus, in a random effects network meta-analysis, the assumption is that intervention A has the same effect distribution across trials of A versus B, A versus C and so on.

This specific method is usually referred to as mixed-treatment comparisons analysis but we will continue to use the term network meta-analysis to refer generically to this kind of analysis. We do so since the term “network” better describes the data structure, whereas “mixed treatments” could easily be misinterpreted as referring to combinations of treatments.

M.2.2. Methods

M.2.2.1. Study selection

To estimate the relative risks, we performed an NMA that simultaneously used all the relevant RCT evidence from the clinical evidence review. As with conventional meta-analyses, this type of analysis does not break the randomisation of the evidence, nor does it make any assumptions about adding the effects of different interventions. The effectiveness of a particular treatment strategy combination will be derived only from randomised controlled trials that had that particular combination in a trial arm.

M.2.2.2. Outcome measures

The NMA evidence reviews for interventions considered three clinical efficacy outcomes identified from the clinical evidence review; number of people with DVT, number of people with PE and number of people with major bleeding. Other outcomes were not considered for the NMA as they were infrequently reported across the studies. The committee considered that these outcomes were the most critical clinical outcomes for testing effectiveness of VTE prophylaxis.

M.2.2.3. Comparability of interventions

The interventions compared in the model were those found in the randomised controlled trials and included in the clinical evidence review already presented in Chapter 27 of the full guideline and in appendix H. If an intervention was evaluated in a study that met the inclusion criteria for the network (that is if it reported at least one of the outcomes of interest and matched the inclusion criteria for the meta-analysis) then it was included in the network meta-analysis, otherwise it was excluded.

The treatments included in each network are shown in Table 247.

Table 247Treatments included in the network meta-analysis

Network 1:

Number of people with DVT

Network 2:

Number of people with PE

Network 3:

Number of people with major bleeding

No prophylaxisNo prophylaxisNo prophylaxis/mechanical
LMWH (standard dose; standard duration)LMWH (standard dose; standard duration)LMWH (standard dose; standard duration)
LMWH (high dose; standard duration)AESLMWH (high dose; standard duration)
AES (length unspecified)IPCDFondaparinux
DabigatranDabigatranLMWH (low dose; standard duration)
IPCD (length unspecified)RivaroxabanApixaban
Foot pumpApixabanDabigatran
Foot pump + AESLMWH (standard dose; extended duration)Rivaroxaban
RivaroxabanLMWH (standard dose; standard duration) + AESLMWH (standard dose; extended duration)
AspirinLMWH (low dose; standard duration) + AESUFH
LMWH (standard duration; extended duration)LMWH (high dose; standard duration)VKA
ApixabanVKA-
VKAUFH-
UFH--
Fondaparinux + AES--
LMWH (standard dose; standard duration) + AES--
LMWH (low dose; standard duration) + AES--
LMWH high dose; standard duration) + AES--
UFH + AES--

M.2.2.4. Baseline risks

The baseline risk is defined as the risk of achieving the outcome of interest in the baseline treatment arm of the included trials. This figure is useful because it allows us to convert the results of the NMA from odds ratios to relative risks. However, the majority of these trials were older studies that reported very high risk of DVT and PE in the no prophylaxis arm that the orthopaedic subgroup considered to be not reflective of the baseline risk in the UK. Hence, for the purpose of calculating the relative risks of these events for presentation in this appendix, the baseline risk values were obtained from data from the UK National Joint Registry (NJR).450 For full details of the calculation of baseline risk, please refer to HE write-up (appendix P, section P.1.3.3).

M.2.2.5. Statistical analysis

A hierarchical Bayesian network meta-analysis (NMA) was performed using the software WinBUGS. We adapted a three-arm random effects model template for the networks, from the University of Bristol website (https://www.bris.ac.uk/cobm/research/mpes/mtc.html). This model accounts for the correlation between study level effects induced by multi-arm trials.

In order to be included in the analysis, a fundamental requirement is that each treatment is connected directly or indirectly to every other intervention in the network. For each outcome subgroup, a diagram of the evidence network is presented in section M.2.3.

The model used was a random effects logistic regression model, with parameters estimated by Markov chain Monte Carlo simulation. As it was a Bayesian analysis, for each parameter the evidence distribution is weighted by a distribution of prior beliefs. Due to the sparse nature of the networks (few studies per direct treatment comparison), the between-study heterogeneity parameter is imprecisely estimated in a random effects model. Therefore it is beneficial to apply informative priors in order to restrict the prior distribution for heterogeneity to avoid unreasonably wide credible intervals. Turner et al (2015)946 derived a novel set of predictive distributions for the degree of heterogeneity across 80 different settings. Appropriate predictive distributions for heterogeneity were chosen from Turner et al (2015)946 and used directly as informative priors. The log normal (µ, ơ2) predictive distributions obtained for the between-study heterogeneity in a future meta-analysis presented in Table IV946 were selected according to the outcome and treatment comparison. For the DVT and PE NMAs the distributions defined by the outcome of “general physical health indicators” and by the intervention/comparison type “non-pharmacological vs. pharmacological” were chosen (LN[−1.26, 1.252]). For the major bleeding NMA the distributions defined by the outcome of “adverse events” and by the intervention/comparison type “non-pharmacological vs. pharmacological” were chosen (LN[−0.84, 1.242]). These distributions were chosen as they represented outcomes measured by an assessor, whose method of measurement as well as judgement may influence the outcome (as studies provided slightly variable ways of defining these critical outcomes), and the interaction aspect encompassed both the pharmacological and mechanical prophylaxis options covered in our review protocol.

For the analyses, a series of 60,000 burn-in simulations were run to allow convergence and then a further 60,000 simulations were run to produce the outputs. Convergence was assessed by examining the history and kernel density plots.

We tested the goodness of fit of the model by calculating the residual deviance. If the residual deviance is close to the number of unconstrained data points (the number of trial arms in the analysis) then the model is explaining the data well.

The results, in terms of relative risk, of pair-wise meta-analyses are presented in the clinical evidence review (Chapter 27, and appendix H).

The aim of the NMA was to calculate treatment specific log odds ratios and relative risks for response to be consistent with the comparative effectiveness results presented elsewhere in the clinical evidence review and for ease of interpretation. Let BO, θ˜, OR˜ and p denote the baseline odds, treatment specific odds, treatment specific log odds ratio and treatment specific absolute probability respectively. Then:

θ˜=Ln(OR)˜+Ln(BO)

And:

p=eθ˜1+eθ˜

Once the treatment specific probabilities for response are calculated, we divide them by the baseline probability (pb) to get treatment specific relative risks (rrb):

pb=eBO1+eBO
rrb=ppb

This approach has the advantage that baseline and relative effects are both modelled on the same log odds scale, and also ensures that the uncertainty in the estimation of both baseline and relative effects is accounted for in the model.

We also calculated the overall ranking of interventions according to their relative risk compared to control group. Due to the skewness of the data, the NMA relative risks and rank results are reported as medians rather than means (as in the direct comparisons) to give a more accurate representation of the ‘most likely’ value. The median rank for each intervention was derived from the resulting distribution and these are presented on a rank plot with the associated 95% credible intervals.

A key assumption behind NMA is that the network is consistent. In other words, it is assumed that the direct and indirect treatment effect estimates do not disagree with one another. Discrepancies between direct and indirect estimates of effect may result from several possible causes. First, there is chance and if this is the case then the network meta-analysis results are likely to be more precise as they pool together more data than conventional meta-analysis estimates alone. Second, there could be differences between the trials included in terms of their clinical or methodological characteristics.

This heterogeneity is a problem for network meta-analysis but may be dealt with by subgroup analysis, meta-regression or by carefully defining inclusion criteria. Inconsistency, caused by heterogeneity, was assessed subjectively by comparing the relative risks from the direct evidence (from pair-wise meta-analysis) to the relative risks from the combined direct and indirect evidence (from NMA). We further tested for inconsistency by developing inconsistency models for networks of binary outcomes using the TSD 4 template from the University of Bristol website (https://www.bris.ac.uk/cobm/research/mpes/mtc.html). We compared the posterior mean of the residual deviance between the consistency and inconsistency models to see which was a better fit to the data (closest to the number of trial arms in each network) and checked the difference in deviance information criterion (DIC) values between the two models was small (less than 3–5) or if it was larger, that the smaller DIC and hence better fitting model was the consistency model. No inconsistency was identified.

M.2.3. Results

M.2.3.1. Deep vein thrombosis (symptomatic and asymptomatic)

Included studies

26 studies were identified as reporting on DVT (symptomatic and asymptomatic) outcomes. After excluding papers that reported zero events in each arm and papers reporting on combinations that did not connect to any other intervention in the network, 23 studies involving 19 treatments were included in the network for DVT. The network can be seen in Figure 833 and the trial data for each of the studies included in the NMA are presented in Table 248.

Figure 833. Network diagram for DVT.

Figure 833Network diagram for DVT

Table 248Study data for DVT network meta-analysis

StudyComparisonIntervention 1Intervention 2Intervention 3ComparisonIntervention 1Intervention 2Intervention 3
NNANNANNA
Chin 2009177No prophylaxisLMWH (standard dose; standard duration)AES (length unspecified)IPCD (length unspecified)241106110141109110
Leclerc 1992543No prophylaxisLMWH (high dose; standard duration)--37641165----
Wilson 19921014No prophylaxisFoot pump--1932528----
Fuji 2010320No prophylaxisDabigatran--571012396----
Blanchard 1999A106LMWH (standard dose; standard duration)IPCD (length unspecified)--16673463----
Norgren 1998700LMWH (standard dose; standard duration)Foot pump + AES--014415----
Zou 20141052LMWH (standard dose; standard duration)RivaroxabanAspirin-14112310218110--
Lassen 2008525LMWH (standard dose; standard duration)Rivaroxaban--16087879824----
Eriksson 2007293LMWH (standard dose; standard duration)Dabigatran--192685182675----
Comp 2001208LMWH (standard dose; standard duration)LMWH (standard duration; extended duration)--3714433155----
Lassen 2010535LMWH (standard dose; standard duration)Apixaban--243997142971----
Turpie 2009956LMWH (high dose; standard duration)Rivaroxaban--8695961965----
Ginsberg 2009792LMWH (high dose; standard duration)Dabigatran--158643181604----
Lassen 2007532LMWH (high dose; standard duration)ApixabanVKA-151092120829109--
Lassen 2009536LMWH (high dose; standard duration)Apixaban--921122891142----
Fitzgerald 2001308LMWH (high dose; standard duration)VKA--4417379176----
Leclerc 1996544LMWH (high dose; standard duration)VKA--76206109211----
Colwell 1995D205LMWH (high dose; standard duration)UFH--5614577143----
Cho 2013178AES (length unspecified)Fondaparinux + AES--1974574----
Fuji 2008A328AES (length unspecified)LMWH (standard dose; standard duration) + AESLMWH low dose; standard duration) + AES-487934782674--
Warwick 2002995Foot pump + AESLMWH (standard dose; standard duration) + AES--57994889----
Bauer 200178Fondaparinux + AESLMWH (high dose; standard duration) + AES--4536198361----
Fauno 1994301LMWH (standard dose; standard duration) + AESUFH + AES--21912593----

N; number of events, NA; number analysed

NMA results - DVT

Table 249 summarises the results of the conventional meta-analyses in terms of risk ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of risk ratios for every possible treatment comparison.

Table 249Risk ratios for DVT (symptomatic and asymptomatic)

InterventionDirect (mean with 95% confidence interval)NMA (median with 95% credible interval)
Versus no prophylaxisLMWH (standard dose; standard duration)0.25 (0.11, 0.59)0.26 (0.15, 0.43)
LMWH (high dose; standard duration)0.29 (0.16, 0.52)0.18 (0.10, 0.30)
AES (length unspecified)0.58 (0.32, 1.07)0.88 (0.55, 1.56)
Dabigatran0.42 (0.29, 0.63)0.25 (0.14, 0.42)
IPCD (length unspecified)0.38 (0.18, 0.77)0.61 (0.32, 1.04)
Foot pump0.30 (0.13, 0.70)0.20 (0.05, 0.63)
Foot pump + AES-0.55 (0.25, 1.48)
Rivaroxaban-0.12 (0.06, 0.22)
Aspirin-0.41 (0.16, 0.94)
LMWH (standard dose; extended duration)-0.21 (0.08, 0.49)
Apixaban-0.15 (0.07, 0.26)
VKA-0.35 (0.17, 0.65)
UFH-0.31 (0.13, 0.69)
Fondaparinux + AES-0.35 (0.16, 0.67)
LMWH (standard dose; standard duration) + AES-0.42 (0.24, 1.00)
LMWH (low dose; standard duration) + AES-0.56 (0.26, 1.32)
LMWH high dose; standard duration) + AES-0.77 (0.31, 1.57)
UFH + AES-0.50 (0.19, 1.50)
Versus LMWH (standard dose; standard duration)LMWH (high dose; standard duration)-0.69 (0.44, 1.05)
AES (length unspecified)2.33 (0.93, 5.85)*3.45 (1.83, 7.10)
Dabigatran1.29 (1.09, 1.53)*0.97 (0.64, 1.52)
IPCD (length unspecified)2.05 (1.32, 3.17)*2.33 (1.31, 4.19)
Foot pump-0.77 (0.18, 2.70)
Foot pump + AES8.44 (0.50, 143.77)*2.15 (0.81, 6.66)
Rivaroxaban0.50 (0.39, 0.64)*0.46 (0.28, 0.70)
Aspirin1.31 (0.69, 2.50)*1.59 (0.71, 3.32)
LMWH (standard dose; extended duration)0.83 (0.55, 1.25)0.80 (0.38, 1.63)
Apixaban0.60 (0.50, 0.72)*0.57 (0.35, 0.88)
VKA-1.33 (0.71, 2.43)
UFH-1.21 (0.54, 2.59)
Fondaparinux + AES-1.35 (0.68, 2.59)
LMWH (standard dose; standard duration) + AES-1.67 (0.70, 4.69)
LMWH (low dose; standard duration) + AES-2.17 (0.87, 5.97)
LMWH high dose; standard duration) + AES-2.94 (1.25, 6.49)
UFH + AES-1.97 (0.62, 6.92)
Versus LMWH (high dose; standard duration)AES (length unspecified)-5.04 (2.52, 10.94)
Dabigatran1.22 (1.02, 1.46)*1.41 (0.93, 2.26)
IPCD (length unspecified)-3.40 (1.74, 6.70)
Foot pump-1.13 (0.26, 3.98)
Foot pump + AES-3.13 (1.10, 10.34)
Rivaroxaban0.70 (0.51, 0.97)*0.67 (0.39, 1.06)
Aspirin-2.31 (0.96, 5.32)
LMWH (standard dose; extended duration)-1.16 (0.49, 2.69)
Apixaban0.99 (0.77, 1.28)*0.82 (0.53, 1.25)
VKA1.58 (1.33, 1.87)*1.94 (1.23, 3.06)
UFH1.39 (1.08, 1.80)*1.76 (0.89, 3.38)
Fondaparinux + AES-1.97 (1.02, 3.71)
LMWH (standard dose; standard duration) + AES-2.43 (0.96, 7.27)
LMWH (low dose; standard duration) + AES-3.17 (1.21, 9.19)
LMWH high dose; standard duration) + AES-4.27 (1.86, 9.50)
UFH + AES-2.88 (0.86, 10.61)
Versus AES (length unspecified)Dabigatran-0.28 (0.13, 0.56)
IPCD (length unspecified)0.64 (0.29, 1.42)0.68 (0.32, 1.23)
Foot pump-0.22 (0.05, 0.82)
Foot pump + AES-0.62 (0.29, 1.46)
Rivaroxaban-0.13 (0.05, 0.28)
Aspirin-0.46 (0.16, 1.12)
LMWH (standard dose; extended duration)-0.23 (0.08, 0.59)
Apixaban-0.16 (0.07, 0.34)
VKA-0.39 (0.16, 0.82)
UFH-0.35 (0.12, 0.84)
Fondaparinux + AES0.26 (0.11, 0.67)0.39 (0.17, 0.76)
LMWH (standard dose; standard duration) + AES0.58 (0.40, 0.83)0.48 (0.29, 0.93)
LMWH (low dose; standard duration) + AES0.72 (0.53, 0.98)0.63 (0.32, 1.21)
LMWH high dose; standard duration) + AES-0.87 (0.34, 1.70)
UFH + AES-0.57 (0.23, 1.47)
Versus DabigatranIPCD (length unspecified)-2.39 (1.22, 4.66)
Foot pump-0.79 (0.18, 2.76)
Foot pump + AES-2.20 (0.79, 7.17)
Rivaroxaban-0.47 (0.25, 0.79)
Aspirin-1.63 (0.66, 3.73)
LMWH (standard dose; extended duration)-0.82 (0.34, 1.86)
Apixaban-0.58 (0.33, 0.97)
VKA-1.37 (0.72, 2.51)
UFH-1.24 (0.54, 2.65)
Fondaparinux + AES-1.39 (0.66, 2.76)
LMWH (standard dose; standard duration) + AES-1.71 (0.68, 5.04)
LMWH (low dose; standard duration) + AES-2.23 (0.85, 6.41)
LMWH high dose; standard duration) + AES-3.01 (1.23, 6.91)
UFH + AES-2.02 (0.61, 7.35)
Versus IPCD (length unspecified)Foot pump-0.33 (0.07, 1.21)
Foot pump + AES-0.91 (0.36, 2.87)
Rivaroxaban-0.20 (0.09, 0.40)
Aspirin-0.68 (0.25, 1.68)
LMWH (standard dose; extended duration)-0.34 (0.13, 0.85)
Apixaban-0.24 (0.12, 0.48)
VKA-0.57 (0.26, 1.24)
UFH-0.52 (0.20, 1.28)
Fondaparinux + AES-0.58 (0.26, 1.26)
LMWH (standard dose; standard duration) + AES-0.70 (0.33, 1.99)
LMWH (low dose; standard duration) + AES-0.93 (0.39, 2.55)
LMWH high dose; standard duration) + AES-1.26 (0.49, 3.00)
UFH + AES-0.84 (0.28, 2.90)
Versus foot pumpFoot pump + AES-2.80 (0.62, 17.30)
Rivaroxaban-0.59 (0.16, 2.65)
Aspirin-2.06 (0.46, 10.59)
LMWH (standard dose; extended duration)-1.04 (0.24, 5.28)
Apixaban-0.73 (0.20, 3.27)
VKA-1.73 (0.45, 8.09)
UFH-1.57 (0.37, 7.75)
Fondaparinux + AES-1.75 (0.45, 8.29)
LMWH (standard dose; standard duration) + AES-2.18 (0.52, 12.54)
LMWH (low dose; standard duration) + AES-2.83 (0.66, 16.01)
LMWH high dose; standard duration) + AES-3.81 (0.90, 19.29)
UFH + AES-2.57 (0.51, 17.00)
Versus foot pump + AESRivaroxaban-0.21 (0.06, 0.63)
Aspirin-0.74 (0.19, 2.29)
LMWH (standard dose; extended duration)-0.37 (0.09, 1.24)
Apixaban-0.26 (0.08, 0.76)
VKA-0.62 (0.18, 1.77)
UFH-0.56 (0.14, 1.76)
Fondaparinux + AES-0.63 (0.19, 1.75)
LMWH (standard dose; standard duration) + AES0.94 (0.73, 1.21)0.77 (0.42, 1.48)
LMWH (low dose; standard duration) + AES-1.01 (0.39, 2.44)
LMWH high dose; standard duration) + AES-1.39 (0.38, 3.64)
UFH + AES-0.92 (0.34, 2.33)
Versus RivaroxabanAspirin-3.47 (1.53, 7.98)
LMWH (standard dose; extended duration)-1.74 (0.74, 4.22)
Apixaban-1.24 (0.71, 2.25)
VKA-2.91 (1.54, 5.91)
UFH-2.64 (1.18, 6.17)
Fondaparinux + AES-2.96 (1.40, 6.43)
LMWH (standard dose; standard duration) + AES-3.67 (1.34, 11.97)
LMWH (low dose; standard duration) + AES-4.78 (1.72, 15.07)
LMWH high dose; standard duration) + AES-6.43 (2.61, 16.07)
UFH + AES-4.35 (1.24, 17.22)
Versus AspirinLMWH (standard dose; extended duration)-0.50 (0.17, 1.47)
Apixaban-0.36 (0.15, 0.86)
VKA-0.84 (0.33, 2.22)
UFH-0.76 (0.26, 2.25)
Fondaparinux + AES-0.85 (0.32, 2.34)
LMWH (standard dose; standard duration) + AES-1.04 (0.37, 3.85)
LMWH (low dose; standard duration) + AES-1.37 (0.45, 4.90)
LMWH high dose; standard duration) + AES-1.85 (0.62, 5.60)
UFH + AES-1.24 (0.34, 5.42)
Versus LMWH (standard dose; extended duration)Apixaban-0.71 (0.30, 1.69)
VKA-1.67 (0.65, 4.43)
UFH-1.52 (0.52, 4.47)
Fondaparinux + AES-1.70 (0.63, 4.61)
LMWH (standard dose; standard duration) + AES-2.09 (0.68, 7.77)
LMWH (low dose; standard duration) + AES-2.73 (0.86, 9.91)
LMWH high dose; standard duration) + AES-3.69 (1.22, 11.11)
UFH + AES-2.49 (0.64, 10.94)
Versus ApixabanVKA-2.35 (1.29, 4.42)
UFH-2.14 (0.97, 4.67)
Fondaparinux + AES-2.39 (1.25, 4.54)
LMWH (standard dose; standard duration) + AES-2.96 (1.13, 9.12)
LMWH (low dose; standard duration) + AES-3.85 (1.43, 11.47)
LMWH high dose; standard duration) + AES-5.19 (2.26, 11.67)
UFH + AES-3.49 (1.02, 13.17)
Versus VKAUFH-0.91 (0.40, 1.99)
Fondaparinux + AES-1.01 (0.47, 2.18)
LMWH (standard dose; standard duration) + AES-1.24 (0.49, 3.95)
LMWH (low dose; standard duration) + AES-1.62 (0.60, 5.06)
LMWH high dose; standard duration) + AES-2.20 (0.88, 5.40)
UFH + AES-1.47 (0.44, 5.73)
Versus UFHFondaparinux + AES-1.12 (0.45, 2.81)
LMWH (standard dose; standard duration) + AES-1.37 (0.48, 4.98)
LMWH (low dose; standard duration) + AES-1.80 (0.60, 6.29)
LMWH high dose; standard duration) + AES-2.42 (0.87, 6.89)
UFH + AES-1.62 (0.45, 7.00)
Versus Fondaparinux + AESLMWH (standard dose; standard duration) + AES-1.23 (0.51, 3.73)
LMWH (low dose; standard duration) + AES-1.61 (0.63, 4.71)
LMWH high dose; standard duration) + AES2.18 (1.58, 3.00)2.17 (1.26, 3.79)
UFH + AES-1.46 (0.45, 5.43)
Versus LMWH (standard dose; standard duration) + AESLMWH (low dose; standard duration) + AES1.24 (0.83, 1.85)1.31 (0.61, 2.48)
LMWH high dose; standard duration) + AES-1.81 (0.55, 3.92)
UFH + AES-1.19 (0.54, 2.35)
Versus LMWH (low dose; standard duration) + AESLMWH high dose; standard duration) + AES-1.37 (0.43, 3.45)
UFH + AES-0.91 (0.33, 2.51)
Versus LMWH (high dose; standard duration) + AESUFH + AES-0.66 (0.22, 2.60)
*

Intervention and comparison have been switched in Review Manager

Figure 834 shows the rank of each intervention compared to the others. The rank is based on the relative risk compared to baseline and indicates the probability of being the best treatment, second best, third best and so on among the 19 different interventions being evaluated.

Figure 834. Rank order for interventions based on the relative risk of experiencing DVT.

Figure 834Rank order for interventions based on the relative risk of experiencing DVT

LD = low dose; SD = standard dose; HD = high dose; sd = standard duration; ed = extended duration

Goodness of fit and inconsistency

Both fixed effects and random effects models were fitted to the data. The random effects model had a DIC of 352 compared with 350 for the fixed effects model. The random effects model used for the NMA is a good fit, with a residual deviance of 51 reported. This corresponds well to the total number of trial arms, 51. The DIC statistics were as follows in Table 250. The between trial standard deviation in the random effects analysis was 0.24 (95% CI 0.09 to 0.56). On evaluating inconsistency by comparing risk ratios, three inconsistencies were identified. Firstly, the NMA estimated risk ratio for VKA compared to LMWH at a high dose and standard duration (1.94 [1.23, 3.06]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (1.58 [1.33, 1.87]). Secondly, the NMA estimated risk ratio for dabigatran versus no prophylaxis (0.25 [0.14, 0.42]) lay outside of the confidence interval of the risk ration estimated for the direct comparison (0.42 [0.29, 0.63]). Lastly, the NMA estimated risk ratio for dabigatran compared to LMWH at a standard dose and standard duration (0.97 [0.64, 1.52]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (1.29 [1.09, 1.53]) An inconsistency model was run and the DIC statistics were as follows in Table 250. The difference in the DIC is small (<3–5) with the consistency model having the lower DIC value. This suggests that it fits the data better than the inconsistency model.

Table 250Posterior mean of the residual deviance (resdev) and DIC for the RE network meta-analysis and inconsistency models – DVT

DICResDev
Consistency model352.43551
Inconsistency model357.16151

M.2.3.2. Pulmonary embolism

Included studies

19 studies were identified as reporting on major bleeding outcomes. After excluding papers that reported zero events in each arm and papers reporting on combinations that did not connect to any other intervention in the network, 12 studies involving 13 treatments were included in the network for PE. The network can be seen in Figure 835 and the trial data for each of the studies included in the NMA are presented in Table 251.

Figure 835. Network diagram for PE.

Figure 835Network diagram for PE

Table 251Study data for PE network meta-analysis

StudyComparisonIntervention 1Intervention 2Intervention 3ComparisonIntervention 1Intervention 2Intervention 3
NNANNANNANNA
Chin 2009177No prophylaxisLMWH (standard dose; standard duration)AES (length unspecified)IPCD (length unspecified)1110011011100110
Lassen 2008525LMWH (standard dose; standard duration)Rivaroxaban--4121701201----
Lassen 2010535LMWH (standard dose; standard duration)Apixaban--1144931458----
Comp 2001208LMWH (standard dose; standard duration)LMWH (standard dose; extended duration)--22220218----
Fuji 2008A328AESLMWH (standard dose; standard duration) + AESLMWH (low dose; standard duration) + AES-179174178--
Ginsberg 2009792DabigatranLMWH (high dose; standard duration)--66045643----
Turpie 2009956RivaroxabanLMWH (high dose; standard duration)--4152681508----
Lassen 2009536ApixabanLMWH (high dose; standard duration)--151599101596----
Lassen 2007532ApixabanLMWH (high dose; standard duration)VKA-020821090109--
Fitzgerald 2001308LMWH (high dose; standard duration)VKA--01731176----
Leclerc 1996543LMWH (high dose; standard duration)VKA--12063211----
Colwell 1995D205LMWH (high dose; standard duration)UFH--01452143----

N; number of events, NA; number analysed

NMA results - PE

Table 252 summarises the results of the conventional meta-analyses in terms of risk ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of risk ratios for every possible treatment comparison.

Table 252Risk ratios for PE

InterventionDirect (mean with 95% confidence interval)NMA (median with 95% credible interval)
Versus no prophylaxisLMWH (standard dose; standard duration)0.33 (0.01, 8.09)0.20 (0.00, 8.57)
AES (length unspecified)1.00 (0.06, 15.79)0.98 (0.04, 24.95)
IPCD (length unspecified)0.33 (0.01, 8.09)0.20 (0.00, 8.53)
Dabigatran-0.47 (0.00, 56.97)
Rivaroxaban-0.08 (0.00, 6.65)
Apixaban-0.52 (0.00, 36.43)
LMWH (standard duration; extended duration)-0.02 (0.00, 3.86)
LMWH (standard dose; standard duration) + AES-1.00 (0.01, 199.30)
LMWH (low dose; standard duration) + AES-0.97 (0.01, 167.70)
LMWH (high dose; standard duration)-0.37 (0.00, 30.66)
VKA-0.63 (0.00, 64.93)
UFH-1.79 (0.00, 625.00)
Versus LMWH (standard dose; standard duration)AES (length unspecified)3.00 (0.12, 72.85)*5.00 (0.12, 3120.00)
IPCD (length unspecified)-0.98 (0.00, 791.60)
Dabigatran-2.45 (0.11, 52.27)
Rivaroxaban0.11 (0.01, 2.03)*0.45 (0.04, 3.62)
Apixaban6.00 (0.72, 49.81)*2.59 (0.32, 21.68)
LMWH (standard duration; extended duration)0.20 (0.01, 4.22)0.11 (0.00, 3.33)
LMWH (standard dose; standard duration) + AES-6.04 (0.02, 9283.00)
LMWH (low dose; standard duration) + AES-5.68 (0.02, 8979.00)
LMWH (high dose; standard duration)-1.90 (0.20, 18.92)
VKA-3.23 (0.20, 52, 24)
UFH-9.06 (0.12, 1640.00)
Versus AES (length unspecified)IPCD (length unspecified)0.33 (0.01, 8.09)0.20 (0.00, 8.36)
Dabigatran-0.48 (0.00, 48.08)
Rivaroxaban-0.08 (0.00, 6.65)
Apixaban-0.52 (0.00, 32.84)
LMWH (standard duration; extended duration)-0.01 (0.00, 3.86)
LMWH (standard dose; standard duration) + AES1.07 (0.07, 16.76)1.04 (0.02, 61.02)
LMWH (low dose; standard duration) + AES1.01 (0.06, 15.91)1.00 (0.02, 54.60)
LMWH (high dose; standard duration)-0.37 (0.00, 27.68)
VKA-0.64 (0.00, 52.48)
UFH-1.95 (0.00, 372.20)
Versus IPCD (length unspecified)Dabigatran-2.51 (0.00, 3274.00)
Rivaroxaban-0.45 (0.00, 447.00)
Apixaban-2.68 (0.00, 2584.00)
LMWH (standard duration; extended duration)-0.08 (0.00, 189.20)
LMWH (standard dose; standard duration) + AES-5.96 (0.02, 9804.00)
LMWH (low dose; standard duration) + AES-5.55 (0.02, 8305.00)
LMWH (high dose; standard duration)-1.96 (0.00, 2030.00)
VKA-3.31 (0.00, 3828.00)
UFH-10.55 (0.00, 26060.00)
Versus DabigatranRivaroxaban-0.18 (0.01, 2.80)
Apixaban-1.07 (0.08, 14.05)
LMWH (standard duration; extended duration)-0.04 (0.00, 4.37)
LMWH (standard dose; standard duration) + AES-2.40 (0.01, 7128.00)
LMWH (low dose; standard duration) + AES-2.28 (0.00, 6754.00)
LMWH (high dose; standard duration)0.78 (0.24, 2.55)0.79 (0.10, 6.71)
VKA-1.31 (0.09, 21.28)
UFH-3.52 (0.05, 769.80)
Versus RivaroxabanApixaban-5.92 (0.73, 64.04)
LMWH (standard duration; extended duration)-0.23 (0.00, 16.74)
LMWH (standard dose; standard duration) + AES-14.28 (0.03, 35160.00)
LMWH (low dose; standard duration) + AES-13.27 (0.03, 32390.00)
LMWH (high dose; standard duration)2.02 (0.61, 6.71)4.23 (0.73, 37.87)
VKA-7.32 (0.65, 116.30)
UFH-20.27 (0.35, 4323.00)
Versus ApixabanLMWH (standard duration; extended duration)-0.04 (0.00, 2.29)
LMWH (standard dose; standard duration) + AES-2.21 (0.01, 4884.00)
LMWH (low dose; standard duration) + AES-2.11 (0.01, 4578.00)
LMWH (high dose; standard duration)0.44 (0.18, 1.06)0.72 (0.17, 3.46)
VKA-1.22 (0.15, 10.54)
UFH-3.25 (0.06, 574.10)
Versus LMWH (standard dose; extended duration)LMWH (standard dose; standard duration) + AES-79.99 (0.07, 785700.00)
LMWH (low dose; standard duration) + AES-74.78 (0.06, 724000.00)
LMWH (high dose; standard duration)-19.13 (0.30, 21100.00)
VKA-33.28 (0.38, 43380.00)
UFH-111.30 (0.35, 330100.00)
Versus LMWH (standard dose; standard duration) + AESLMWH (low dose; standard duration) + AES0.95 (0.06, 14.89)0.95 (0.01, 47.24)
LMWH (high dose; standard duration)-0.32 (0.00, 99.27)
VKA-0.56 (0.00, 140.60)
UFH-1.97 (0.00, 218.00)
Versus LMWH (low dose; standard duration) + AESLMWH (high dose; standard duration)-0.34 (0.00, 135.20)
VKA-0.59 (0.00, 249.50)
UFH-1.94 (0.00, 1050.00)
Versus LMWH (high dose; standard duration)VKA1.31 (0.30, 5.79)*1.68 (0.29, 10.18)
UFH3.04 (0.12, 74.05)*4.38 (0.12, 663.70)
Versus VKAUFH-2.61 (0.04, 533. 70)
*

Intervention and comparison have been switched in Review Manager

Figure 836 shows the rank of each intervention compared to the others. The rank is based on the relative risk compared to baseline and indicates the probability of being the best treatment, second best, third best and so on among the 13 different interventions being evaluated.

Figure 836. Rank order for interventions based the relative risk of experiencing PE.

Figure 836Rank order for interventions based the relative risk of experiencing PE

LD = low dose; SD = standard dose; HD = high dose; sd = standard duration; ed = extended duration

Goodness of fit and inconsistency

Both fixed effects and random effects models were fitted to the data. The random effects model had a DIC of 125 compared with 127 for the fixed effects model. The random effects model used for the NMA is a good fit, with a residual deviance of 32 reported. This corresponds well to the total number of trial arms, 28. The between trial standard deviation in the random effects analysis was 0.67 (95% CI 0.18 to 1.98). No inconsistency was identified between the direct RR and NMA results. The DIC statistics were as follows in Table 253.

Table 253Posterior mean of the residual deviance (resdev) and DIC for the RE network meta-analysis and inconsistency models – PE

DICResDev
Consistency model124.87032
Inconsistency model125.06832

M.2.3.3. Major bleeding

Included studies

19 studies were identified as reporting on major bleeding outcomes. All of the studies identified, involving 11 treatments were included in the network for major bleeding. The network can be seen in Figure 837 and the trial data for each of the studies included in the NMA are presented in Table 254.

Figure 837. Network diagram for major bleeding.

Figure 837Network diagram for major bleeding

Table 254Study data for major bleeding network meta-analysis

StudyComparisonIntervention 1Intervention 2ComparisonIntervention 1Intervention 2
NNANNANNA
Fuji 2008A328No prophylaxis/mechanicalLMWH (standard dose; standard duration)LMWH (low dose; standard duration)489191089
Chin 2009177No prophylaxis/mechanicalLMWH (standard dose; standard duration)-01102110--
Blanchard 1999A106No prophylaxis/mechanicalLMWH (standard dose; standard duration)-063167--
Leclerc 1992543No prophylaxis/mechanicalLMWH (high dose; standard duration)-165066--
Fuji 2008325No prophylaxis/mechanicalFondaparinux-187184--
Fuji 2010320No prophylaxis/mechanicalDabigatran-11244129--
Lassen 2010535LMWH (standard dose; standard duration)Apixaban-14150891501--
Eriksson 2007293LMWH (standard dose; standard duration)Dabigatran-969410679--
Mirdami di 2014641LMWH (standard dose; standard duration)Dabigatran-245345--
Lassen 2008525LMWH (standard dose; standard duration)Rivaroxaban-171277211254--
Comp 2001208LMWH (standard dose; standard duration)LMWH (standard dose; extended duration)-12210217--
Bauer 200178LMWH (high dose; standard duration)Fondaparinux-151711517--
Lassen 2009536LMWH (high dose; standard duration)Apixaban-221588111596--
Lassen 2007532LMWH (high dose; standard duration)ApixabanVKA014943050151
Ginsberg 2009792LMWH (high dose; standard duration)Dabigatran-128685857--
Turpie 2009956LMWH (high dose; standard duration)Rivaroxaban-161564271584--
Colwell 1995D205LMWH (high dose; standard duration)UFH-32283225--
Fitzgerald 2001308LMWH (high dose; standard duration)VKA-91734176--
Leclerc 1996544LMWH (high dose; standard duration)VKA-63365334--

N; number of events, NA; number analysed

NMA results- major bleeding

Table 255 summarises the results of the conventional meta-analyses in terms of odd ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of odd ratios for every possible treatment comparison. Relative risks were not calculated for this outcome as data was only available for non-surgical site bleeding (intracranial haemorrhage + gastrointestinal bleeding) from the observational study used as the source of baseline risk.450

Table 255Odd ratios for major bleeding

InterventionDirect (mean with 95% confidence interval)NMA (median with 95% credible interval)
Versus no mechanical prophylaxisLMWH (standard dose; standard duration)0.98 (0.28, 3.40)1.09 (0.34, 3.75)
LMWH (high dose; standard duration)0.32 (0.01, 8.08)1.02 (0.24, 3.97)
Fondaparinux1.04 (0.06, 16.84)6.74 (0.79, 76.28)
LMWH (low dose; standard duration)0.11 (0.01, 2.00)0.08 (0.00, 1.76)
Apixaban-0.79 (0.18, 3.99)
Dabigatran-1.08 (0.29, 4.36)
Rivaroxaban-1.55 (0.32, 7.35)
LMWH (standard dose; extended duration)-0.21 (0.00, 10.41)
UFH-1.03 (0.07, 13.19)
VKA0.52 (0.08, 2.89)
Versus LMWH (standard dose; standard duration)LMWH (high dose; standard duration)-0.95 (0.27, 2.63)
Fondaparinux-6.18 (0.73, 66.87)
LMWH (low dose; standard duration)0.34 (0.01, 8.38)*0.08 (0.00, 1.62)
Apixaban0.64 (0.28, 1.49)*0.72 (0.23, 2.50)
Dabigatran1.21 (0.54, 2.72)*0.99 (0.35, 2.86)
Rivaroxaban1.26 (0.66, 2.40)*1.43 (0.41, 4.45)
LMWH (standard dose; extended duration)0.34 (0.01, 8.34)0.19 (0.00, 7.62)
UFH-0.95 (0.07, 10.30)
VKA-0.48 (0.09, 2.05)
Versus LMWH (high dose; standard duration)Fondaparinux11.22 (1.44, 87.20)*6.57 (1.07, 62.67)
LMWH (low dose; standard duration)-0.08 (0.00, 2.09)
Apixaban0.61 (0.31, 1.19)*0.77 (0.30, 2.70)
Dabigatran0.42 (0.15, 1.19)*1.05 (0.35, 3.99)
Rivaroxaban1.68 (0.90, 3.13)*1.50 (0.49, 5.32)
LMWH (standard dose; extended duration)-0.20 (0.00, 10.27)
UFH1.01 (0.20, 5.08)*1.01 (0.11, 8.95)
VKA0.61 (0.28, 1.37)*0.51 (0.15, 1.57)
Versus FondaparinuxLMWH (low dose; standard duration)-0.01 (0.00, 0.48)
Apixaban-0.12 (0.01, 1.08)
Dabigatran-0.16 (0.01, 1.44)
Rivaroxaban-0.23 (0.02, 2.05)
LMWH (standard dose; extended duration)-0.03 (0.00, 2.25)
UFH-0.15 (0.01, 2.68)
VKA-0.08 (0.01, 0.65)
Versus LMWH (low dose; standard duration)Apixaban-9.71 (0.37, 5795.00)
Dabigatran-13.03 (0.54, 7827.00)
Rivaroxaban-18.67 (0.71, 11130.00)
LMWH (standard dose; extended duration)-2.64 (0.00, 3297.00)
UFH-13.32 (0.24, 9936.00)
VKA6.30 (0.20, 3743.00)
Versus ApixabanDabigatran-1.36 (0.33, 5.46)
Rivaroxaban-1.98 (0.41, 7.59)
LMWH (standard dose; extended duration)-0.26 (0.00, 12.79)
UFH-1.31 (0.10, 13.72)
VKA0.22 (0.01, 4.13)*0.66 (0.12, 2.53)
Versus DabigatranRivaroxaban-1.45 (0.32, 5.66)
LMWH (standard dose; extended duration)-0.19 (0.00, 9.01)
UFH-0.96 (0.07, 10.66)
VKA0.48 (0.08, 2.24)
Versus RivaroxabanLMWH (standard dose; extended duration)-0.13 (0.00, 6.77)
UFH-0.67 (0.05, 7.67)
VKA0.33 (0.06, 1.59)
Versus LMWH (standard dose; extended duration)UFH-5.25 (0.05, 3299.00)
VKA2.51 (0.04, 1310.00)
Versus UFHVKA0.50 (0.04, 5.92)
*

Intervention and comparison have been switched in Review Manager

Figure 838 shows the rank of each intervention compared to the others. The rank indicates the probability of being the best treatment, second best, third best and so on among the 11 different interventions being evaluated.

Figure 838. Rank order for interventions based on the relative risk of experiencing major bleeding.

Figure 838Rank order for interventions based on the relative risk of experiencing major bleeding

SD = standard dose; HD = high dose; sd = standard duration; ed = extended duration

Goodness of fit and inconsistency

Both fixed effects and random effects models were fitted to the data. The random effects model had a DIC of 196 compared with 197 for the fixed effects model. The random effects model used for the NMA is a good fit, with a residual deviance of 41 reported. This corresponds well to the total number of trial arms, 40. The between trial standard deviation in the random effects analysis was 0.54 (95% CI 0.19 to 1.28). No inconsistency was identified between the direct RR and NMA results. The DIC statistics were as follows in Table 256.

Table 256Posterior mean of the residual deviance (resdev) and DIC for the RE network meta-analysis and inconsistency models – Major bleeding

DICTotResDev
Consistency model196.22242
Inconsistency model199.12442

M.2.4. Discussion

Based on the results of conventional meta-analyses of direct evidence, as has been previously presented in Chapter 26 and appendix H, deciding upon the most clinical and cost effective prophylaxis intervention in patients undergoing elective knee replacement surgery is challenging. In order to overcome the difficulty of interpreting the conclusions from numerous separate comparisons, network meta-analysis of the direct evidence was performed. The findings of the NMA were used to facilitate the committee in decision-making when developing recommendations.

Our analyses were divided into three critical outcomes. 23 studies informed the DVT network where 19 different individual or combination treatments were evaluated including three mechanical interventions, nine pharmacological interventions, and six interventions that combined both mechanical and pharmacological prophylaxis. 12 studies informed the PE network of 13 different treatments, including two mechanical interventions, seven pharmacological interventions, and two interventions that combined both mechanical and pharmacological prophylaxis. The major bleeding network included 19 studies evaluating 11 treatments, nine of which were pharmacological as for this outcome any mechanical prophylaxis measures were combined with the no prophylaxis intervention as it is believed that mechanical prophylaxis has no associated bleeding risk.

In the DVT network, the top three interventions were rivaroxaban, apixaban and LMWH at a high dose for a standard duration. The bottom three interventions were no prophylaxis, AES (length unspecified) and LMWH at a high dose for a standard duration plus AES. The highest ranked combination of mechanical and pharmacological prophylaxis was fondaparinux plus AES in tenth place. The four other combination interventions of mechanical plus pharmacological interventions ranked from 15 to 17. There was considerable uncertainty about the estimates with the credible intervals for some of the interventions being quite wide. The top three interventions spanned up to 7 rankings.

In the PE network, the top three interventions were LMWH at a standard dose for an extended duration, rivaroxaban, and IPCD (length unspecified). The bottom three interventions were UFH, LMWH at a standard dose for a standard duration plus AES andno prophylaxis. There was also considerable uncertainty in the PE network with wide credible intervals for a majority of the interventions, for example for LMWH at a low dose for a standard duration plus AES and LMWH at a standard dose for a standard duration plus AES spanning all 13 ranking positions.

In the major bleeding network the highest ranked intervention was LMWH at a low dose for a standard duration, followed LMWH at a standard dose for an extended duration then VKA. The bottom three interventions were fondaparinux, rivaroxaban and LMWH at a standard dose for a standard duration. There was a lot of uncertainty within the major bleeding network with very wide credible intervals for all of the interventions spanning almost all ranking positions.

In summary, the three outcomes chosen for analyses were considered to be among the most critical for assessing clinical effectiveness of different VTE prophylaxis strategies. All three networks seemed to fit well, as demonstrated by residual deviance and no obvious inconsistency found in the networks. However the credible intervals around the ranking of treatments in all three networks were wide suggesting considerable uncertainty about these results.

M.2.5. Conclusion

This analysis allowed us to combine findings from many different comparisons presented in the review even when direct comparative data was lacking.

The committee and orthopaedic subgroup noted the wide credible intervals particularly for the PE and major bleeding network meta-analyses. They both also noted that even with the high levels of uncertainty, interventions such as rivaroxaban and LMWH present possible clinical effectiveness in terms of the outcomes of DVT (symptomatic and asymptomatic) and PE.

For details of the rationale and discussion leading to recommendations, please refer to the section linking the evidence to the recommendations (section 27.6, chapter 27).

M.2.6. WinBUGS codes

M.2.6.1. WinBUGS code for number of patients with DVT (symptomatic and asymptomatic)

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
#sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
#tau <- 1/pow(sd,2) 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
#A ~ dnorm(meanA, precA)  # A is on log-odds scale 
#precA <- pow(sdA,-2)     # turn st dev into precision 
 
v[16] ~ dbeta(a, b)    # distribution for prob event on LMWH (std/std)+AES 
b <- N-a 
N <- 120639 
a <- 16891 
for (k in 1:15){        # treatments below 16 
  logit(v[k]) <- logit(v[16]) - lor[k,16]       # note change in sign 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
for (k in 17:NT){    # treatments above 16 
  logit(v[k]) <- logit(v[16]) + lor[16,k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
rr[16] <- v[16]/v[1] 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 3. 
 
 
list(NT=19, NS=23,  
# meanA and sdA are the  posterior mean and sd of log-odds of event  
#meanA=-1.673, sdA=0.2529, 
#Empirical prior Table IV (Turner et al) intervention: Non-Pharma v Pharma;  
# outcome type: general physical health indicators 
m.tau= -1.26, sd.tau=1.25 ) 
 
 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
 24 110 6 110 14 110 9 110 NA NA 1 2 4 6 NA 4 
 37 64 11 65 NA NA NA NA NA NA 1 3 NA NA NA 2 
 57 101 23 96 NA NA NA NA NA NA 1 5 NA NA NA 2 
 19 32 5 28 NA NA NA NA NA NA 1 7 NA NA NA 2 
 192 685 182 675 NA NA NA NA NA NA 2 5 NA NA NA 2 
 16 67 34 63 NA NA NA NA NA NA 2 6 NA NA NA 2 
 0.5 15 4.5 16 NA NA NA NA NA NA 2 8 NA NA NA 2 
 14 112 3 102 18 110 NA NA NA NA 2 9 10 NA NA 3 
 160 878 79 824 NA NA NA NA NA NA 2 9 NA NA NA 2 
 37 144 33 155 NA NA NA NA NA NA 2 11 NA NA NA 2 
 243 997 142 971 NA NA NA NA NA NA 2 12 NA NA NA 2 
 158 643 181 604 NA NA NA NA NA NA 3 5 NA NA NA 2 
 86 959 61 965 NA NA NA NA NA NA 3 9 NA NA NA 2 
 15 109 21 208 29 109 NA NA NA NA 3 12 15 NA NA 3 
 92 1122 89 1142 NA NA NA NA NA NA 3 12 NA NA NA 2 
 44 173 79 176 NA NA NA NA NA NA 3 13 NA NA NA 2 
 76 206 109 211 NA NA NA NA NA NA 3 13 NA NA NA 2 
 56 145 77 143 NA NA NA NA NA NA 3 14 NA NA NA 2 
 19 74 5 74 NA NA NA NA NA NA 4 15 NA NA NA 2 
 48 79 25 74 34 78 NA NA NA NA 4 16 17 NA NA 3 
 57 99 48 89 NA NA NA NA NA NA 8 16 NA NA NA 2 
 45 361 98 361 NA NA NA NA NA NA 15 18 NA NA NA 2 
 21 91 25 93 NA NA NA NA NA NA 16 19 NA NA NA 2 
 
END  
  
list( 
d=c(NA,0,0,0,0,0,0,0,1,2,3,4,2,3,1,0,2,1,-2), # one for each treatment  
sd.sq=1, 
mu=c(0,0,3,0,0, 0,2,0,-1,0, 4,0,3,1,0, 0, 2,1,3, 2,0, 1, 2) ) 
 
list( 
d=c(NA,1,0,2,0,3,0,0,1,2,3,4,2,3,1,0,1,3,-3), # one for each treatment  
sd.sq=0.1, 
mu=c(0,2,1,0,-2, 0,3,0,4,0, 2,0,1,3,0, 0, 2,1,3,1,0, 0, -1) ) 
 
list( 
d=c(NA,0,0,0,0,0,0,0,1,2,3,4,2,3,1,0,0,1,2), # one for each treatment  
sd.sq=2, 
mu=c(0,3,3,0,4, 0,1,0,-2,0, 1,2,0,2,0, 0, 2,1,3,-3,4, 2, 1) )  

M.2.6.2. WinBUGS code for inconsistency model for number of patients with DVT

VTE - inconsistency model - Elective knee DVT 
==============================   
23 trials  
19 treaments 
=============================== 
# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
#sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
#var <- pow(sd,2) # between-trial variance 
#tau <- 1/var     # between-trial precision 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
} # *** PROGRAM ENDS 
 
 Data 
# DVT 
# nt=no. treatments, ns=no. studies 
list(nt=19,ns=23, m.tau= -1.26, sd.tau=1.25) 
 
 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
 24 110 6 110 14 110 9 110 NA NA 1 2 4 6 NA 4 
 37 64 11 65 NA NA NA NA NA NA 1 3 NA NA NA 2 
 57 101 23 96 NA NA NA NA NA NA 1 5 NA NA NA 2 
 19 32 5 28 NA NA NA NA NA NA 1 7 NA NA NA 2 
 192 685 182 675 NA NA NA NA NA NA 2 5 NA NA NA 2 
 16 67 34 63 NA NA NA NA NA NA 2 6 NA NA NA 2 
 0.5 15 4.5 16 NA NA NA NA NA NA 2 8 NA NA NA 2 
 14 112 3 102 18 110 NA NA NA NA 2 9 10 NA NA 3 
 160 878 79 824 NA NA NA NA NA NA 2 9 NA NA NA 2 
 37 144 33 155 NA NA NA NA NA NA 2 11 NA NA NA 2 
 243 997 142 971 NA NA NA NA NA NA 2 12 NA NA NA 2 
 158 643 181 604 NA NA NA NA NA NA 3 5 NA NA NA 2 
 86 959 61 965 NA NA NA NA NA NA 3 9 NA NA NA 2 
 15 109 21 208 29 109 NA NA NA NA 3 12 15 NA NA 3 
 92 1122 89 1142 NA NA NA NA NA NA 3 12 NA NA NA 2 
 44 173 79 176 NA NA NA NA NA NA 3 13 NA NA NA 2 
 76 206 109 211 NA NA NA NA NA NA 3 13 NA NA NA 2 
 56 145 77 143 NA NA NA NA NA NA 3 14 NA NA NA 2 
 19 74 5 74 NA NA NA NA NA NA 4 15 NA NA NA 2 
 48 79 25 74 34 78 NA NA NA NA 4 16 17 NA NA 3 
 57 99 48 89 NA NA NA NA NA NA 8 16 NA NA NA 2 
 45 361 98 361 NA NA NA NA NA NA 15 18 NA NA NA 2 
 21 91 25 93 NA NA NA NA NA NA 16 19 NA NA NA 2 
 
END 
 
 INITS 
#chain 1 
list(sd.sq=1,  mu=c(2,0,3,0,2,   -2,2,-2,-1,3,   2,-2,1,3,1,    1,2,-3,2,-2,   -2,1,1), 
d = structure(.Data = c( 
            NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0  ), 
.Dim = c(18,19))   ) 
 
# chain 2 
list(sd.sq=1.5,  mu=c(2,1,3,1,2,   0,2,0,-1,3,   2,0,1,3,1,   1,2,-3,2,0,   0,0,-1), 
d = structure(.Data = c( 
            NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5  ), 
.Dim = c(18,19))  ) 
 
# chain 3 
list(sd.sq=3,  mu=c(2,0.5,3,0.5,2,   -2,2,1,-1,3,    2,1,1,3,1,    1,2,-3,2,1,    1,2,2), 
d = structure(.Data = c( 
            NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3  ), 
.Dim = c(18,19))  ) 

M.2.6.3. WinBUGS code for number of patients with pulmonary embolism (PE)

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
#sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
#tau <- 1/pow(sd,2) 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
#A ~ dnorm(meanA, precA)  # A is on log-odds scale 
#precA <- pow(sdA,-2)     # turn st dev into precision 
 
v[9] ~ dbeta(a, b)    # distribution for prob event on LMWH (std/std)+AES 
b <- N-a 
N <- 120639 
a <- 539 
for (k in 1:8){        # treatments below 8 
  logit(v[k]) <- logit(v[9]) - lor[k,9]       # note change in sign 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 

for (k in 10:NT){    # treatments above 9 
  logit(v[k]) <- logit(v[9]) + lor[9,k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
rr[9] <- v[9]/v[1] 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 4. 
 
list(NT=13, NS=12,  
# meanA and sdA are the  posterior mean and sd of log-odds of event  
#meanA=-1.673, sdA=0.2529, 
#Empirical prior Table IV (Turner et al) intervention: Non-Pharma v Pharma;  
# outcome type: general physical health indicators 
m.tau= -1.26, sd.tau=1.25  ) 
 
 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
 1.5 111 0.5 111 1.5 111 0.5 111 NA NA 1 2 3 4 NA 4 
 4.5 1218 0.5 1202 NA NA NA NA NA NA 2 6 NA NA NA 2 
 1 1529 7 1528 NA NA NA NA NA NA 2 7 NA NA NA 2 
 2.5 222 0.5 218 NA NA NA NA NA NA 2 8 NA NA NA 2 
 1 79 1 74 1 78 NA NA NA NA 3 9 10 NA NA 3 
 6 604 5 643 NA NA NA NA NA NA 5 11 NA NA NA 2 
 4 1526 8 1508 NA NA NA NA NA NA 6 11 NA NA NA 2 
 15 1599 10 1596 NA NA NA NA NA NA 7 11 NA NA NA 2 
 0.5 209 2.5 110 0.5 110 NA NA NA NA 7 11 12 NA NA 3 
 0.5 174 1.5 177 NA NA NA NA NA NA 11 12 NA NA NA 2 
 1 206 3 211 NA NA NA NA NA NA 11 12 NA NA NA 2 
 0.5 146 1.5 144 NA NA NA NA NA NA 11 13 NA NA NA 2 
 
END  
  
list( 
d=c(NA,0,0,0,0,0,0,0,1,2,3,4,2), # one for each treatment  
sd.sq=1, 
mu=c(0,0,3,0,0, 0,2,0,-1,0, 4,1) ) 
 
list( 
d=c(NA,1,0,2,0,3,0,0,1,2,3,4,2), # one for each treatment  
sd.sq=0.1, 
mu=c(0,2,1,0,-2, 0,3,0,4,0, 2,-1) ) 
 
list( 
d=c(NA,0,0,0,0,0,0,0,1,2,3,4,2), # one for each treatment  
sd.sq=2, 
mu=c(0,3,3,0,4, 0,1,0,-2,0, 1,0) )  

M.2.6.4. WinBUGS code for inconsistency model for number of patients with PE

VTE - inconsistency model - Elective knee PE 
==============================   
12 studies  
13 treaments 
=============================== 
# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
#sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
#var <- pow(sd,2) # between-trial variance 
#tau <- 1/var     # between-trial precision 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
} # *** PROGRAM ENDS 
 
 Data 
# DVT 
# nt=no. treatments, ns=no. studies 
list(nt=13,ns=12, m.tau= -1.26, sd.tau=1.25) 
 
 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
 1.5 111 0.5 111 1.5 111 0.5 111 NA NA 1 2 3 4 NA 4 
 4.5 1218 0.5 1202 NA NA NA NA NA NA 2 6 NA NA NA 2 
 1 1529 7 1528 NA NA NA NA NA NA 2 7 NA NA NA 2 
 2.5 222 0.5 218 NA NA NA NA NA NA 2 8 NA NA NA 2 
 1 79 1 74 1 78 NA NA NA NA 3 9 10 NA NA 3 
 6 604 5 643 NA NA NA NA NA NA 5 11 NA NA NA 2 
 4 1526 8 1508 NA NA NA NA NA NA 6 11 NA NA NA 2 
 15 1599 10 1596 NA NA NA NA NA NA 7 11 NA NA NA 2 
 0.5 209 2.5 110 0.5 110 NA NA NA NA 7 11 12 NA NA 3 
 0.5 174 1.5 177 NA NA NA NA NA NA 11 12 NA NA NA 2 
 1 206 3 211 NA NA NA NA NA NA 11 12 NA NA NA 2 
 0.5 146 1.5 144 NA NA NA NA NA NA 11 13 NA NA NA 2 
 
END 

 INITS 
#chain 1 
list(sd.sq=1,  mu=c(2,0,3,0,2,   -2,2,-2,-1,3,   2,-2), 
d = structure(.Data = c( 
            NA,0,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,0,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0  ), 
.Dim = c(12,13))   ) 
 
# chain 2 
list(sd.sq=1.5,  mu=c(2,1,3,1,2,   0,2,0,-1,3,   2,0), 
d = structure(.Data = c( 
            NA,5,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,5,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5), 
.Dim = c(12,13))  ) 
 
# chain 3 
list(sd.sq=3,  mu=c(2,0.5,3,0.5,2,   -2,2,1,-1,3,    2,1), 
d = structure(.Data = c( 
            NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3  ), 
.Dim = c(12,13))  ) 

M.2.6.5. WinBUGS code for number of patients with major bleeding

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
#sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
#tau <- 1/pow(sd,2) 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
#A ~ dnorm(meanA, precA)  # A is on log-odds scale 
#precA <- pow(sdA,-2)     # turn st dev into precision 
 
v[2] ~ dbeta(a, b)    # distribution for prob event on LMWH (std/std)+AES 
b <- N-a 
N <- 120639 
a <- 465 
for (k in 1:1){        # treatments below 2 
  logit(v[k]) <- logit(v[2]) - lor[k,2]       # note change in sign 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
for (k in 3:NT){    # treatments above 2 
  logit(v[k]) <- logit(v[2]) + lor[2,k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
 
rr[2] <- v[2]/v[1] 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 3. 
 
 
list(NT=11, NS=19,  
# meanA and sdA are the  posterior mean and sd of log-odds of event  
#meanA=-1.673, sdA=0.2529, 
#Empirical prior Table IV (Turner et al) intervention: Non-Pharma v Pharma;  
# outcome type: adverse events 
m.tau= -0.84, sd.tau=1.24 ) 
 
 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
 4.5 90 1.5 92 0.5 90 NA NA NA NA 1 2 5 NA NA 3 
 0.5 111 2.5 111 NA NA NA NA NA NA 1 2 NA NA NA 2 
 0.5 64 1.5 68 NA NA NA NA NA NA 1 2 NA NA NA 2 
 1.5 66 0.5 67 NA NA NA NA NA NA 1 3 NA NA NA 2 
 1 87 1 84 NA NA NA NA NA NA 1 4 NA NA NA 2 
 1 124 4 129 NA NA NA NA NA NA 1 7 NA NA NA 2 
 14 1508 9 1501 NA NA NA NA NA NA 2 6 NA NA NA 2 
 9 694 10 679 NA NA NA NA NA NA 2 7 NA NA NA 2 
 2 45 3 45 NA NA NA NA NA NA 2 7 NA NA NA 2 
 17 1277 21 1254 NA NA NA NA NA NA 2 8 NA NA NA 2 
 1.5 222 0.5 218 NA NA NA NA NA NA 2 9 NA NA NA 2 
 1 517 11 517 NA NA NA NA NA NA 3 4 NA NA NA 2 
 22 1588 11 1596 NA NA NA NA NA NA 3 6 NA NA NA 2 
 0.5 150 4.5 306 0.5 152 NA NA NA NA 3 6 11 NA NA 3 
 12 868 5 857 NA NA NA NA NA NA 3 7 NA NA NA 2 
 16 1564 27 1584 NA NA NA NA NA NA 3 8 NA NA NA 2 
 3 228 3 225 NA NA NA NA NA NA 3 10 NA NA NA 2 
 9 173 4 176 NA NA NA NA NA NA 3 11 NA NA NA 2 
 6 336 5 334 NA NA NA NA NA NA 3 11 NA NA NA 2 
 
END  
 
list( 
d=c(NA,0,0,0,0,0,0,0,1,2,0), # one for each treatment  
sd.sq=1, 
mu=c(0,0,3,0,0, 0,2,0,-1,0, 4,0,3,1,0,1,3, 2, 1) ) 

list( 
d=c(NA,1,0,2,0,3,0,0,1,2,-2), # one for each treatment  
sd.sq=0.1, 
mu=c(0,2,1,0,-2, 0,3,0,4,0, 2,0,1,3,0,0,1,0,0) ) 
 
list( 
d=c(NA,0,0,0,0,0,0,0,1,2,2), # one for each treatment  
sd.sq=2, 
mu=c(0,3,3,0,4, 0,1,0,-2,0, 1,2,0,2,0,-3,1,2, -1) )  

M.2.6.6. WinBUGS code for inconsistency model for number of patients with major bleeding

VTE - inconsistency model - Elective knee MB 
==============================   
19 trials  
11 treaments 
=============================== 
# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
#sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
#var <- pow(sd,2) # between-trial variance 
#tau <- 1/var     # between-trial precision 
sd.sq ~ dlnorm(m.tau,prec.tau)  # empirical prior for between-trial Var 
prec.tau <- pow(sd.tau,-2) 
tau <- pow(sd.sq,-1)   # between-trial precision = (1/between-trial variance) 
sd <- sqrt(sd.sq) 
 
} # *** PROGRAM ENDS 
 
 Data 
# DVT 
# nt=no. treatments, ns=no. studies 
list(nt=11,ns=19, m.tau= -0.84, sd.tau=1.24) 
 
 r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] r[,5] n[,5] t[,1]  t[,2]  t[,3]     t[,4]     t[,5]    na[]    
 4.5 90 1.5 92 0.5 90 NA NA NA NA 1 2 5 NA NA 3 
 0.5 111 2.5 111 NA NA NA NA NA NA 1 2 NA NA NA 2 
 0.5 64 1.5 68 NA NA NA NA NA NA 1 2 NA NA NA 2 
 1.5 66 0.5 67 NA NA NA NA NA NA 1 3 NA NA NA 2 
 1 87 1 84 NA NA NA NA NA NA 1 4 NA NA NA 2 
 1 124 4 129 NA NA NA NA NA NA 1 7 NA NA NA 2 
 14 1508 9 1501 NA NA NA NA NA NA 2 6 NA NA NA 2 
 9 694 10 679 NA NA NA NA NA NA 2 7 NA NA NA 2 
 2 45 3 45 NA NA NA NA NA NA 2 7 NA NA NA 2 
 17 1277 21 1254 NA NA NA NA NA NA 2 8 NA NA NA 2 
 1.5 222 0.5 218 NA NA NA NA NA NA 2 9 NA NA NA 2 
 1 517 11 517 NA NA NA NA NA NA 3 4 NA NA NA 2 
 22 1588 11 1596 NA NA NA NA NA NA 3 6 NA NA NA 2 
 0.5 150 4.5 306 0.5 152 NA NA NA NA 3 6 11 NA NA 3 
 12 868 5 857 NA NA NA NA NA NA 3 7 NA NA NA 2 
 16 1564 27 1584 NA NA NA NA NA NA 3 8 NA NA NA 2 
 3 228 3 225 NA NA NA NA NA NA 3 10 NA NA NA 2 
 9 173 4 176 NA NA NA NA NA NA 3 11 NA NA NA 2 
 6 336 5 334 NA NA NA NA NA NA 3 11 NA NA NA 2 
 
END 
 
 
 INITS 
#chain 1 
list(sd.sq=1,  mu=c(2,0,3,0,2,   -2,2,-2,-1,3,   2,-2,1,3,1,     1,1,0,-1), 
d = structure(.Data = c( 
            NA,0,0,0,0,0,0,0,0,0,0, 
            NA,NA,0,0,0,0,0,0,0,0,0, 
            NA,NA,NA,0,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,0,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,0,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,0,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,0,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,0,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,0,0, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,0 ), 
.Dim = c(10,11))   ) 

# chain 2 
list(sd.sq=1.5,  mu=c(2,1,3,1,2,   0,2,0,-1,3,   2,0,1,3,1,   1,2,0,0), 
d = structure(.Data = c( 
            NA,5,5,5,5,5,5,5,5,5,5, 
            NA,NA,5,5,5,5,5,5,5,5,5, 
            NA,NA,NA,5,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,5,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,5,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,5,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,5,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,5,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,5,5, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,5 ), 
.Dim = c(10,11))  ) 
 
 
# chain 3 
list(sd.sq=3,  mu=c(2,0.5,3,0.5,2,   -2,2,1,-1,3,    2,1,1,3,1,      0,1,-1,-3), 
d = structure(.Data = c( 
            NA,-3,-3,-3,-3,-3,-3,-3,-3,-3,3, 
            NA,NA,-3,-3,-3,-3,-3,-3,-3,-3,3, 
            NA,NA,NA,-3,-3,-3,-3,-3,-3,-3,3, 
            NA,NA,NA,NA,-3,-3,-3,-3,-3,-3,3, 
            NA,NA,NA,NA,NA,-3,-3,-3,-3,-3,3, 
            NA,NA,NA,NA,NA,NA,-3,-3,-3,-3,3, 
            NA,NA,NA,NA,NA,NA,NA,-3,-3,-3,3, 
            NA,NA,NA,NA,NA,NA,NA,NA,-3,-3,3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,-3,-3, 
            NA,NA,NA,NA,NA,NA,NA,NA,NA,NA,-3  ), 
.Dim = c(10,11))  )             

M.3. Network meta-analysis for VTE prophylaxis in those undergoing abdominal surgery

M.3.1. Introduction

The results of conventional meta-analyses of direct evidence alone (as presented in the GRADE profiles in Chapter 35 and forest plots in appendix L) does not help inform which intervention is most effective as VTE prophylaxis in patients undergoing abdominal surgery. The challenge of interpretation has arisen for two reasons:

  • In isolation, each pair-wise comparison does not inform the choice among the different treatments; in addition direct evidence is not available for some pair-wise comparisons in a randomised controlled trial.
  • There are frequently multiple overlapping comparisons, which could potentially give inconsistent estimates of effect.

To overcome these problems, a hierarchical Bayesian network meta-analysis (NMA) was performed. This type of analysis allows for the synthesis of data from direct and indirect comparisons without breaking randomisation and allows for the ranking of different interventions. In this case the outcomes were defined as:

The analysis also provided estimates of effect (with 95% credible intervals) for each intervention compared to one another and compared to a single baseline risk (in this case the baseline treatment was no prophylaxis or in the case of the major bleeding outcome a combination of no prophylaxis and mechanical prophylaxis). These estimates provide a useful clinical summary of the results and facilitate the formation of recommendations based on the best available evidence.

Conventional fixed effects meta-analysis assumes that the relative effect of one treatment compared to another is the same across an entire set of trials. In a random effects model, it is assumed that the relative effects are different in each trial but that they are from a single common distribution and that this distribution is common across all sets of trials.

Network meta-analysis requires an additional assumption over conventional meta-analysis. The additional assumption is that intervention A has the same effect on people in trials of intervention A compared to intervention B as it does for people in trials of intervention A versus intervention C, and so on. Thus, in a random effects network meta-analysis, the assumption is that intervention A has the same effect distribution across trials of A versus B, A versus C and so on.

This specific method is usually referred to as mixed-treatment comparisons analysis but we will continue to use the term network meta-analysis to refer generically to this kind of analysis. We do so since the term “network” better describes the data structure, whereas “mixed treatments” could easily be misinterpreted as referring to combinations of treatments.

M.3.2. Methods

M.3.2.1. Study selection

To estimate the relative risks, we performed an NMA that simultaneously used all the relevant RCT evidence from the clinical evidence review. As with conventional meta-analyses, this type of analysis does not break the randomisation of the evidence, nor does it make any assumptions about adding the effects of different interventions. The effectiveness of a particular treatment strategy combination will be derived only from randomised controlled trials that had that particular combination in a trial arm.

M.3.2.2. Outcome measures

The NMA evidence reviews for interventions considered three clinical efficacy outcomes identified from the clinical evidence review; number of people with DVT, number of people with PE and number of people with major bleeding. Other outcomes were not considered for the NMA as they were infrequently reported across the studies. The committee considered that these outcomes were the most critical clinical outcomes for testing effectiveness of VTE prophylaxis.

M.3.2.3. Comparability of interventions

The interventions compared in the model were those found in the randomised controlled trials and included in the clinical evidence review already presented in Chapter 35 of the full guideline and in appendix H. If an intervention was evaluated in a study that met the inclusion criteria for the network (that is if it reported at least one of the outcomes of interest and matched the inclusion criteria for the meta-analysis) then it was included in the network meta-analysis, otherwise it was excluded.

The treatments included in each network are shown in Table 257.

Table 257Treatments included in network meta-analysis

Network 1:

Number of people with DVT

Network 2:

Number of people with PE

Network 3:

Number of people with major bleeding.

Electrical stimulationFondaparinux standard durationFondaparinux standard duration
Fondaparinux standard durationIPCD below kneeNo/mechanical prophylaxis
Fondaparinux standard duration + IPCD any locationIPCD full legPost-operative LMWH standard duration, standard dose
Foot pumpNo prophylaxisPre-operative LMWH extended duration, standard dose
IPCD below kneePost-operative LMWH standard duration, standard dosePre-operative LMWH standard duration, high dose
IPCD full legPre-operative LMWH extended duration, standard dosePre-operative LMWH standard duration, low dose
IPCD undefinedPre-operative LMWH standard duration, low dosePre-operative LMWH standard duration, standard dose
No prophylaxisPre-operative LMWH standard duration, standard doseUFH standard duration
Post-operative LMWH standard duration, standard doseAES above knee-
Post-operative LMWH standard duration, standard dose + IPCD undefinedAES above knee + IPCD full leg-
Pre-operative LMWH extended duration, standard doseAES above knee + UFH standard-
Pre-operative LMWH standard duration, high doseUFH standard duration-
Pre-operative LMWH standard duration, low doseVKA standard duration-
Pre-operative LMWH standard duration, standard dose--
AES above knee--
AES above knee + IPCD full leg--
AES above knee + UFH standard--
AES below knee--
AES combination + IPCD full leg--
AES undefined--
UFH standard duration--
VKA standard duration--

The details of these interventions can be found in the clinical evidence review in Chapter 35 of the full guideline and evidence tables in appendix H.

M.3.2.4. Baseline risk

The baseline risk is defined here as the risk of achieving the outcome of interest in the no prophylaxis group. This figure is useful because it allows us to convert the results of the NMA from odds ratios to relative risks.

Baseline odds were derived by the logistic regression in WinBUGS. This approach has the advantage that baseline and relative effects are both modelled on the same log odds scale, and also ensures that the uncertainty in the estimation of baseline and relative effects is accounted for in the model. This method produced baseline odds [mean (SD)] as follows:

  • −1.372 (1.174) for number of patients with DVT in the no prophylaxis group
  • −3.939 (2.201) for number of patients with PE in the no prophylaxis group
  • −5.331 (3.482) for the number of patients with major bleeding in the no/mechanical prophylaxis group.

For details of data informing these models, please refer to the full analyses in sections M.3.6.1, M.3.6.4 and M.3.6.6.

M.3.2.5. Statistical analysis

A hierarchical Bayesian network meta-analysis (NMA) was performed using the software WinBUGS. We adapted a three-arm random effects model template for the networks, from the University of Bristol website (https://www.bris.ac.uk/cobm/research/mpes/mtc.html). This model accounts for the correlation between study level effects induced by multi-arm trials.

In order to be included in the analysis, a fundamental requirement is that each treatment is connected directly or indirectly to every other intervention in the network. For each outcome subgroup, a diagram of the evidence network is presented in section M.3.3.

The model used was a random effects logistic regression model, with parameters estimated by Markov chain Monte Carlo simulation. As it was a Bayesian analysis, for each parameter the evidence distribution is weighted by a distribution of prior beliefs. These were estimated from the baseline models for the dichotomous outcomes using the following equations.

Predictive probability of response (MeanA) =mean of mu.new

Precision (PrecA)=1/(standard deviation of mu.new)2

A non-informative prior distribution was used to maximise the weighting given to the data for continuous outcomes. These priors were normally distributed with a mean of 0 and standard deviation of 10,000.

For the analyses, a series of 60,000 burn-in simulations were run to allow convergence and then a further 600,000 simulations were run to produce the outputs. For the baseline analyses, a series of 100,000 burn-in simulations were run to allow convergence and then a further 100,000 simulations were run to produce the outputs. Convergence was assessed by examining the history and kernel density plots.

We tested the goodness of fit of the model by calculating the residual deviance. If the residual deviance is close to the number of unconstrained data points (the number of trial arms in the analysis) then the model is explaining the data well.

The results, in terms of relative risk, of pair-wise meta-analyses are presented in the clinical evidence review (Chapter 35, and appendix H).

The aim of the NMA was to calculate treatment specific log odds ratios and relative risks for response to be consistent with the comparative effectiveness results presented elsewhere in the clinical evidence review and for ease of interpretation. Let BO, θ˜, OR˜ and p denote the baseline odds, treatment specific odds, treatment specific log odds ratio and absolute probability respectively. Then:

θ˜=Ln(OR˜)+Ln(BO)

And:

p=eθ˜1+eθ˜

Once the treatment specific probabilities for response are calculated, we divide them by the baseline probability (pb) to get treatment specific relative risks (rrb):

pb=eBO1+eBO
rrb=ppb

This approach has the advantage that baseline and relative effects are both modelled on the same log odds scale, and also ensures that the uncertainty in the estimation of both baseline and relative effects is accounted for in the model.

We also calculated the overall ranking of interventions according to their relative risk compared to control group. Due to the skewness of the data, the NMA relative risks and rank results are reported as medians rather than means (as in the direct comparisons) to give a more accurate representation of the ‘most likely’ value. The median rank for each intervention was derived from the resulting distribution and these are presented on a rank plot with the associated 95% credible intervals.

A key assumption behind NMA is that the network is consistent. In other words, it is assumed that the direct and indirect treatment effect estimates do not disagree with one another. Discrepancies between direct and indirect estimates of effect may result from several possible causes. First, there is chance and if this is the case then the network meta-analysis results are likely to be more precise as they pool together more data than conventional meta-analysis estimates alone. Second, there could be differences between the trials included in terms of their clinical or methodological characteristics.

This heterogeneity is a problem for network meta-analysis but may be dealt with by subgroup analysis, meta-regression or by carefully defining inclusion criteria. Inconsistency, caused by heterogeneity, was assessed subjectively by comparing the relative risks from the direct evidence (from pair-wise meta-analysis) to the relative risks from the combined direct and indirect evidence (from NMA). We assumed the evidence to be inconsistent where the relative risk from the NMA did not fit within the confidence interval of the relative risk from the direct comparison. We further tested for inconsistency by developing inconsistency models for networks of binary outcomes using the TSD 4 template from the University of Bristol website (https://www.bris.ac.uk/cobm/research/mpes/mtc.html). We compared the posterior mean of the residual deviance between the consistency and inconsistency models to see which was a better fit to the data (closest to the number of trial arms in each network) and checked the difference in deviance information criterion (DIC) values between the two models was small (less than 3–5) or if it was larger, that the smaller DIC and hence better fitting model was the consistency model. No inconsistency was identified.

M.3.3. Results

M.3.3.1. Deep vein thrombosis (symptomatic and asymptomatic)

Included studies

66 studies were identified as reporting on DVT outcomes. After excluding papers that reported zero events in each arm and papers reporting on combinations that did not connect to any other intervention in the network, 48 studies involving 22 treatments were included in the network for DVT (symptomatic and asymptomatic). The network can be seen in Figure 839 and the trial data for each of the studies included in the NMA are presented in Table 258.

Figure 839. Network diagram for DVT.

Figure 839Network diagram for DVT

Table 258Study data for DVT network meta-analysis

StudyIntervention 1Intervention 2Intervention 3Intervention 1Intervention 2Intervention 3
EventsNEventsNEventsN
Coe 1978No prophylaxisUFH standardIPCD below knee624628229
Tabemer 1978No prophylaxisUFH standardVKA standard1148349348
Bergqvist 1980No prophylaxisUFH standardNA1451646NANA
Clarke-Pearson 1983No prophylaxisUFH standardNA11971188NANA
Gallus 1973No prophylaxisUFH standardNA41181108NANA
Gallus 1976No prophylaxisUFH standardNA124124408NANA
Gordon-Smith 1972No prophylaxisUFH standardNA2150448NANA
Kakkar 1972No prophylaxisUFH standardNA1739339NANA
Strand 1925No prophylaxisUFH standardNA1050350NANA
Tomgren 1978No prophylaxisUFH standardNA20611063NANA
Vandendris 1980No prophylaxisUFH standardNA1333331NANA
Buston 1981No prophylaxisIPCD below kneeNA457662NANA
Clarke-Pearson 1984ANo prophylaxisIPCD below kneeNA11971497NANA
Clarke-Pearson 1984BNo prophylaxisIPCD below kneeNA1752555NANA
Allan 1983No prophylaxisAES position not reportedNA371031597NANA
Tsapogas 1971No prophylaxisAES below kneeNA644251NANA
Halford 1976No prophylaxisAES above kneeNA23471148NANA
Turner 1984No prophylaxisAES above kneeNA4.5930.5105NANA
Scurr 1981No prophylaxisFoot pumpNA1533633NANA
Marassi 1993No prophylaxisPre-operative LMWH standard highNA1131230NANA
Bergqvist 1996No prophylaxisPost-operative LMWH standard standardNA941339NANA
Ockelford 1989No prophylaxisPre-operative LMWH standard lowNA1488495NANA
Clarke-Pearson 1993UFH standardIPCD below kneeNA61073101NANA
van Vroonhoven 1974UFH standardVKA standardNA150950NANA
Leizorovicz 1991UFH standardPre-operative LMWH standard lowPre-operative LMWH standard standard7429164317430
Caen 1988UFH standardPre-operative LMWH standard lowNA71906195NANA
Hartl 1990UFH standardPre-operative LMWH standard lowNA51155112NANA
Koller 1986BUFH standardPre-operative LMWH standard lowNA172274NANA
Nurmohamed 1995UFH standardPre-operative LMWH standard lowNA870925718NANA
Bergqvist 1988UFH standardPre-operative LMWH standard standardNA4149728505NANA
Onarheim 1986UFH standardPre-operative LMWH standard standardNA0.5281.526NANA
Bergqvist 1986UFH standardPre-operative LMWH standard standardNA921713215NANA
Wille-Jorgensen 1991UFH standardAES above knee + UFH standardNA1281279NANA
Wille-Jorgensen 1985UFH standardAES above knee + UFH standardNA790186NANA
Nicolaides 1983UFH standardElectrical stimulationAES combination + IPCD full leg7501250350
Soderdahl 1997IPCD below kneeIPCD full legNA1.5440.548NANA
Chandhoke 1992VKA standardIPCD full legNA0.5542.548NANA
Gao 2012AES position not reportedAES combination + IPCD full legNA1456552NANA
Porteous 1989AES below kneeAES above kneeNA158356NANA
Caprini 1983AES above kneeAES above knee + IPCD full legNA539138NANA
Harch 1988Pre-operative LMWH standard lowPre-operative LMWH standard standardNA2.5170.520NANA
Bergqvist 1995Pre-operative LMWH standard lowPre-operative LMWH standard standardNA12497665981NANA
Bergqvist 2002Pre-operative LMWH standard standardPre-operative LMWH extended standardNA201678165NANA
Agnelli 2005Pre-operative LMWH standard standardFondaparinux standardNA591018431024NANA
Maxwell 2001Pre-operative LMWH standard standardIPCD location un-definedNA21051106NANA
Turpie 2007IPCD location un-definedFondaparinux standard + IPCD any locationNA224187424NANA
Sakon 2010IPCD location un-definedIPCD undefined + Post-operative LMWH standard standardNA631178NANA
Song 2014IPCD location un-definedIPCD undefined + Post-operative LMWH standard standardNA3.51130.5109NANA
NMA results

Table 259 summarises the results of the conventional meta-analyses in terms of risk ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of risk ratios for every possible treatment comparison.

Table 259Risk ratios for DVT (symptomatic and asymptomatic)

ComparisonsRisk ratio

Direct

(mean with 95% confidence interval)

NMA

(median with 95% credible interval)

Versus no prophylaxis UFH standard0.36 (0.10, 1.27)0.35 (0.221, 0.62)
IPCD below knee0.64 (0.26, 1.59)0.53 (0.22, 0.95)
VKA standard0.27 (0.08, 0.92)0.58 (0.17, 1.44)
AES position not reported0.43 (0.25, 0.73)0.40 (0.12, 1.07)
AES below knee0.29 (0.06, 1.35)0.18 (0.03, 0.82)
AES above knee0.41 (0.23, 0.73)0.34 (0.10, 0.91)
Foot pump0.40 (0.18, 0.90)0.32 (0.06, 1.20)
Pre-operative LMWH standard duration, high dose0.19 (0.05, 0.78)0.14 (0.01, 0.83)
Post-operative LMWH standard duration, standard dose0.35 (0.10, 1.20)0.34 (0.05, 1.41)
Pre-operative LMWH standard duration, low dose0.26 (0.09, 0.77)0.57 (0.27, 1.01)
Pre-operative LMWH standard duration, standard dose-0.31 (0.13, 0.69)
AES above knee + UFH standard-0.05 (0.01, 0.24)
Electrical stimulation-0.65 (0.15, 2.00)
AES combination + IPCD full leg-0.13 (0.03, 0.54)
IPCD full leg-0.85 (0.10, 3.90)
AES above knee + IPCD full leg-0.05 (0.00, 0.63)
Pre-operative LMWH extended duration, standard dose-0.12 (0.02, 0.60)
Fondaparinux standard-0.23 (0.05, 0.87)
IPCD location un-defined-0.14 (0.00, 1.63)
Fondaparinux standard + IPCD any location-0.04 (0.00, 0.91)
IPCD un-defined + Post-operative LMWH standard duration, standard dose-0.01 (0.00, 0.28)
Versus UFH standard duration IPCD below knee0.42 (0.16, 1.15)1.46 (0.72, 3.01)
VKA standard3.03 (1.00, 9.18)1.57 (0.53, 4.38)
AES position not reported-1.11 (0.34, 3.30)
AES below knee-0.52 (0.08, 2.44)
AES above knee-0.94 (0.27, 2.87)
Foot pump-0.89 (0.17, 3.80)
Pre-operative LMWH standard duration, high dose-0.40 (0.04, 2.43)
Post-operative LMWH standard duration, standard dose-0.93 (0.13, 4.49)
Pre-operative LMWH standard duration, low dose1.27 (0.93, 1.73)1.57 (0.91, 2.76)
Pre-operative LMWH standard duration, standard dose0.85 (0.59, 1.24)0.88 (0.46, 1.63)
AES above knee + UFH standard0.16 (0.05, 0.54)0.14 (0.02, 0.57)
Electrical stimulation1.71 (0.74, 3.99)1.75 (0.46, 6.06)
AES combination + IPCD full leg0.43 (0.12, 1.56)0.38 (0.09, 1.38)
IPCD full leg-2.24 (0.30, 12.75)
AES above knee + IPCD full leg-0.13 (0.00, 1.76)
Pre-operative LMWH extended duration, standard dose-0.34 (0.07, 1.52)
Fondaparinux standard-0.64 (0.16, 2.32)
IPCD location un-defined-0.38 (0.01, 4.66)
Fondaparinux standard + IPCD any location-0.11 (0.00, 2.43)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.02 (0.00, 0.74)
Versus IPCD below knee VKA standard-1.09 (0.32, 3.45)
AES position not reported-0.76 (0.21, 2.56)
AES below knee-0.36 (0.05, 1.79)
AES above knee-0.65 (0.17, 2.15)
Foot pump-0.61 (0.11, 2.80)
Pre-operative LMWH standard duration, high dose-0.28 (0.02, 1.76)
Post-operative LMWH standard duration, standard dose-0.64 (0.08, 3.27)
Pre-operative LMWH standard duration, low dose-1.07 (0.46, 2.60)
Pre-operative LMWH standard duration, standard dose-0.60 (0.23, 1.52)
AES above knee + UFH standard-0.09 (0.01, 0.47)
Electrical stimulation-1.20 (0.27, 4.83)
AES combination + IPCD full leg-0.26 (0.05, 1.10)
IPCD full leg0.31 (0.01, 7.31)1.54 (0.21, 8.61)
AES above knee + IPCD full leg-0.09 (0.00, 1.28)
Pre-operative LMWH extended duration, standard dose-0.23 (0.04, 1.22)
Fondaparinux standard-0.44 (0.09, 1.88)
IPCD location un-defined-0.26 (0.01, 3.42)
Fondaparinux standard + IPCD any location-0.08 (0.00, 1.78)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.01 (0.00, 0.54)
Versus VKA standard duration AES position not reported-0.71 (0.16, 3.10)
AES below knee-0.33 (0.04, 2.08)
AES above knee-0.60 (0.13, 2.64)
Foot pump-0.56 (0.08, 3.25)
Pre-operative LMWH standard duration, high dose-0.26 (0.02, 2.01)
Post-operative LMWH standard duration, standard dose-0.59 (0.07, 3.77)
Pre-operative LMWH standard duration, low dose-0.99 (0.32, 3.34)
Pre-operative LMWH standard duration, standard dose-0.56 (0.17, 1.93)
AES above knee + UFH standard-0.09 (0.01, 0.52)
Electrical stimulation-1.11 (0.21, 5.54)
AES combination + IPCD full leg-0.24 (0.04, 1.25)
IPCD full leg0.18 (0.01, 3.60)1.41 (0.21, 8.02)
AES above knee + IPCD full leg-0.08 (0.00, 1.37)
Pre-operative LMWH extended duration, standard dose-0.22 (0.03, 1.37)
Fondaparinux standard-0.41 (0.07, 2.14)
IPCD location un-defined-0.24 (0.01, 3.62)
Fondaparinux standard + IPCD any location-0.07 (0.00, 1.83)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.01 (0.00, 0.56)
Versus AES position not reported AES below knee-0.47 (0.06, 3.03)
AES above knee-0.85 (0.18, 3.87)
Foot pump-0.80 (0.12, 4.79)
Pre-operative LMWH standard duration, high dose-0.36 (0.03, 2.92)
Post-operative LMWH standard duration, standard dose-0.84 (0.10, 5.62)
Pre-operative LMWH standard duration, low dose-1.41 (0.44, 5.16)
Pre-operative LMWH standard duration, standard dose-0.79 (0.22, 2.97)
AES above knee + UFH standard-0.12 (0.02, 0.77)
Electrical stimulation-1.57 (0.33, 7.46)
AES combination + IPCD full leg0.38 (0.15, 0.99)0.34 (0.09, 1.17)
IPCD full leg-2.01 (0.22, 15.68)
AES above knee + IPCD full leg-0.12 (0.00, 1.97)
Pre-operative LMWH extended duration, standard dose-0.31 (0.04, 2.06)
Fondaparinux standard-0.58 (0.10, 3.25)
IPCD location un-defined-0.34 (0.01, 5.60)
Fondaparinux standard + IPCD any location-0.10 (0.00, 2.73)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.02 (0.00, 0.81)
Versus AES below the knee AES above knee3.11 (0.33, 28.99)1.78 (0.37, 11.60)
Foot pump-1.69 (0.19, 17.66)
Pre-operative LMWH standard duration, high dose-0.78 (0.05, 10.05)
Post-operative LMWH standard duration, standard dose-1.76 (0.16, 19.83)
Pre-operative LMWH standard duration, low dose-3.00 (0.61, 22.24)
Pre-operative LMWH standard duration, standard dose-1.68 (0.31, 12.43)
AES above knee + UFH standard-0.26 (0.02, 2.86)
Electrical stimulation-3.36 (0.45, 32.66)
AES combination + IPCD full leg-0.73 (0.09, 7.04)
IPCD full leg-4.27 (0.36, 54.64)
AES above knee + IPCD full leg-0.26 (0.01, 5.18)
Pre-operative LMWH extended duration, standard dose-0.66 (0.07, 7.38)
Fondaparinux standard-1.23 (0.15, 12.30)
IPCD location un-defined-0.73 (0.02, 17.86)
Fondaparinux standard + IPCD any location-0.22 (0.00, 8.27)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.04 (0.00, 2.35)
Versus AES above the knee Foot pump-0.94 (0.14, 5.77)
Pre-operative LMWH standard duration, high dose-0.43 (0.03, 3.56)
Post-operative LMWH standard duration, standard dose-0.99 (0.12, 6.71)
Pre-operative LMWH standard duration, low dose-1.66 (0.51, 6.36)
Pre-operative LMWH standard duration, standard dose-0.93 (0.26, 3.69)
AES above knee + UFH standard-0.15 (0.02, 0.96)
Electrical stimulation-1.86 (0.34, 10.48)
AES combination + IPCD full leg-0.40 (0.07, 2.30)
IPCD full leg-2.36 (0.26, 19.24)
AES above knee + IPCD full leg0.21 (0.03, 1.68)0.15 (0.00, 1.43)
Pre-operative LMWH extended duration, standard dose-0.36 (0.05, 2.50)
Fondaparinux standard-0.68 (0.11, 4.02)
IPCD location un-defined-0.41 (0.01, 6.71)
Fondaparinux standard + IPCD any location-0.12 (0.00, 3.29)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.02 (0.00, 0.98)
Versus foot pump Pre-operative LMWH standard duration, high dose-0.46 (0.03, 4.87)
Post-operative LMWH standard duration, standard dose-1.04 (0.10, 9.67)
Pre-operative LMWH standard duration, low dose-1.77 (0.39, 10.02)
Pre-operative LMWH standard duration, standard dose-0.99 (0.20, 5.73)
AES above knee + UFH standard-0.16 (0.02, 1.36)
Electrical stimulation-1.97 (0.28, 15.29)
AES combination + IPCD full leg-0.43 (0.06, 3.34)
IPCD full leg-2.50 (0.23, 26.76)
AES above knee + IPCD full leg-0.15 (0.00, 3.09)
Pre-operative LMWH extended duration, standard dose-0.39 (0.04, 3.56)
Fondaparinux standard-0.73 (0.09, 5.77)
IPCD location un-defined-0.43 (0.01, 8.79)
Fondaparinux standard + IPCD any location-0.13 (0.00, 4.15)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.02 (0.00, 1.19)
Versus pre-operative LMWH standard duration, high dose Post-operative LMWH standard duration, standard dose-2.28 (0.17, 37.32)
Pre-operative LMWH standard duration, low dose-3.89 (0.61, 44.72)
Pre-operative LMWH standard duration, standard dose-2.17 (0.32, 25.28)
AES above knee + UFH standard-0.34 (0.03, 5.45)
Electrical stimulation-4.36 (0.47, 63.35)
AES combination + IPCD full leg-0.94 (0.09, 13.53)
IPCD full leg-5.54 (0.41, 99.61)
AES above knee + IPCD full leg-0.33 (0.01, 10.68)
Pre-operative LMWH extended duration, standard dose-0.85 (0.07, 13.89)
Fondaparinux standard-1.60 (0.16, 23.52)
IPCD location un-defined-0.95 (0.02, 30.24)
Fondaparinux standard + IPCD any location-0.28 (0.00, 13.34)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.05 (0.00, 3.76)
Versus post-operative LMWH standard duration, standard dose Pre-operative LMWH standard duration, low dose-1.68 (0.33, 12.74)
Pre-operative LMWH standard duration, standard dose-0.94 (0.17, 7.14)
AES above knee + UFH standard-0.15 (0.01, 1.61)
Electrical stimulation-1.88 (0.25, 18.67)
AES combination + IPCD full leg-0.41 (0.05, 4.02)
IPCD full leg-2.41 (0.20, 31.62)
AES above knee + IPCD full leg-0.15 (0.00, 3.45)
Pre-operative LMWH extended duration, standard dose-0.37 (0.04, 4.13)
Fondaparinux standard-0.70 (0.08, 6.91)
IPCD location un-defined-0.42 (0.01, 9.72)
Fondaparinux standard + IPCD any location-0.12 (0.00, 4.59)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.02 (0.00, 1.28)
Versus pre-operative LMWH standard duration, low dose Pre-operative LMWH standard duration, standard dose0.51 (0.39, 0.66)0.56 (0.28, 1.05)
AES above knee + UFH standard-0.09 (0.01, 0.41)
Electrical stimulation-1.13 (0.26, 4.17)
AES combination + IPCD full leg-0.24 (0.05, 0.98)
IPCD full leg-1.44 (0.18, 8.41)
AES above knee + IPCD full leg-0.08 (0.00, 1.19)
Pre-operative LMWH extended duration, standard dose-0.22 (0.04, 0.98)
Fondaparinux standard-0.41 (0.10, 1.48)
IPCD location un-defined-0.24 (0.01, 2.94)
Fondaparinux standard + IPCD any location-0.07 (0.00, 1.54)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.01 (0.00, 0.48)
Versus pre-operative LMWH standard duration, standard dose AES above knee + UFH standard-0.16 (0.02, 0.74)
Electrical stimulation-1.99 (0.46, 8.11)
AES combination + IPCD full leg-0.43 (0.09, 1.82)
IPCD full leg-2.54 (0.32, 16.59)
AES above knee + IPCD full leg-0.15 (0.00, 2.19)
Pre-operative LMWH extended duration, standard dose0.40 (0.18, 0.89)0.39 (0.09, 1.51)
Fondaparinux standard0.72 (0.49, 1.06)0.73 (0.21, 2.28)
IPCD location un-defined0.50 (0.05, 5.38)0.44 (0.01, 5.03)
Fondaparinux standard + IPCD any location-0.13 (0.00, 2.58)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.02 (0.00, 0.79)
Versus AES above knee + UFH standard duration Electrical stimulation-12.82 (1.83, 112.70)
AES combination + IPCD full leg-2.76 (0.37, 24.75)
IPCD full leg-16.32 (1.43, 199.70)
AES above knee + IPCD full leg-0.96 (0.02, 23.31)
Pre-operative LMWH extended duration, standard dose-2.49 (0.29, 24.71)
Fondaparinux standard-4.65 (0.65, 42.46)
IPCD location un-defined-2.76 (0.06, 62.80)
Fondaparinux standard + IPCD any location-0.83 (0.01, 28.66)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.16 (0.00, 8.15)
Versus electrical stimulation AES combination + IPCD full leg-0.22 (0.04, 0.93)
IPCD full leg-1.28 (0.13, 10.84)
AES above knee + IPCD full leg-0.08 (0.00, 1.38)
Pre-operative LMWH extended duration, standard dose-0.20 (0.02, 1.40)
Fondaparinux standard-0.37 (0.06, 2.30)
IPCD location un-defined-0.22 (0.01, 3.67)
Fondaparinux standard + IPCD any location-0.06 (0.00, 1.83)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.01 (0.00, 0.55)
Versus AES combination + IPCD full leg IPCD full leg-5.85 (0.58, 56.54)
AES above knee + IPCD full leg-0.35 (0.01, 6.88)
Pre-operative LMWH extended duration, standard dose-0.90 (0.11, 7.21)
Fondaparinux standard-1.69 (0.25, 11.55)
IPCD location un-defined-1.00 (0.02, 19.07)
Fondaparinux standard + IPCD any location-0.30 (0.01, 9.04)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.06 (0.00, 2.57)
Versus IPCD full leg AES above knee + IPCD full leg-0.06 (0.00, 1.48)
Pre-operative LMWH extended duration, standard dose-0.15 (0.01, 1.83)
Fondaparinux standard-0.29 (0.03, 2.98)
IPCD location un-defined-0.17 (0.00, 4.22)
Fondaparinux standard + IPCD any location-0.05 (0.00, 1.96)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.01 (0.00, 0.56)
Versus AES above the knee + IPCD full leg Pre-operative LMWH extended duration, standard dose-2.61 (0.12, 143.30)
Fondaparinux standard-4.88 (0.25, 260.40)
IPCD location un-defined-2.85 (0.04, 266.80)
Fondaparinux standard + IPCD any location-0.87 (0.01, 106.20)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.17 (0.00, 28.67)
Versus pre-operative LMWH extended duration, standard dose Fondaparinux standard-1.88 (0.30, 12.20)
IPCD location un-defined-1.11 (0.03, 19.99)
Fondaparinux standard + IPCD any location-0.33 (0.01, 9.53)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.06 (0.00, 2.69)
Versus fondaparinux standard duration IPCD location un-defined-0.60 (0.02, 9.40)
Fondaparinux standard + IPCD any location-0.18 (0.00, 4.57)
IPCD undefined + Post-operative LMWH standard duration, standard dose-0.03 (0.00, 1.31)
Versus IPCD location un-defined Fondaparinux standard + IPCD any location0.31 (0.14, 0.73)0.31 (0.07, 1.23)
IPCD undefined + Post-operative LMWH standard duration, standard dose0.09 (0.02, 0.46)0.06 (0.00, 0.42)
Versus fondaparinux standard duration + IPCD any location IPCD undefined + Post-operative LMWH standard duration, standard dose-0.20 (0.01, 2.17)

Figure 840 shows the rank of each intervention compared to the others. The rank is based on the relative risk compared to baseline and indicates the probability of being the best treatment, second best, third best and so on among the 22 different interventions being evaluated in comparison with no prophylaxis.

Figure 840. Rank order for interventions based the relative risk of experiencing DVT compared to baseline (no prophylaxis).

Figure 840Rank order for interventions based the relative risk of experiencing DVT compared to baseline (no prophylaxis)

LD = low dose; SD = standard dose; HD = high dose; sd = standard duration; ed = extended duration

Goodness of fit and inconsistency

The random effects model used for the NMA is a relatively good fit, with a residual deviance of 101 reported. This corresponds fairly well to the total number of trial arms, 100. The between trial standard deviation in the random effects analysis was 0.57 (95% CI 0.23 to 0.96). On evaluating inconsistency by comparing risk ratios, the NMA estimated risk ratio for IPCD below the knee compared to UFH at a standard duration (1.46 [0.72, 3.01]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (0.42 [0.16, 1.15]). An inconsistency model was run and the DIC statistics were as follows in Table 260. The difference in the DIC is small (<3–5) with the consistency model having the lower DIC value. This suggests that it fits the data better than the inconsistency model.

Table 260DIC for DVT (symptomatic and asymptomatic) – random effects

DICTotResDev
Consistency model530.880101
Inconsistency model532.606100

M.3.3.2. Pulmonary embolism (PE)

Included studies

51 studies were identified as reporting on PE outcomes. After excluding papers that reported zero events in each arm and papers reporting on combinations that did not connect to any other intervention in the network, 26 studies involving 13 treatments were included in the network for PE. The network can be seen in Figure 841 and the trial data for each of the studies included in the NMA are presented in Table 261.

Figure 841. Network diagram for PE.

Figure 841Network diagram for PE

Table 261Study data for PE network meta-analysis

StudyIntervention 1Intervention 2Intervention 3Intervention 1Intervention 2Intervention 3
EventsNEventsNEventsN
Clarke-Pearson 1984Ano prophylaxisIPCD below kneeNA197497NANA
Clarke-Pearson 1984Bno prophylaxisIPCD below kneeNA152255NANA
Coe 1978no prophylaxisIPCD below kneeUFH standard124129128
Gordon-Smith 1972no prophylaxisUFH standardNA0.5512.549NANA
Bejjani 1983no prophylaxisUFH standardNA1.5180.518NANA
Clarke-Pearson 1983no prophylaxisUFH standardNA0.5984.589NANA
Lahnborg 1975 + 1974no prophylaxisUFH standardNA2454958NANA
Tongren 1978no prophylaxisUFH standardNA261163NANA
Bergqvist 1996no prophylaxisPost op LMWH standard standardNA1.5420.540NANA
Ockelford 1989no prophylaxisPre op LMWH standard lowNA2.5890.596NANA
Holford 1976no prophylaxisAES above kneeNA1.5480.549NANA
Soderdahl 1997IPCD below kneeIPCD full legNA0.5441.548NANA
Borstad 1992UFH standardPre op LMWH standard lowNA0.5711.572NANA
Caen 1988UFH standardPre op LMWH standard lowNA1.51910.5196NANA
Kakkar 1993UFH standardPre op LMWH standard lowNA11191581894NANA
Koller 1986UFH standardPre op LMWH standard lowNA1.5730.575NANA
Leizorovicz 1991UFH standardPre op LMWH standard lowPre op LMWH standard standard242944311430
Wille-Jorgensen 1985UFH standardAES above knee + UFH standardNA690286NANA
Bergqvist 1988UFH standardPre op LMWH standard standardNA4.54980.5506NANA
Fricker 1988UFH standardPre op LMWH standard standardNA5.5410.541NANA
McLeod 2001UFH standardPre op LMWH standard standardNA0.54691.5469NANA
Bergqvist 1995Pre op LMWH standard lowPre op LMWH standard standardNA49766981NANA
Caprini 1983AES above kneeAES above knee + IPCD full legNA139138NANA
Chandhoke 1992IPCD full legVKA standardNA1.5480.554NANA
Bergqvist 2002Pre op LMWH standard standardPre op LMWH extended standardNA2.51680.5166NANA
Agnelli 2005Pre op LMWH standard standardFondaparinux standardNA0.514632.51466NANA
NMA results

Table 262 summarises the results of the conventional meta-analyses in terms of risk ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of risk ratios for every possible treatment comparison.

Table 262Risk ratios for PE

ComparisonsRisk ratio

Direct

(mean with 95% confidence interval)

NMA

(median with 95% credible interval)

Versus no prophylaxis IPCD below the knee2.19 (0.58, 8.24)1.87 (0.34, 11.08)
UFH standard duration0.60 (0.36, (1.02)0.81 (0.26, 2.75)
Post-operative LMWH standard duration, standard dose0.35 (0.01, 8.34)0.20 (0.00, 8.38)
Pre-operative LMWH standard duration, low dose0.19 (0.01, 3.81)0.50 (0.10, 2.32)
AES above the knee0.33 (0.01, 7.82)0.20 (0.00, 8.23)
IPCD full leg-5.32 (0.12, 238.70)
AES above knee + UFH standard duration-0.24 (0.01, 4.41)
Pre-operative LMWH standard duration, standard dose-0.29 (0.04, 1.70)
AES above the knee + IPCD full leg-0.19 (0.00, 27.36)
VKA standard duration-1.40 (0.00, 160.60)
Pre-operative LMWH extended duration, standard dose-0.03 (0.00, 1.84)
Fondaparinux standard duration-2.20 (0.04, 136.90)
Versus IPCD below the knee UFH standard duration1.04 (0.06, 17.00)0.43 (0.06, 3.17)
Post-operative LMWH standard duration, standard dose-0.10 (0.00, 6.18)
Pre-operative LMWH standard duration, low dose-0.26 (0.03, 2.39)
AES above the knee-0.10 (0.00, 6.02)
IPCD full leg2.75 (0.12, 65.76)2.61 (0.09, 113.50)
AES above knee + UFH standard duration-0.13 (0.00, 3.39)
Pre-operative LMWH standard duration, standard dose-0.15 (0.01, 1.63)
AES above the knee + IPCD full leg-0.10 (0.00, 18.30)
VKA standard duration-0.81 (0.00, 74.14)
Pre-operative LMWH extended duration, standard dose-0.01 (0.00, 1.31)
Fondaparinux standard duration-1.21 (0.01, 93.75)
Versus UFH standard duration Post-operative LMWH standard duration, standard dose-0.24 (0.00, 12.32)
Pre-operative LMWH standard duration, low dose0.88 (0.44, 1.78)0.62 (0.17, 1.88)
AES above the knee-0.24 (0.00, 12.26)
IPCD full leg-6.53 (0.13, 348.10)
AES above knee + UFH standard duration0.35 (0.07, 1.68)0.31 (0.01, 3.98)
Pre-operative LMWH standard duration, standard dose0.24 (0.06, 0.93)0.37 (0.07, 1.35)
AES above the knee + IPCD full leg-0.24 (0.00, 39.87)
VKA standard duration-1.66 (0.00, 226.70)
Pre-operative LMWH extended duration, standard dose-0.04 (0.00, 1.85)
Fondaparinux standard duration-2.63 (0.05, 167.50)
Versus post-operative LMWH standard duration, standard dose Pre-operative LMWH standard duration, low dose-2.59 (0.04, 2169.00)
AES above the knee-1.01 (0.00, 1859.00)
IPCD full leg-30.87 (0.14, 52120.00)
AES above knee + UFH standard duration-1.31 (0.01, 1562.00)
Pre-operative LMWH standard duration, standard dose-1.54 (0.02, 1365.00)
AES above the knee + IPCD full leg-1.06 (0.00, 3598.00)
VKA standard duration-6.91 (0.00, 20470.00)
Pre-operative LMWH extended duration, standard dose-0.16 (0.00, 316.50)
Fondaparinux standard duration-12.75 (0.04, 23960.00)
Versus pre-operative LMWH standard duration, low dose AES above the knee-0.40 (0.00, 24.51)
IPCD full leg-10.89 (0.19, 678.30)
AES above knee + UFH standard duration-0.50 (0.02, 9.11)
Pre-operative LMWH standard duration, standard dose0.87 (0.32, 2.40)0.60 (0.12, 2.60)
AES above the knee + IPCD full leg-0.39 (0.00, 77.56)
VKA standard duration-2.60 (0.00, 435.90)
Pre-operative LMWH extended duration, standard dose-0.06 (0.00, 3.30)
Fondaparinux standard duration-4.27 (0.09, 313.00)
Versus AES above the knee IPCD full leg-31.09 (0.14, 43070.00)
AES above knee + UFH standard duration-1.28 (0.01, 1369.00)
Pre-operative LMWH standard duration, standard dose-1.49 (0.02, 1131.00)
AES above the knee + IPCD full leg1.03 (0.07, 15.82)1.05 (0.02. 45.55)
VKA standard duration-6.81 (0.00, 18380.00)
Pre-operative LMWH extended duration, standard dose-0.16 (0.00, 279.10)
Fondaparinux standard duration-12.43 (0.05, 21680.00)
Versus IPCD full leg AES above knee + UFH standard duration-0.04 (0.00, 4.81)
Pre-operative LMWH standard duration, standard dose-0.05 (0.00, 3.41)
AES above the knee + IPCD full leg-0.03 (0.00, 16.57)
VKA standard duration0.30 (0.01, 7.10)0.30 (0.00, 4.49)
Pre-operative LMWH extended duration, standard dose-0.00 (0.00, 1.35)
Fondaparinux standard duration-0.50 (0.00, 101.50)
Versus AES above the knee + UFH standard duration Pre-operative LMWH standard duration, standard dose-1.20 (0.06, 31.58)
AES above the knee + IPCD full leg-0.78 (0.00, 316.10)
VKA standard duration-5.00 (0.00, 1871.00)
Pre-operative LMWH extended duration, standard dose-0.12 (0.00, 17.72)
Fondaparinux standard duration-8.99 (0.09, 1518.00)
Versus pre-operative LMWH standard duration, standard dose AES above the knee + IPCD full leg-0.65 (0.00, 147.90)
VKA standard duration-4.32 (0.00, 830.30)
Pre-operative LMWH extended duration, standard dose0.20 (0.01, 4.18)0.11 (0.00, 4.23)
Fondaparinux standard duration4.99 (0.24, 103.84)6.99 (0.22, 484.90)
Versus AES above the knee + IPCD full leg VKA standard duration-6.39 (0.00, 46310.00)
Pre-operative LMWH extended duration, standard dose-0.15 (0.00, 724.50)
Fondaparinux standard duration-12.24 (0.02, 57240.00)
Versus VKA standard duration Pre-operative LMWH extended duration, standard dose-0.02 (0.00, 121.10)
Fondaparinux standard duration-1.55 (0.00, 9161.00)
Versus pre-operative LMWH extended duration, standard dose Fondaparinux standard duration-80.07 (0.41, 134600.00)

Figure 842 shows the rank of each intervention compared to the others. The rank is based on the relative risk compared to baseline and indicates the probability of being the best treatment, second best, third best and so on among the 13 different interventions being evaluated.

Figure 842. Rank order for interventions based the relative risk of experiencing PE compared to baseline (no prophylaxis).

Figure 842Rank order for interventions based the relative risk of experiencing PE compared to baseline (no prophylaxis)

LD = low dose; SD = standard dose; HD = high dose; sd = standard duration; ed = extended duration

Goodness of fit and inconsistency

The random effects model used for the NMA is a relatively good fit, with a residual deviance of 55 reported. This corresponds well to the total number of trial arms, 54. The between trial standard deviation in the random effects analysis was 1.01 (95% CI 0.30 to 2.11). No inconsistency was identified between the direct RR and NMA results. An inconsistency model was run and the DIC statistics were as follows in Table 263. The difference in the DIC is small (<3–5) with the consistency model having the lower DIC value. This suggests that it fits the data better than the inconsistency model.

Table 263DIC for PE – random effects

DICTotResDev
Consistency model224.07255
Inconsistency model225.68156

M.3.3.3. Major bleeding

Included studies

33 studies were identified as reporting on major bleeding outcomes. After excluding papers that reported zero events in each arm and papers reporting on combinations that did not connect to any other intervention in the network, 29 studies involving 8 treatments were included in the network for major bleeding. The network can be seen in Figure 843 and the trial data for each of the studies included in the NMA are presented in Table 264.

Figure 843. Network diagram for major bleeding.

Figure 843Network diagram for major bleeding

Table 264Study data for major bleeding network meta-analysis

StudyIntervention 1Intervention 2Intervention 3Intervention 1Intervention 2Intervention 3
EventsNEventsNEventsN
Ockelford 1989no prophylaxis/mechanicalpre op LMWH standard duration, low doseNA488495NANA
Osman 2007no prophylaxis/mechanicalUFH standard durationPost op LMWH standard duration, standard dose025025125
Allen 1978no prophylaxis/mechanicalUFH standard durationNA030630NANA
Bejjani 1983no prophylaxis/mechanicalUFH standard durationNA017117NANA
Tongren 1978no prophylaxis/mechanicalUFH standard durationNA23612463NANA
Bergqvist 1996no prophylaxis/mechanicalPost op LMWH standard duration, standard doseNA041139NANA
Nagata 2015no prophylaxis/mechanicalPost op LMWH standard duration, standard doseNA114216NANA
Sakon 2010no prophylaxis/mechanicalPost op LMWH standard duration, standard doseNA1385109NANA
Song 2014no prophylaxis/mechanicalPost op LMWH standard duration, standard doseNA01122108NANA
Turpie 2007no prophylaxis/mechanicalFondaparinux standard durationNA165010635NANA
Borstad 1992pre op LMWH standard duration, low doseUFH standard durationNA1471970NANA
Kaaja 1992pre op LMWH standard duration, low doseUFH standard durationNA037631NANA
Kakkar 1993pre op LMWH standard duration, low doseUFH standard durationNA691894911915NANA
Koller 1986Bpre op LMWH standard duration, low doseUFH standard durationNA17742372NANA
Leizorovicz 1991pre op LMWH standard duration, low doseUFH standard durationpre op LMWH standard duration, standard dose144311242910430
Hartl 1990pre op LMWH standard duration, low doseUFH standard durationNA211215115NANA
Nurmohamed 1995pre op LMWH standard duration, low doseUFH standard durationNA1172518719NANA
Bergqvist 1995pre op LMWH standard duration, low dosepre op LMWH standard duration, standard doseNA31034131036NANA
Hauch 1988pre op LMWH standard duration, low dosepre op LMWH standard duration, standard doseNA016119NANA
Bergqvist 1986UFH standard durationpre op LMWH standard duration, standard doseNA221710215NANA
Borstad 1988UFH standard durationpre op LMWH standard duration, standard doseNA1311032105NANA
Fricker 1988UFH standard durationpre op LMWH standard duration, standard doseNA140240NANA
Gonzalez 1996UFH standard durationpre op LMWH standard duration, standard doseNA582084NANA
McLeod 2001UFH standard durationpre op LMWH standard duration, standard doseNA1064318653NANA
Onarheim 1986UFH standard durationpre op LMWH standard duration, standard doseNA127125NANA
Koller 1986 AUFH standard durationpre op LMWH standard duration, high doseNA120623NANA
Agnelli 2005Fondaparinux standard durationpre op LMWH standard duration, standard doseNA491433341425NANA
Bergqvist 2002pre op LMWH standard duration, standard dosepre op LMWH extended duration, standard doseNA12483253NANA
Rasmussen 2006pre op LMWH standard duration, standard dosepre op LMWH extended duration, standard doseNA42221205NANA
NMA results

Table 265 summarises the results of the conventional meta-analyses in terms of risk ratios generated from studies directly comparing different interventions, together with the results of the NMA in terms of risk ratios for every possible treatment comparison.

Table 265Risk ratios for major bleeding

ComparisonsRisk ratio

Direct

(mean with 95% confidence interval)

NMA

(median with 95% credible interval)

Versus no prophylaxis (or mechanical prophylaxis) Pre-operative LMWH standard duration, low dose0.93 (0.24, 3.59)1.21 (0.41, 3.95)
UFH standard duration1.30 (0.84, 2.00)2.01 (0.81, 6.52)
Post-operative LMWH standard duration, standard dose2.49 (0.78, 7.91)2.98 (0.88, 14.80)
Fondaparinux standard duration10.24 (1.31, 79.73)4.98 (1.05, 31.16)
Pre-operative LMWH standard duration, standard dose-2.96 (1.00, 11.16)
Pre-operative LMWH standard duration, high dose-11.26 (1.02, 349.30)
Pre-operative LMWH extended duration, standard dose-2.39 (0.32, 22.51)
Versus pre-operative LMWH standard duration, low dose UFH standard duration1.36 (0.9, 2.05)1.64 (0.94, 3.53)
Post-operative LMWH standard duration, standard dose-2.35 (0.50, 16.10)
Fondaparinux standard duration-4.01 (1.00, 24.20)
Pre-operative LMWH standard duration, standard dose1.73 (0.42, 7.19)2.41 (1.02, 6.33)
Pre-operative LMWH standard duration, high dose-8.95 (0.99, 265.00)
Pre-operative LMWH extended duration, standard dose-1.92 (0.29, 15.24)
Versus UFH standard duration Post-operative LMWH standard duration, standard dose0.33 (0.01, 7.81)1.40 (0.31, 8.28)
Fondaparinux standard duration-2.36 (0.62, 12.34)
Pre-operative LMWH standard duration, standard dose1.67 (1.17, 2.39)1.43 (0.74, 3.04)
Pre-operative LMWH standard duration, high dose5.22 (0.68, 39.74)5.17 (0.64, 138.20)
Pre-operative LMWH extended duration, standard dose-1.18 (0.17, 7.89)
Versus post-operative LMWH standard duration, standard dose Fondaparinux standard duration-1.50 (0.24, 13.47)
Pre-operative LMWH standard duration, standard dose-0.99 (0.17, 5.35)
Pre-operative LMWH standard duration, high dose-3.32 (0.26, 122.30)
Pre-operative LMWH extended duration, standard dose-0.89 (0.07, 8.93)
Versus fondaparinux standard duration Pre-operative LMWH standard duration, standard dose0.70 (0.45, 1.07)0.63 (0.13, 2.18)
Pre-operative LMWH standard duration, high dose-1.96 (0.16, 65.24)
Pre-operative LMWH extended duration, standard dose-0.55 (0.05, 4.00)
Versus pre-operative LMWH standard duration, standard dose Pre-operative LMWH standard duration, high dose-3.46 (0.39, 97.05)
Pre-operative LMWH extended duration, standard dose0.83 (0.22, 3.12)0.90 (0.13, 4.66)
Versus pre-operative LMWH standard duration, high dose Pre-operative LMWH extended duration, standard dose-0.25 (0.01, 3.49)

Figure 844 shows the rank of each intervention compared to the others. The rank is based on the relative risk compared to baseline and indicates the probability of being the best treatment, second best, third best and so on among the 8 different interventions being evaluated.

Figure 844. Rank order for interventions based the relative risk of major bleeding compared to baseline (no prophylaxis/mechanical prophylaxis).

Figure 844Rank order for interventions based the relative risk of major bleeding compared to baseline (no prophylaxis/mechanical prophylaxis)

LD = low dose; SD = standard dose; HD = high dose; sd = standard duration

Goodness of fit and inconsistency

The random effects model used for the NMA is a relatively good fit, with a residual deviance of 59 reported. This corresponds fairly well to the total number of trial arms, 60. The between trial standard deviation in the random effects analysis was 0.82 (95% CI 0.40 to 1.44). On evaluating inconsistency by comparing risk ratios, the NMA estimated risk ratio for UFH at a standard duration compared to no prophylaxis (2.01 [0.81, 6.52]) lay outside of the confidence interval of the risk ratio estimated for the direct comparison (1.30 [0.84, 2.00]). Therefore an inconsistency model was run and the DIC statistics were as follows in Table 266. The difference in the DIC is small (<3–5) which suggests that there is no obvious inconsistency in the network.

Table 266DIC for major bleeding – random effects

DICTotResDev
Consistency model299.22759
Inconsistency model302.08460

M.3.4. Discussion

Based on the results of conventional meta-analyses of direct evidence, as has been previously presented in Chapter 35 and appendix H, deciding upon the most clinical and cost effective prophylaxis intervention in patients undergoing abdominal surgery is challenging. In order to overcome the difficulty of interpreting the conclusions from numerous separate comparisons, network meta-analysis of the direct evidence was performed. The findings of the NMA were used to facilitate the committee in decision-making when developing recommendations.

Our analyses were divided into three critical outcomes. 48 studies informed the DVT network where 22 different individual or combination treatments were evaluated including 10 mechanical interventions, eight pharmacological interventions, and three interventions that combined both mechanical and pharmacological prophylaxis. 26 studies informed the PE network of 13 different treatments, including four mechanical interventions, seven pharmacological interventions, and one intervention that combined both mechanical and pharmacological prophylaxis. The major bleeding network included 29 studies evaluating eight treatments, seven of which were pharmacological as for this outcome any mechanical prophylaxis measures were combined with the no prophylaxis intervention as it is believed that mechanical prophylaxis has no associated bleeding risk.

In the DVT network, the three interventions that represented a combination of mechanical and pharmacological prophylaxis featured in the top four best ranked treatments. IPCD (undefined location) plus post-operative LMWH at a standard duration and standard dose was ranked first, IPCD (any location) plus fondaparinux for a standard duration was ranked second, and AES above the knee plus unfractionated heparin for a standard duration was ranked fourth. The treatment in the third spot was a combination of two forms of mechanical prophylaxis (AES above the knee plus IPCD full leg). There is considerable uncertainty about these estimates as the credible intervals are quite wide (with the top intervention spanning nine ranking positions, and the second and third spanning 19 and 18 respectively).

In the PE network the only combination intervention evaluated (AES above the knee plus unfractionated heparin standard duration) came in fifth, and was outranked by pre-operative LMWH extended duration and standard dose, AES above the knee plus IPCD full leg, post-operative LMWH standard duration and standard dose, and AES above the knee alone. However the credible intervals were very wide, with the top ranked treatment spanning 10 rankings, the second and third treatments spanning all 13 rankings, and the fourth and fifth treatments spanning 12 rankings.

In the major bleeding network the highest ranked intervention was no prophylaxis/mechanical prophylaxis. This was followed by the low dose of pre-operative LMWH for a standard duration (with a credible interval spanning four ranking positions). This was followed by unfractionated heparin for a standard duration, then the three standard doses of LMWH preoperatively for either an extended or standard duration, or post-operatively for a standard duration. Fondaparinux for a standard duration came in seventh, and last was the high dose of pre-operative LMWH for a standard duration.

In summary, the three outcomes chosen for analyses were considered to be among the most critical for assessing clinical effectiveness of different VTE prophylaxis strategies. All three networks seemed to fit well, as demonstrated by residual deviance and no obvious inconsistency found in the networks. However the credible intervals around the ranking of treatments in all three networks were wide suggesting considerable uncertainty about these results.

M.3.5. Conclusion

This analysis allowed us to combine findings from many different comparisons presented in the review even when direct comparative data was lacking.

Overall the committee agreed that the results for the three networks were not conclusive. It was acknowledged that a combination of mechanical and pharmacological prophylaxis were likely to be the most effective prophylaxis and therefore may be appropriate to offer those people undergoing abdominal surgery who have been assessed as having a low risk of bleeding. For details of the rationale and discussion leading to recommendations, please refer to the section linking the evidence to the recommendations (section 35.6, chapter 35).

M.3.6. WinBUGS code

M.3.6.1. WinBUGS code for assessment of baseline risk of DVT

# Binomial likelihood, logit link 
# Baseline random effects model 
model{                          # *** PROGRAM STARTS 
for (i in 1:ns){                # LOOP THROUGH STUDIES 
    r[i] ~ dbin(p[i],n[i])    # Likelihood 
    logit(p[i]) <- mu[i]     # Log-odds of response 
    mu[i] ~ dnorm(m,tau.m)      # Random effects model  
  } 
mu.new ~ dnorm(m,tau.m)        # predictive dist. (log-odds) 
m ~ dnorm(0,.0001)              # vague prior for mean 
var.m <- 1/tau.m                # between-trial variance 
tau.m <- pow(sd.m,-2)   # between-trial precision = (1/between-trial variance) 
sd.m ~ dunif(0,5)               # vague prior for between-trial SD 
#tau.m ~ dgamma(0.001,0.001) 
#sd.m <- sqrt(var.m) 
logit(R) <- m                   # posterior probability of response 
logit(R.new) <- mu.new          # predictive probability of response 
} 
Data 
list(ns=22)  # ns=number of studies 
r[] n[]  
6 24 
11 48 
14 51 
11 97 
4 118 
12 412 
21 50 
17 39 
10 50 
20 61 
13 33 
4 57 
11 97 
17 52 
37 103 
6 44 
23 47 
4 92 
15 33 
11 31 
9 41  
14 88 
END 
 
Inits 
list(mu=c(0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,     0,0), sd.m=1, m=0) 
list(mu = c(-1,-1,-1,-1,-1,   -1,-1,-1,-1,-1,   -1,-1,-1,-1,-1,   -1,-1,-1,-1,-1,    -1,-1), sd.m=2, m= -1) 
list(mu = c(1,1,1,1,1,   1,1,1,1,1,   1,1,1,1,1,   1,1,1,1,1,     1,1), sd.m = 0.5, m = 1) 

M.3.6.2. WinBUGS code for number of patients with DVT

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
tau <- 1/pow(sd,2) 
 
A ~ dnorm(meanA, precA)  # A is on log-odds scale 
precA <- pow(sdA,-2)     # turn st dev into precision 
 
for (k in 1:NT){         # v[1] will give prob of event on treat 1  
  logit(v[k]) <- A + d[k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 3. 
 
list(NS=48, NT=22, meanA=-1.371, sdA=1.105) 
 
r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1]  t[,2]  t[,3]    na[]    
6 24 6 28 2 29 1 2 3 3 
11 48 3 49 3 48 1 2 4 3 
14 51 6 46 NA NA 1 2 NA 2 
11 97 11 88 NA NA 1 2 NA 2 
4 118 1 108 NA NA 1 2 NA 2 
12 412 4 408 NA NA 1 2 NA 2 
21 50 4 48 NA NA 1 2 NA 2 
17 39 3 39 NA NA 1 2 NA 2 
10 50 3 50 NA NA 1 2 NA 2 
20 61 10 63 NA NA 1 2 NA 2 
13 33 3 31 NA NA 1 2 NA 2 
4 57 6 62 NA NA 1 3 NA 2 
11 97 14 97 NA NA 1 3 NA 2 
17 52 5 55 NA NA 1 3 NA 2 
37 103 15 97 NA NA 1 5 NA 2 
6 44 2 51 NA NA 1 6 NA 2 
23 47 11 48 NA NA 1 7 NA 2 
4.5 93 0.5 105 NA NA 1 7 NA 2 
15 33 6 33 NA NA 1 8 NA 2 
11 31 2 30 NA NA 1 9 NA 2 
9 41 3 39 NA NA 1 10 NA 2 
14 88 4 95 NA NA 1 11 NA 2 
6 107 3 101 NA NA 2 3 NA 2 
1 50 9 50 NA NA 2 4 NA 2 
7 429 16 431 7 430 2 11 12 3 
7 190 6 195 NA NA 2 11 NA 2 
5 115 5 112 NA NA 2 11 NA 2 
1 72 2 74 NA NA 2 11 NA 2 
8 709 25 718 NA NA 2 11 NA 2 
41 497 28 505 NA NA 2 12 NA 2 
0.5 28 1.5 26 NA NA 2 12 NA 2 
9 217 13 215 NA NA 2 12 NA 2 
12 81 2 79 NA NA 2 13 NA 2 
7 90 1 86 NA NA 2 13 NA 2 
7 50 12 50 3 50 2 14 15 3 
1.5 44 0.5 48 NA NA 3 16 NA 2 
0.5 54 2.5 48 NA NA 4 16 NA 2 
14 56 5 52 NA NA 5 15 NA 2 
1 58 3 56 NA NA 6 7 NA 2 
5 39 1 38 NA NA 7 17 NA 2 
2.5 17 0.5 20 NA NA 11 12 NA 2 
124 976 65 981 NA NA 11 12 NA 2 
20 167 8 165 NA NA 12 18 NA 2 
59 1018 43 1024 NA NA 12 19 NA 2 
2 105 1 106 NA NA 12 20 NA 2 
22 418 7 424 NA NA 20 21 NA 2 
6 31 1 78 NA NA 20 22 NA 2 
3.5 113 0.5 109 NA NA 20 22 NA 2 
END  
 
Inits 
#chain 1 
list( 
d=c(NA,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,   0,0), # one for each treatment  
sd=1, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3,0,2,-1,-3,    -2,1,1,3,-1,1,-2,-1,3,-2,   -2,-3,1,-2,0,0,2,2) ) 
 
#chain 2 
list( 
d=c(NA,-3,1,-1,-3,   -1,-3,1,-1,-3,   1,-1,-2,-3,-1,   -2,-1,2,-2,3,   0,0), # one for each treatment  
sd=0.1, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3,0,2,-1,-3,    -2,1,1,3,-1,1,-2,-1,3,-2,   -2,-3,1,-2,0,0,3,-2) ) 
 
#chain 3 
list( 
d=c(NA,0,1,1,0,   0,0,0,1,2,   3,4,2,0,0,   -2,-1,2,-2,3,    0,0), # one for each treatment  
sd=2, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3,0,2,-1,-3,    -2,1,1,3,-1,1,-2,-1,3,-2,   -2,-3,1,-2,0,0,1,-1) ) 

M.3.6.3. WinBUGS code for inconsistency model for number of patients with DVT

# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
var <- pow(sd,2) # between-trial variance 
tau <- 1/var     # between-trial precision 
} # *** PROGRAM ENDS 
 
 Data 
# DVT 
# nt=no. treatments, ns=no. studies 
list(nt=22,ns=48) 
 
r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1] t[,2] t[,3] na[] 
6 24 6 28 2 29 1 2 3 3 
11 48 3 49 3 48 1 2 4 3 
14 51 6 46 NA NA 1 2 NA 2 
11 97 11 88 NA NA 1 2 NA 2 
4 118 1 108 NA NA 1 2 NA 2 
12 412 4 408 NA NA 1 2 NA 2 
21 50 4 48 NA NA 1 2 NA 2 
17 39 3 39 NA NA 1 2 NA 2 
10 50 3 50 NA NA 1 2 NA 2 
20 61 10 63 NA NA 1 2 NA 2 
13 33 3 31 NA NA 1 2 NA 2 
4 57 6 62 NA NA 1 3 NA 2 
11 97 14 97 NA NA 1 3 NA 2 
17 52 5 55 NA NA 1 3 NA 2 
37 103 15 97 NA NA 1 5 NA 2 
6 44 2 51 NA NA 1 6 NA 2 
23 47 11 48 NA NA 1 7 NA 2 
4.5 93 0.5 105 NA NA 1 7 NA 2 
15 33 6 33 NA NA 1 8 NA 2 
11 31 2 30 NA NA 1 9 NA 2 
9 41 3 39 NA NA 1 10 NA 2 
14 88 4 95 NA NA 1 11 NA 2 
6 107 3 101 NA NA 2 3 NA 2 
1 50 9 50 NA NA 2 4 NA 2 
7 429 16 431 7 430 2 11 12 3 
7 190 6 195 NA NA 2 11 NA 2 
5 115 5 112 NA NA 2 11 NA 2 
1 72 2 74 NA NA 2 11 NA 2 
8 709 25 718 NA NA 2 11 NA 2 
41 497 28 505 NA NA 2 12 NA 2 
0.5 28 1.5 26 NA NA 2 12 NA 2 
9 217 13 215 NA NA 2 12 NA 2 
12 81 2 79 NA NA 2 13 NA 2 
7 90 1 86 NA NA 2 13 NA 2 
7 50 12 50 3 50 2 14 15 3 
1.5 44 0.5 48 NA NA 3 16 NA 2 
0.5 54 2.5 48 NA NA 4 16 NA 2 
14 56 5 52 NA NA 5 15 NA 2 
1 58 3 56 NA NA 6 7 NA 2 
5 39 1 38 NA NA 7 17 NA 2 
2.5 17 0.5 20 NA NA 11 12 NA 2 
124 976 65 981 NA NA 11 12 NA 2 
20 167 8 165 NA NA 12 18 NA 2 
59 1018 43 1024 NA NA 12 19 NA 2 
2 105 1 106 NA NA 12 20 NA 2 
22 418 7 424 NA NA 20 21 NA 2 
6 31 1 78 NA NA 20 22 NA 2 
3.5 113 0.5 109 NA NA 20 22 NA 2 
END 
 
 INITS 
#chain 1 
list(sd=1,  mu=c(2,0,3,0,2,   -2,2,-2,-1,3,   2,-2,1,3,1,    1,2,-3,2,-2,   -2,1,0,-3,3,    0,-3,-2,-3,-2,   3,-3,0,-1,-3,   2,1,3,-2,2,   2,0,1,2,0,  0,-2,0)) 
# chain 2 
list(sd=1.5,  mu=c(2,1,3,1,2,   0,2,0,-1,3,   2,0,1,3,1,   1,2,-3,2,0,   0,1,1,-3,3,   1,-3,0,-3,0,    3,-3,1,-1,-3,    2,1,3,0,2,    2,1,1,2,1,    1,0,1)) 
# chain 3 
list(sd=3,  mu=c(2,0.5,3,0.5,2,   -2,2,1,-1,3,    2,1,1,3,1,    1,2,-3,2,1,    1,1,0.5,-3,3,   0.5,-3,1,-3,1,   3,-3,0.5,-1,-3,   2,1,3,1,2,  2,0.5,1,2,0.5,   0.5,0,1)) 

M.3.6.4. WinBUGS code for assessment of baseline risk of PE

# Binomial likelihood, logit link 
# Baseline random effects model 
model{                          # *** PROGRAM STARTS 
for (i in 1:ns){                # LOOP THROUGH STUDIES 
    r[i] ~ dbin(p[i],n[i])    # Likelihood 
    logit(p[i]) <- mu[i]     # Log-odds of response 
    mu[i] ~ dnorm(m,tau.m)      # Random effects model  
  } 
mu.new ~ dnorm(m,tau.m)        # predictive dist. (log-odds) 
m ~ dnorm(0,.0001)              # vague prior for mean 
var.m <- 1/tau.m                # between-trial variance 
tau.m <- pow(sd.m,-2)   # between-trial precision = (1/between-trial variance) 
sd.m ~ dunif(0,5)               # vague prior for between-trial SD 
#tau.m ~ dgamma(0.001,0.001) 
#sd.m <- sqrt(var.m) 
logit(R) <- m                   # posterior probability of response 
logit(R.new) <- mu.new          # predictive probability of response 
} 
Data 
list(ns=11)  # ns=number of studies 
r[] n[]  
1 97 
1 52 
1 24 
0 50 
1 17 
0 97 
24 54 
2 61 
1 41 
2 88 
1 47 
END 
 Inits 
list(mu=c(0,0,0,0,0,   0,0,0,0,0,   0), sd.m=1, m=0) 
list(mu = c(-1,-1,-1,-1,-1,   -1,-1,-1,-1,-1,   -1), sd.m=2, m= -1) 
list(mu = c(1,1,1,1,1,   1,1,1,1,1,   1), sd.m = 0.5, m = 1) 

M.3.6.5. WinBUGS code for number of patients with PE

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
tau <- 1/pow(sd,2) 
 
A ~ dnorm(meanA, precA)  # A is on log-odds scale 
precA <- pow(sdA,-2)     # turn st dev into precision 
 
for (k in 1:NT){         # v[1] will give prob of event on treat 1  
  logit(v[k]) <- A + d[k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
Data 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 3. 
list(NS=26, NT=13, meanA=-3.939, sdA=2.201) 
r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1]  t[,2]  t[,3]    na[]    
1 97 4 97 NA NA 1 2 NA 2 
1 52 2 55 NA NA 1 2 NA 2 
1 24 1 29 1 28 1 2 3 3 
0.5 51 2.5 49 NA NA 1 3 NA 2 
1.5 18 0.5 18 NA NA 1 3 NA 2 
0.5 98 4.5 89 NA NA 1 3 NA 2 
24 54 9 58 NA NA 1 3 NA 2 
2 61 1 63 NA NA 1 3 NA 2 
1.5 42 0.5 40 NA NA 1 4 NA 2 
2.5 89 0.5 96 NA NA 1 5 NA 2 
1.5 48 0.5 49 NA NA 1 6 NA 2 
0.5 44 1.5 48 NA NA 2 7 NA 2 
0.5 71 1.5 72 NA NA 3 5 NA 2 
1.5 191 0.5 196 NA NA 3 5 NA 2 
11 1915 8 1894 NA NA 3 5 NA 2 
1.5 73 0.5 75 NA NA 3 5 NA 2 
2 429 4 431 1 430 3 5 9 3 
6 90 2 86 NA NA 3 8 NA 2 
4.5 498 0.5 506 NA NA 3 9 NA 2 
5.5 41 0.5 41 NA NA 3 9 NA 2 
0.5 469 1.5 469 NA NA 3 9 NA 2 
4 976 6 981 NA NA 5 9 NA 2 
1 39 1 38 NA NA 6 10 NA 2 
1.5 48 0.5 54 NA NA 7 11 NA 2 
2.5 168 0.5 166 NA NA 9 12 NA 2 
0.5 1463 2.5 1466 NA NA 9 13 NA 2 
 
END  
Inits 
#chain 1 
list( 
d=c(NA,0,0,0,0,   0,0,0,0,0,   0,0,0), # one for each treatment  
sd=1, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3) ) 
#chain 2 
list( 
d=c(NA,-3,1,-1,-3,   -1,-3,1,-1,-3,   1,-1,-2), # one for each treatment  
sd=0.1, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3) ) 
#chain 3 
list( 
d=c(NA,0,1,1,0,   0,0,0,1,2,   3,4,2), # one for each treatment  
sd=2, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3) ) 

M.3.6.6. WinBUGS code for inconsistency model for number of patients with PE

# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
var <- pow(sd,2) # between-trial variance 
tau <- 1/var     # between-trial precision 
} # *** PROGRAM ENDS 
 
 Data 
# DVT 
# nt=no. treatments, ns=no. studies 
list(nt=13,ns=26) 
r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1] t[,2] t[,3] na[] 
1 97 4 97 NA NA 1 2 NA 2 
1 52 2 55 NA NA 1 2 NA 2 
1 24 1 29 1 28 1 2 3 3 
0.5 51 2.5 49 NA NA 1 3 NA 2 
1.5 18 0.5 18 NA NA 1 3 NA 2 
0.5 98 4.5 89 NA NA 1 3 NA 2 
24 54 9 58 NA NA 1 3 NA 2 
2 61 1 63 NA NA 1 3 NA 2 
1.5 42 0.5 40 NA NA 1 4 NA 2 
2.5 89 0.5 96 NA NA 1 5 NA 2 
1.5 48 0.5 49 NA NA 1 6 NA 2 
0.5 44 1.5 48 NA NA 2 7 NA 2 
0.5 71 1.5 72 NA NA 3 5 NA 2 
1.5 191 0.5 196 NA NA 3 5 NA 2 
11 1915 8 1894 NA NA 3 5 NA 2 
1.5 73 0.5 75 NA NA 3 5 NA 2 
2 429 4 431 1 430 3 5 9 3 
6 90 2 86 NA NA 3 8 NA 2 
4.5 498 0.5 506 NA NA 3 9 NA 2 
5.5 41 0.5 41 NA NA 3 9 NA 2 
0.5 469 1.5 469 NA NA 3 9 NA 2 
4 976 6 981 NA NA 5 9 NA 2 
1 39 1 38 NA NA 6 10 NA 2 
1.5 48 0.5 54 NA NA 7 11 NA 2 
2.5 168 0.5 166 NA NA 9 12 NA 2 
0.5 1463 2.5 1466 NA NA 9 13 NA 2 
END 
 
 INITS 
#chain 1 
list(sd=1,  mu=c(2,0,3,0,2,   -2,2,-2,-1,3,   2,-2,1,3,1,    1,2,-3,2,-2,   -2,1,0,-3,3,    0)) 
# chain 2 
list(sd=1.5,  mu=c(2,1,3,1,2,   0,2,0,-1,3,   2,0,1,3,1,   1,2,-3,2,0,   0,1,1,-3,3,   1)) 
# chain 3 
list(sd=3,  mu=c(2,0.5,3,0.5,2,   -2,2,1,-1,3,    2,1,1,3,1,    1,2,-3,2,1,    1,1,0.5,-3,3,   0.5)) 

M.3.6.7. WinBUGS code for assessment of baseline risk of major bleeding

# Binomial likelihood, logit link 
# Baseline random effects model 
model{                          # *** PROGRAM STARTS 
for (i in 1:ns){                # LOOP THROUGH STUDIES 
    r[i] ~ dbin(p[i],n[i])    # Likelihood 
    logit(p[i]) <- mu[i]     # Log-odds of response 
    mu[i] ~ dnorm(m,tau.m)      # Random effects model  
  } 
mu.new ~ dnorm(m,tau.m)        # predictive dist. (log-odds) 
m ~ dnorm(0,.0001)              # vague prior for mean 
var.m <- 1/tau.m                # between-trial variance 
tau.m <- pow(sd.m,-2)   # between-trial precision = (1/between-trial variance) 
sd.m ~ dunif(0,5)               # vague prior for between-trial SD 
#tau.m ~ dgamma(0.001,0.001) 
#sd.m <- sqrt(var.m) 
logit(R) <- m                   # posterior probability of response 
logit(R.new) <- mu.new          # predictive probability of response 
} 
 Data 
 
list(ns=10)  # ns=number of studies 
r[] n[]  
4 88 
0 25 
0 30 
0 17 
23 61 
0 41 
1 14 
1 38 
0 112 
1 650 
END 
 Inits 
list(mu=c(0,0,0,0,0,   0,0,0,0,0), sd.m=1, m=0) 
list(mu = c(-1,-1,-1,-1,-1,   -1,-1,-1,-1,-1), sd.m=2, m= -1) 
list(mu = c(1,1,1,1,1,   1,1,1,1,1), sd.m = 0.5, m = 1) 

M.3.6.8. WinBUGS code for number of patients with major bleeding

#Random effects model for multi-arm trials (any number of arms) 
model{ 
for(i in 1:NS){  
  w[i,1] <-0 
  delta[i,t[i,1]]<-0 
  mu[i] ~ dnorm(0,.0001) # vague priors for trial baselines 
  for (k in 1:na[i]){ 
    r[i,k] ~ dbin(p[i,t[i,k]],n[i,k]) # binomial likelihood 
    logit(p[i,t[i,k]])<-mu[i] + delta[i,t[i,k]]  # model 
#Deviance residuals for data i       
  rhat[i,k] <- p[i,t[i,k]] * n[i,k]                                                dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))  +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k]))) 
   }                                                                   
  sdev[i]<- sum(dev[i,1:na[i]]) 
  for (k in 2:na[i]){ 
# trial-specific LOR distributions 
    delta[i,t[i,k]] ~ dnorm(md[i,t[i,k]],taud[i,t[i,k]]) 
    md[i,t[i,k]] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of LOR distributions 
    taud[i,t[i,k]] <- tau *2*(k-1)/k     #precision of LOR distributions 
#adjustment, multi-arm RCTs 
    w[i,k] <- (delta[i,t[i,k]]  - d[t[i,k]] + d[t[i,1]]) 
# cumulative adjustment for multi-arm trials 
    sw[i,k] <-sum(w[i,1:k-1])/(k-1) 
   } 
 }    
d[1]<-0 
for (k in 2:NT){d[k] ~ dnorm(0,.0001) } # vague priors for basic parameters 
sd ~ dunif(0,5)        # vague prior for random effects standard deviation  
tau <- 1/pow(sd,2) 
 
A ~ dnorm(meanA, precA)  # A is on log-odds scale 
precA <- pow(sdA,-2)     # turn st dev into precision 
 
for (k in 1:NT){         # v[1] will give prob of event on treat 1  
  logit(v[k]) <- A + d[k] 
  rr[k] <- v[k]/v[1]     # calculate relative risk 
 } 
sumdev <- sum(sdev[])    # Calculate residual deviance 
# Ranking and prob{treatment k is best} 
for (k in 1:NT){  
  rk[k] <- rank(rr[],k) 
  best[k] <- equals(rank(rr[],k),1) 
 } 
# pairwise ORs and RRs 
for (c in 1:(NT-1)){ 
  for (k in (c+1):NT){ 
    lor[c,k] <- d[k] - d[c] 
    log(or[c,k]) <- lor[c,k] 
    lrr[c,k] <- log(rr[k]) - log(rr[c]) 
    log(rrisk[c,k]) <- lrr[c,k] 
   } 
 } 
} 
Data 
# NT=no. treatments, NS=no. studies;   
# NB : set up M vectors each r[,]. n[,] and t[,],  where M is the Maximum number of treatments 
#         per trial in the dataset. In this dataset M is 3. 
list(NS=29, NT=8, meanA=-5.331 sdA=3.482) 
r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1]  t[,2]  t[,3]    na[]    
4 88 4 95 NA NA 1 2 NA 2 
0.5 26 0.5 26 1.5 26 1 3 4 3 
0.5 31 6.5 31 NA NA 1 3 NA 2 
0.5 18 1.5 18 NA NA 1 3 NA 2 
23 61 24 63 NA NA 1 3 NA 2 
0.5 42 1.5 40 NA NA 1 4 NA 2 
1 14 2 16 NA NA 1 4 NA 2 
1 38 5 109 NA NA 1 4 NA 2 
0.5 113 2.5 109 NA NA 1 4 NA 2 
1 650 10 635 NA NA 1 5 NA 2 
14 71 9 70 NA NA 2 3 NA 2 
0.5 38 6.5 32 NA NA 2 3 NA 2 
69 1894 91 1915 NA NA 2 3 NA 2 
17 74 23 72 NA NA 2 3 NA 2 
14 431 12 429 10 430 2 3 6 3 
2 112 15 115 NA NA 2 3 NA 2 
11 725 18 719 NA NA 2 3 NA 2 
3 1034 13 1036 NA NA 2 6 NA 2 
0.5 17 1.5 20 NA NA 2 6 NA 2 
2 217 10 215 NA NA 3 6 NA 2 
13 110 32 105 NA NA 3 6 NA 2 
1 40 2 40 NA NA 3 6 NA 2 
5.5 83 0.5 85 NA NA 3 6 NA 2 
10 643 18 653 NA NA 3 6 NA 2 
1 27 1 25 NA NA 3 6 NA 2 
1 20 6 23 NA NA 3 7 NA 2 
49 1433 34 1425 NA NA 5 6 NA 2 
1 248 3 253 NA NA 6 8 NA 2 
4 222 1 205 NA NA 6 8 NA 2 
END  
 Inits 
#chain 1 
list( 
d=c(NA,0,0,0,0,   0,0,0), # one for each treatment  
sd=1, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3,0,2,1) ) 
#chain 2 
list( 
d=c(NA,-3,1,-1,-3,   -1,-3,1), # one for each treatment  
sd=0.1, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3,0,2,3) ) 
#chain 3 
list( 
d=c(NA,0,1,1,0,   0,0,0), # one for each treatment  
sd=2, 
mu=c(3,2,-3,1,0,3,-2,-1,2,-2,    -1,3,1,3,-2,-1,2,-2,3,-1,   1,-1,-2,-3,-1,-3,0,2,0) ) 

M.3.6.9. WinBUGS code for inconsistency model for number of patients with major bleeding

# Binomial likelihood, logit link, inconsistency model 
# Random effects model 
model{                      # *** PROGRAM STARTS 
for(i in 1:ns){             # LOOP THROUGH STUDIES 
    delta[i,1]<-0           # treatment effect is zero in control arm 
    mu[i] ~ dnorm(0,.0001)  # vague priors for trial baselines 
    for (k in 1:na[i])  {   # LOOP THROUGH ARMS 
        r[i,k] ~ dbin(p[i,k],n[i,k]) # binomial likelihood 
        logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 
#Deviance contribution 
        rhat[i,k] <- p[i,k] * n[i,k] # expected value of the numerators  
        dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   
          +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))    
      } 
# summed residual deviance contribution for this trial 
   resdev[i] <- sum(dev[i,1:na[i]]) 
   for (k in 2:na[i]) {  # LOOP THROUGH ARMS 
# trial-specific LOR distributions 
        delta[i,k] ~ dnorm(d[t[i,1],t[i,k]] ,tau)  
      } 
  }    
totresdev <- sum(resdev[])   # Total Residual Deviance 
for (c in 1:(nt-1)) {  # priors for all mean treatment effects 
    for (k in (c+1):nt)  { d[c,k] ~ dnorm(0,.0001) }  
  }   
sd ~ dunif(0,5)  # vague prior for between-trial standard deviation 
var <- pow(sd,2) # between-trial variance 
tau <- 1/var     # between-trial precision 
} # *** PROGRAM ENDS 
 
 Data 
# Major bleeding 
# nt=no. treatments, ns=no. studies 
list(nt=8,ns=29) 
 
r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] t[,1] t[,2] t[,3] na[] 
4 88 4 95 NA NA 1 2 NA 2 
0.5 26 0.5 26 1.5 26 1 3 4 3 
0.5 31 6.5 31 NA NA 1 3 NA 2 
0.5 18 1.5 18 NA NA 1 3 NA 2 
23 61 24 63 NA NA 1 3 NA 2 
0.5 42 1.5 40 NA NA 1 4 NA 2 
1 14 2 16 NA NA 1 4 NA 2 
1 38 5 109 NA NA 1 4 NA 2 
0.5 113 2.5 109 NA NA 1 4 NA 2 
1 650 10 635 NA NA 1 5 NA 2 
14 71 9 70 NA NA 2 3 NA 2 
0.5 38 6.5 32 NA NA 2 3 NA 2 
69 1894 91 1915 NA NA 2 3 NA 2 
17 74 23 72 NA NA 2 3 NA 2 
14 431 12 429 10 430 2 3 6 3 
2 112 15 115 NA NA 2 3 NA 2 
11 725 18 719 NA NA 2 3 NA 2 
3 1034 13 1036 NA NA 2 6 NA 2 
0.5 17 1.5 20 NA NA 2 6 NA 2 
2 217 10 215 NA NA 3 6 NA 2 
13 110 32 105 NA NA 3 6 NA 2 
1 40 2 40 NA NA 3 6 NA 2 
5.5 83 0.5 85 NA NA 3 6 NA 2 
10 643 18 653 NA NA 3 6 NA 2 
1 27 1 25 NA NA 3 6 NA 2 
1 20 6 23 NA NA 3 7 NA 2 
49 1433 34 1425 NA NA 5 6 NA 2 
1 248 3 253 NA NA 6 8 NA 2 
4 222 1 205 NA NA 6 8 NA 2 
END 
 
 INITS 
#chain 1 
list(sd=1,  mu=c(2,0,3,0,2,   -2,2,-2,-1,3,   2,-2,1,3,1,    1,2,-3,2,-2,   -2,1,0,-3,3,    0,-3,-2,-3)) 
# chain 2 
list(sd=1.5,  mu=c(2,1,3,1,2,   0,2,0,-1,3,   2,0,1,3,1,   1,2,-3,2,0,   0,1,1,-3,3,   1,-3,0,-3)) 
 
# chain 3 
list(sd=3,  mu=c(2,0.5,3,0.5,2,   -2,2,1,-1,3,    2,1,1,3,1,    1,2,-3,2,1,    1,1,0.5,-3,3,   0.5,-3,1,-3)) 
Copyright © NICE 2018.
Bookshelf ID: NBK561788

Views

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...