U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

Show details

Inverse Ratio Ventilation

; ; .

Author Information and Affiliations

Last Update: April 6, 2023.

Continuing Education Activity

Inverse ratio ventilation (IRV) is an alternative strategy for mechanical ventilation that reverses the classical inspiratory/expiratory paradigm. This is achieved by modifying the inspiratory to expiratory (I:E) ratio, typically to increase oxygenation by increasing the mean airway pressure (MAP). This activity describes the indications for and contraindications to inverse ratio ventilation and highlights the role of the interprofessional team in the management of ventilated patients.

Objectives:

  • Identify the indications for inverse ratio ventilation.
  • Describe the physiology of inverse ratio ventilation.
  • Explain how inverse ratio ventilation can be useful for acute respiratory distress syndrome patients.
  • Explain strategies for improving care coordination among interprofessional team members to improve outcomes in patients with acute respiratory distress syndrome by utilizing inverse ratio ventilation.
Access free multiple choice questions on this topic.

Introduction

Inverse ratio ventilation (IRV) is an alternative strategy for mechanical ventilation that reverses the classical inspiratory/expiratory scheme. This is achieved by modifying the inspiratory to expiratory (I:E) ratio, typically to increase oxygenation by increasing the mean airway pressure (MAP). Discussion of IRV requires an understanding of basic ventilator management which can be reviewed in a separate article. Here we discuss additional terms necessary for the utilization of IRV.

I:E Ratio

The I:E ratio denotes the proportions of each breath cycle devoted to the inspiratory and expiratory phases. The duration of each phase will depend on this ratio in conjunction with the overall respiratory rate. The total time of a respiratory cycle is determined by dividing 60 seconds by the respiratory rate. Inspiratory time and expiratory time are then determined by portioning the respiratory cycle based on the set ratio. For instance, a patient with a respiratory rate of 10 breaths per minute will have a breath cycle lasting 6 seconds. A typical I:E ratio for most situations would be 1:2. If we apply this ratio to the patient above, the 6-second breath cycle will break down to 2 seconds of inspiration and 4 seconds of expiration. Changing the I:E ratio to 1:3 will result in 1.5 seconds of inspiration and 4.5 seconds of expiration. Thus, changing the I:E ratio from 1:2 to 1:3 results in less inspiratory time and more expiratory time for the same length of the breath cycle.

Standard Pressure Control ventilation modes typically use I:E ratio of 1:2 or as high as 1:3 or 1:4 in specific populations. In these cases, the expiratory phase is set longer than the inspiratory phase mimics normal physiology. Inverse Ratio Ventilation instead uses I:E ratios of 2:1, 3:1, 4:1, and so on, sometimes as high as 10:1, with inspiratory times that exceed expiratory times.

Mean Airway Pressure

Mean Airway Pressure (referred to as MAP in this article) is the pressure measured at the airway's opening, averaged over the complete respiratory cycle. The primary determinants of MAP are PEEP, inspiratory pressure, and time spent on each phase. In standard mechanical ventilation, MAP can be estimated by assuming that the pressure at the airway is approximately equal to the PEEP during expiration and roughly equivalent to the Inspiratory pressure during inspiration. MAP can then be calculated by multiplying the fraction of a cycle spent on inspiration by the inspiratory pressure and adding this to the fraction of a cycle spent on expiration multiplied by the PEEP.

For instance, in a patient mechanically ventilated using a PEEP of 5, inspiratory pressure of 20, and I:E ratio of 1:2. The patient will have a base pressure at the airway of 5, but for one-third of a respiratory cycle (I:E ratio of 1:2 means that one-third of the cycle is spent on inspiration), this will increase to 20. We then calculate 5 x 2/3 + 20 x 1/3 = 10.

MAP correlates with mean alveolar pressure and thus transpulmonary pressure. Though multiple factors are involved, increased transpulmonary pressure increases gas exchange, notionally improving oxygenation. The primary purpose of IRV is to increase mean airway pressure by increasing the time spent on the higher pressure portion of the cycle. This allows the increase of MAP while minimizing the risk for pulmonary injury relative to other aggressive oxygenation strategies. Increasing the time spent at the higher pressure portion of the cycle allows MAP elevation without increasing the pressure. A higher MAP results in a higher transpulmonary pressure, which improves gas exchange and arterial oxygenation.[1][2][3][4]

Indications

The primary indication for inverse ratio ventilation is the management of hypoxemia refractory to other ventilation strategies, particularly in patients with hypoxemia secondary to ARDS. Conventional management of patients in ARDS consists of low volume, high PEEP ventilation. Increasing PEEP is used to increase transpulmonary pressure to improve oxygenation; however, some patients cannot tolerate the escalating PEEP or inspiratory pressures required for ventilation due to barotrauma, volume trauma, and alveolar damage. IRV is one possible alternative strategy in these circumstances. IRV is often used as a rescue strategy when other oxygenation methods have been maximized.[1]

Contraindications

There are multiple possible or expected complications of IRV discussed below. Relative contraindications to IRV are those conditions that put the patient at higher risk for developing these complications, such as a preexisting hemodynamic compromise or obstructive lung disease requiring a prolonged expiratory phase.

Technique or Treatment

Though the use of IRV does not dictate a specific mode of mechanical ventilation, it is often used as a modification of pressure control mode as this is the most straightforward. In such a case, just as the clinician sets the PEEP and Inspiratory Pressure in conventional pressure control ventilation, in PC-IRV, the clinician sets the low pressure (P-low) and the high pressure (P-high). The clinician must also set the frequency of pressure changes and the proportion of time spent at each level, analogous to respiratory rate and I: E ratio. Whether the proportions are dictated through setting a ratio (2:1, 4:1, 10:1, and so on) or by directly setting the P-high time and P-low time is ventilator dependent.[5][2]

Inverse ratio ventilation can be significantly uncomfortable, and patients may need to be heavily sedated or paralyzed to achieve patient-ventilator synchrony. Some IRV modes will allow a patient-driven respiratory cycle to be superimposed on the IRV cycle to increase ventilation and improve the management of dysynchrony.[5]

Complications

Significant complications of IRV include lung trauma, accumulation of auto-PEEP, hypoventilation, and hemodynamic compromise.

Though IRV requires lower peak pressures to achieve the same MAP compared to conventional ventilation, the average pressure in the lungs is increased overall. Thus the patient remains at increased risk for barotrauma. Volume trauma may also occur if there is a high gradient between the P-high and P-low.

Auto-PEEP (also called breath stacking or air trapping) occurs when a patient cannot wholly exhale a breath before the next inspiratory phase begins, resulting in elevated airway pressures. IRV may potentiate this process due to the relatively short expiratory phase or P-low time. There are indications that this auto-PEEP effect may benefit oxygenation in IRV; however, the increased pressures may exacerbate lung trauma and hemodynamic stress. Patients with preexisting obstructive disease (COPD/asthma) who rely on prolonged expiratory times are at increased risk.

IRV increases oxygenation by increasing MAP, which has the additional consequence of increasing the average intrathoracic pressure. Similar to the hemodynamic effects seen with high PEEP, increased MAP can cause compromise by increasing intrathoracic pressure, thus impeding venous return to the heart and reducing preload. This can be pronounced in patients already preload deficient, such as hypovolemia or vasodilatory shock, and is especially problematic in patients in a significant preload-dependent state, such as those in obstructive shock. If the patient develops Auto-PEEP, the risk of hemodynamic compromise is increased.[4][5]

Clinical Significance

IRV has not been shown to improve objective clinical outcome measures such as mortality, length of mechanical ventilation, or length of ICU stay. Certain studies have shown that it increases PaO2,[1] though other studies have not supported this. Currently, more data is needed to evaluate the possible benefit of IRV.[2][4]

Enhancing Healthcare Team Outcomes

When patients are placed on inverse ratio ventilation, the nurse must be aware of the potential complications. The patient's hemodynamic status must be closely monitored. Barotrauma may occur, and the patient may require an immediate chest tube. There should be clear communication between the pulmonologist, respiratory therapist, intensivist, and nurse when any ventilatory changes are made.

Review Questions

References

1.
Kotani T, Katayama S, Fukuda S, Miyazaki Y, Sato Y. Pressure-controlled inverse ratio ventilation as a rescue therapy for severe acute respiratory distress syndrome. Springerplus. 2016;5(1):716. [PMC free article: PMC4908089] [PubMed: 27375985]
2.
Daoud EG, Farag HL, Chatburn RL. Airway pressure release ventilation: what do we know? Respir Care. 2012 Feb;57(2):282-92. [PubMed: 21762559]
3.
Rittayamai N, Katsios CM, Beloncle F, Friedrich JO, Mancebo J, Brochard L. Pressure-Controlled vs Volume-Controlled Ventilation in Acute Respiratory Failure: A Physiology-Based Narrative and Systematic Review. Chest. 2015 Aug;148(2):340-355. [PubMed: 25927671]
4.
Hess DR. Approaches to conventional mechanical ventilation of the patient with acute respiratory distress syndrome. Respir Care. 2011 Oct;56(10):1555-72. [PubMed: 22008397]
5.
Ferdowsali K, Modock J. Airway pressure release ventilation: improving oxygenation: indications, rationale, and adverse events associated with airway pressure release ventilation in patients with acute respiratory distress syndrome for advance practice nurses. Dimens Crit Care Nurs. 2013 Sep-Oct;32(5):222-8. [PubMed: 23933639]

Disclosure: Erik Sembroski declares no relevant financial relationships with ineligible companies.

Disclosure: Devang Sanghavi declares no relevant financial relationships with ineligible companies.

Disclosure: Abhishek Bhardwaj declares no relevant financial relationships with ineligible companies.

Copyright © 2024, StatPearls Publishing LLC.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

Bookshelf ID: NBK535395PMID: 30571016

Views

  • PubReader
  • Print View
  • Cite this Page

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Similar articles in PubMed

See reviews...See all...

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...