U.S. flag

An official website of the United States government

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Scallan J, Huxley VH, Korthuis RJ. Capillary Fluid Exchange: Regulation, Functions, and Pathology. San Rafael (CA): Morgan & Claypool Life Sciences; 2010.

Cover of Capillary Fluid Exchange

Capillary Fluid Exchange: Regulation, Functions, and Pathology.

Show details

References

  1. Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, Tybulewicz V, Lowell CA, Lepore JJ, Koretzky GA, and Kahn ML. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 299: 247–251, 2003. 10.1126/science.1079477. [PMC free article: PMC2982679] [PubMed: 12522250] [CrossRef]
  2. Adair TH, Moffatt DS, Paulsen AW, and Guyton AC. Quantitation of changes in lymph protein concentration during lymph node transit. Am J Physiol 243: H351: H359, 1982. [PubMed: 7114267]
  3. Adair TH and Guyton AC. Modification of lymph by lymph nodes. II. Effect of increased lymph node venous blood pressure. Am J Physiol 245: H616-H622, 1983. [PubMed: 6624930]
  4. Adair TH and Guyton AC. Modification of lymph by lymph nodes. III. Effect of increased lymph hydrostatic pressure. Am J Physiol 249: H777-H782, 1985. [PubMed: 4051014]
  5. Adair TH, Montani JP, and Guyton AC. Modification of lymph by sheep caudal mediastinal node: effect of intranodal endotoxin. J Appl Physiol 57: 1597–1601, 1984. [PubMed: 6394565]
  6. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, and Curry FE. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557: 889–907, 2004. 10.1113/jphysiol.2003.058255. [PMC free article: PMC1665140] [PubMed: 15073281] [CrossRef]
  7. Adamson RH, Huxley VH, Curry FE. Single capillary permeability to proteins having similar size but different charge. Am J Physiol, 254: H304-H312 , 1988. [PubMed: 3257846]
  8. Agabiti-Rosei E. From macro-to microcirculation: benefits in hypertension and diabetes. J Hypertens Suppl 26: S15-S19, 2008. [PubMed: 19363848]
  9. Albertine KH and O’Morchoe CC. Renal lymphatic ultrastructure and translymphatic transport. Microvasc Res 19: 338–351, 1980. 10.1016/0026-2862(80)90053-9. [PubMed: 7382853] [CrossRef]
  10. Albuquerque ML, Waters CM, Savla U, Schnaper HW, and Flozak AS. Shear stress enhances human endothelial cell wound closure in vitro. Am J Physiol Heart Circ Physiol 279: H293-H302, 2000. [PubMed: 10899069]
  11. Alitalo K, Tammela T, and Petrova TV. Lymphangiogenesis in development and human disease. Nature 438: 946–953, 2005. 10.1038/nature04480. [PubMed: 16355212] [CrossRef]
  12. Amerini S, Ziche M, Greiner ST, and Zawieja DC. Effects of substance P on mesenteric lymphatic contractility in the rat. Lymphat Res Biol 2: 2–10, 2004. 10.1089/1539685041690409. [PubMed: 15609922] [CrossRef]
  13. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, and Randolph GJ. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24: 203–215, 2006. 10.1016/j.immuni.2006.01.003. [PubMed: 16473832] [CrossRef]
  14. Aukland K and Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73: 1–78, 1993. [PubMed: 8419962]
  15. Baldwin AL and Winlove CP. Effects of perfusate composition on binding of ruthenium red and gold colloid to glycocalyx of rabbit aortic endothelium. J Histochem Cytochem 32: 259–266, 1984. [PubMed: 6198357]
  16. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, and McDonald DM. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204: 2349–2362, 2007. 10.1084/jem.20062596. [PMC free article: PMC2118470] [PubMed: 17846148] [CrossRef]
  17. Bates DO, Levick JR, and Mortimer PS. Change in macromolecular composition of interstitial fluid from swollen arms after breast cancer treatment, and its implications. Clin Sci (Lond) 85: 737–746, 1993. [PubMed: 8287667]
  18. Benoit JN, Barrowman JA, Harper SL, Kvietys PR and Granger DN. Role of humoral factors in the intestinal hyperemia associated with chronic portal hypertension. Am J Physiol 247: G486-G493, 1984. [PubMed: 6496739]
  19. Benoit JN and Granger DN. Splanchnic hemodynamics in chronic portal hypertension. Semin Liver Dis 6: 287–298, 1986. 10.1055/s-2008-1040611. [PubMed: 3544222] [CrossRef]
  20. Benoit JN, Zawieja DC, Goodman AH, and Granger HJ. Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress. Am J Physiol 257: H2059–2069, 1989. [PubMed: 2603989]
  21. Benoit JN, Zimmerman B, Premen AJ, Go VL, and Granger DN. Role of glucagon in splanchnic hyperemia of chronic portal hypertension. Am J Physiol 251: G674-G677, 1986. [PubMed: 3777172]
  22. Bienvenu K, Harris N, and Granger DN. Modulation of leukocyte migration in mesenteric interstitium. Am J Physiol 36: H1573-H1577, 1994. [PubMed: 7943404]
  23. Bingaman S, Huxley VH, and Rumbaut RE. Fluorescent dyes modify properties of proteins used in microvascular research. Microcirc 10: 221–232, 2003. 10.1080/mic.10.2.221.231. [PubMed: 12700589] [CrossRef]
  24. Björnberg J, Grände P-O, Maspers M, and Mellander S. Site of autoregulatory reactions in the vascular bed of cat skeletal muscle as determined with a new technique for segmental vascular resistance recordings. Acta Physiol Scand 133: 199–210, 1988. 10.1111/j.1748-1716.1988.tb08399.x. [PubMed: 3227915] [CrossRef]
  25. Blum M, Müller UA, Höche A, Hunger-Dathe W, Stein G, and Strobel J. Flare measurement and albuminuria in type I diabetics. Klin Monsatsbl Augenheilkd 212: 80–83, 1998. 10.1055/s-2008-1034837. [PubMed: 9577805] [CrossRef]
  26. Boardman KC, and Swartz MA. Interstitial Flow as a Guide for Lymphangiogenesis. Circ Res 92: 801–808, 2003. 10.1161/01.RES.0000065621.69843.49. [PubMed: 12623882] [CrossRef]
  27. Bohlen HG. Microvascular consequences of obesity and diabtes. In: Handbook of Physiology: Microcirculation, edited by Tuma RF, Duran WN, and Ley K, Chap 19, pp. 896–930, Elsevier, Amsterdam, 2008.
  28. Bohlen HG and Gore RW. Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc Res 14: 251–264, 1977. 10.1016/0026-2862(77)90024-3. [PubMed: 593162] [CrossRef]
  29. Brace RA, Taylor AE, and Guyton AC. Time course of lymph protein concentration in the dog. Microvasc Res 14: 243–249, 1977. 10.1016/0026-2862(77)90023-1. [PubMed: 593161] [CrossRef]
  30. Burns AR, Zhilan Z, Soubra SH, Chen J, Rumbaut RE. Transendothelial flow inhibits neutrophil transmigration through a nitric oxide-dependent mechanism: potential role for cleft shear stress. Am J Physiol 293: H2904-H2910, 2007. 10.1152/ajpheart.00871.2007. [PubMed: 17720767] [CrossRef]
  31. Calamita G. Aquaporins: highways for cells to recycle water with the outside world. Biol Cell 97: 351–353, 2005. 10.1042/BC20050017. [PubMed: 15901243] [CrossRef]
  32. Carey RM. Pathophysiology of primary hypertension. In: Handbook of Physiology: Microcirculation, edited by Tuma RF, Duran WN, and Ley K, Chap 18, pp. 794–895, Elsevier, Amsterdam, 2008.
  33. Casley-Smith JR. The fine structure and functioning of tissue channels and lymphatics. Lymphology 13: 177–183, 1980. [PubMed: 7010001]
  34. Casley-Smith JR. A theoretical support for the transport of macromolecules by osmotic flow across a leaky membrane against a concentration gradient. Microvasc Res 9: 43–48, 1975. 10.1016/0026-2862(75)90050-3. [PubMed: 1117857] [CrossRef]
  35. Cayrol R, Saikali P, and Vincent T. Effector functions of antiaquaporin-4 autoantibodies in neuromyelitis optica. Ann NY Acad Sci, 1173: 478–486, 2009. 10.1111/j.1749-6632.2009.04871.x. [PubMed: 19758189] [CrossRef]
  36. Celie JW, Beelen RH, and van den Born J. Heparan sulfate proteoglycans in extravasation: assisting leukocyte guidance. Front Biosci 14: 4932–4949, 2009. [PubMed: 19482596]
  37. Chary SR, and Jain RK. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci USA 86: 5385–5389, 1989. 10.1073/pnas.86.14.5385. [PMC free article: PMC297627] [PubMed: 2748592] [CrossRef]
  38. Cheung L, Han J, Beilhack A, Joshi S, Wilburn P, Dua A, An A, and Rockson SG. An experimental model for the study of lymphedema and its response to therapeutic lymphangiogenesis. BioDrugs 20: 363–370, 2006. 10.2165/00063030-200620060-00007. [PubMed: 17176124] [CrossRef]
  39. Chvapil M. Physiology of Connective Tissue, London, Butterworth, 1968.
  40. Clough G and Smaje LH. Simultaneous measurement of pressure in the interstitium and the terminal lymphatics of the cat mesentery. J Physiol 283: 457–468, 1978. [PMC free article: PMC1282789] [PubMed: 722586]
  41. Comper WD. Interstitium. Edema 9: 229, 1984.
  42. Comper WD and Laurent TC. Physiologic function of connective tissue polysaccharides. Physiol. Rev 58: 255–315, 1978. [PubMed: 414242]
  43. Constantinescu AA, Vink H, and Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23: 1541–1547, 2003. 10.1161/01.ATV.0000085630.24353.3D. [PubMed: 12855481] [CrossRef]
  44. Cueni LN and Detmar M. The lymphatic system in health and disease. Lymphat Res Biol 6: 109–122, 2008. 10.1089/lrb.2008.1008. [PMC free article: PMC3572233] [PubMed: 19093783] [CrossRef]
  45. Curry FE. Mechanics and thermodynamics of transcapillary exchange. In: Microcirculation, Michel CC and Renkin EM ed. Baltimore: Williams & Wilkins, 309–374, 1984.
  46. Curry FE. Atrial natriuretic peptide: an essential physiological regular of transvascular fluid, protein transport, and plasma volume. J Clin Invest 115: 1458–1461, 2005. 10.1172/JCI25417. [PMC free article: PMC1137012] [PubMed: 15931381] [CrossRef]
  47. Curry FE, Huxley VH, and Adamson RH. Permeability of single capillaries to intermediate-sized colored solutes. Am J Physiol, 245: H495-H505, 1983. [PubMed: 6604463]
  48. Dadras SS, Lange-Asschenfeldt B, Velasco P, Nguyen L, Vora A, Muzikansky A, Jahnke K, Hauschild A, Hirakawa S, Mihm MC, and Detmar M. Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18: 1232–1242, 2005. 10.1038/modpathol.3800410. [PubMed: 15803182] [CrossRef]
  49. Dafni H, Israely T, Bhujwalla ZM, Benjamin LE, and Neeman M. Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res 62: 6731–6739, 2002. [PubMed: 12438274]
  50. Davis GE. Matricryptic sites control tissue injury responses in the cardiovascular system: Relationships to pattern recognition receptor regulated events. J Mol Cel Cardiol in press, 2009. 10.1016/j.yjmcc.2009.09.002. [PMC free article: PMC2824020] [PubMed: 19751741] [CrossRef]
  51. Davis G and Senger DR. Endothelial Extracellular Matrix: Biosynthesis, Remodeling, and Functions During Vascular Morphogenesis and Neovessel Stabilization. Circ Res 97: 1093–1107, 2005. 10.1161/01.RES.0000191547.64391.e3. [PubMed: 16306453] [CrossRef]
  52. Davis GE and Senger DR. Extracellular matrix mediates a molecular balance between vascular morphogenesis and regression. Curr Opin Hematol 15: 197–203, 2008. 10.1097/MOH.0b013e3282fcc321. [PubMed: 18391785] [CrossRef]
  53. Davis MJ. Control of bat wing capillary pressure and blood flow during reduce perfusion pressure. Am J Physiol 255, H1114-H1129, 1988. [PubMed: 3189573]
  54. Davis MJ. Microvascular control of capillary pressure during increases in local arterial and venous pressure. Am J Physiol 254: H772-H784, 1988. [PubMed: 3354702]
  55. Davis MJ, Hill MA, and Kuo L. Local regulation of microvascular perfusion. In: Handbook of Physiology, edited by Tuma RF, Duran WN, and Ley K, Chap 6, pp 161–284, Elsevier, Amsterdam, 2008.
  56. Davis MJ, Davis AM, Ku CW, and Gashev AA. Myogenic constriction and dilation of isolated lymphatic vessels. Am J Physiol 296: H293–302, 2009. 10.1152/ajpheart.01040.2008. [PMC free article: PMC2643897] [PubMed: 19028793] [CrossRef]
  57. Davis MJ, Davis AM, Lane MM, Ku CW, and Gashev AA. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch. J Physiol 587: 165–182, 2009. 10.1113/jphysiol.2008.162438. [PMC free article: PMC2670031] [PubMed: 19001046] [CrossRef]
  58. Davis MJ, Lane MM, Davis AM, Durtschi D, Zawieja DC, Muthuchamy M, and Gashev AA. Modulation of lymphatic muscle contractility by the neuropeptide substance P. Am J Physiol 295: H587–597, 2008. 10.1152/ajpheart.01029.2007. [PMC free article: PMC2519194] [PubMed: 18539752] [CrossRef]
  59. Davis PF and Tripathi SC. Mechanical stress mechanisms and the cell: an endothelial paradigm. Circ Res 72: 239–245, 1993. [PubMed: 8418981]
  60. Devuyst O, Ni J, and Verbavatz JM. Aquaporin-1 in the peritoneal membrane: implications for peritoneal dialysis and endothelial cell function. Biol Cell 97: 667–673, 2005. 10.1042/BC20040132. [PubMed: 16104840] [CrossRef]
  61. Dixelius J, Makinen T, Wirzenius M, Karkkainen MJ, Wernstedt C, Alitalo K, and Claesson-Welsh L. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem 278: 40973–40979, 2003. 10.1074/jbc.M304499200. [PubMed: 12881528] [CrossRef]
  62. Dongaonkar RM, Laine GA, Stewart RH, and Quick CM. Balance point characterization of interstitial fluid volume regulation. Am J Physiol 297: R6-R16, 2009. 10.1152/ajpregu.00097.2009. [PMC free article: PMC2711695] [PubMed: 19420292] [CrossRef]
  63. Dongaonkar RM, Stewart RH, Laine GA, Davis MJ, Zawieja DC, and Quick CM. Venomotion modulates lymphatic pumping in the bat wing. Am J Physiol 296: H2015-H2021, 2009. 10.1152/ajpheart.00418.2008. [PMC free article: PMC4347742] [PubMed: 19329767] [CrossRef]
  64. Dongaonkar RM, Quick CM, Stewart RH, Drake RE, Cox CS Jr, and Laine GA. Edemagenic gain and interstitial fluid volume regulation. Am J Physiol 294: R651-R659, 2008. 10.1152/ajpregu.00354.2007. [PubMed: 18056984] [CrossRef]
  65. Drinker CK. The Functional Significance of the Lymphatic System: Harvey Lecture, December 16, 1937. Bull N Y Acad Med 14: 231–251, 1938. [PMC free article: PMC1911225] [PubMed: 19312058]
  66. Dull RO, Mecham I, and McJames S. Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide-reactive oxygen species. Am J Physiol 292: L1452-L1458, 2007. 10.1152/ajplung.00376.2006. [PubMed: 17351062] [CrossRef]
  67. Dvorak AM and Feng D. The Vesiculo-Vacuolar Organelle (VVO): A New Endothelial Cell Permeability Organelle. J Histochem Cytochem 49: 419–32, 2001. [PubMed: 11259444]
  68. Echtermeyer, F, Baciu PC, Caoncella S, and Goetinck PF. Syndecan-4 core protein is sufficient for the assembly of focal adhesions and actin stress fibers. J Cell Sci 112: 3433–3441, 1999. [PubMed: 10504292]
  69. Evans RC and Quinn TM. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage. Biophys J 91: 1541–1547, 2006. 10.1529/biophysj.105.080366. [PMC free article: PMC1518627] [PubMed: 16679370] [CrossRef]
  70. Feihl F, Liaudet L, and Waeber B. The macrocirculation and microcirculation of hypertension. Curr Hypertens Rep 11: 182–189, 2009. 10.1007/s11906-009-0033-6. [PubMed: 19442327] [CrossRef]
  71. Fleury ME, Boardman KC, and Swartz MA. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J 91: 113–121, 2006. 10.1529/biophysj.105.080192. [PMC free article: PMC1479084] [PubMed: 16603487] [CrossRef]
  72. Friedl P and Weigelin B. Interstitial leukocyte migration and immune function. Nature Immunology 9: 960–969, 2008. 10.1038/ni.f.212. [PubMed: 18711433] [CrossRef]
  73. Frisbee JC. Reduced nitric oxide bioavailability contributes to skeletal muscle microvessel rarefaction in the metabolic syndrome. Am J Physiol 289: R305-R306, 2005. 10.1152/ajpregu.00114.2005. [PubMed: 15802560] [CrossRef]
  74. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, and Yancopoulos GD. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3: 411–423, 2002. 10.1016/S1534-5807(02)00217-4. [PubMed: 12361603] [CrossRef]
  75. Gannon, BJ and Carati CJ. Endothelial distribution of the membrane water channel molecule aquaporin-1: implications for tissue and lymph fluid physiology? Lymphat Res Biol. 1: 55–66, 2003. 10.1089/15396850360495709. [PubMed: 15624322] [CrossRef]
  76. Gao L and Lipowsky HH. Measurement of solute transport in the endothelial glycocalyx using indicator dilution techniques. Ann Biomed Eng 37: 1781–1795, 2009. 10.1007/s10439-009-9743-9. [PubMed: 19551512] [CrossRef]
  77. Garcia AM, Lark MW, Trippel SB, and Grodzinsky AJ. Transport of tissue inhibitor of metalloproteinases-1 through cartilage: contributions of fluid flow and electrical migration. J Orthop Res 16: 734–742, 1998. 10.1002/jor.1100160616. [PubMed: 9877399] [CrossRef]
  78. Gashev AA, Orlov RS, and Zawieja DC. [Contractions of the lymphangion under low filling conditions and the absence of stretching stimuli. The possibility of the sucking effect]. Ross Fiziol Zh Im I M Sechenova 87: 97–109, 2001. [PubMed: 11227869]
  79. Gashev AA, Davis MJ, and Zawieja DC. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J Physiol 540: 1023–1037, 2002. 10.1113/jphysiol.2001.016642. [PMC free article: PMC2290276] [PubMed: 11986387] [CrossRef]
  80. Gatinel D, Lebrun T, Le Toumelin P, and Chaine G. Aqueous flare induced by heparin-surface-modified poly(methyl methacrylate) and acrylic lenses implanted through the same-size incision in patients with diabetes. J Cataract Refact Surg 27: 855–860, 2001. 10.1016/S0886-3350(00)00814-2. [PubMed: 11408131] [CrossRef]
  81. Gatta A, Bolognesi M, and Merkel C. Vasoactive factors and hemodynamic mechanisms in the pathophysiology of portal hypertension in cirrhosis. Mol Aspects Med 29: 119–129, 2008. 10.1016/j.mam.2007.09.006. [PubMed: 18036654] [CrossRef]
  82. Gibson H and Gaar KA. Dynamics of the implanted capsule. Fed Proc 29: 319, 1970.
  83. Glinskii OV, Huxley VH, Turk JR, Deutscher SL, Quinn TP, Pienta KJ, and Glinsky VV. Continuous real time ex vivo epifluorescent video microscopy for the study of metastatic cancer cell interactions with microvascular endothelium. Clin Exp Metastasis 20: 451–458, 2003. 10.1023/A:1025449031136. [PubMed: 14524535] [CrossRef]
  84. Gnepp DR. Lymphatics. New York: Raven Press, 1984.
  85. Gore RW. Pressures in cat mesenteric arterioles and capillaries during changes in systemic arterial blood pressure. Circ Res 34: 581–591, 1974. [PubMed: 4826932]
  86. Gore RW and Bohlen HG. Pressure regulation in the microcirculation. FASEB J 34: 2031–2037, 1975. [PubMed: 1175798]
  87. Granger ND, Kvietys PR, Perry MA, and Barrowman JA. The Microcirculation and Intestinal Transport. Physiology of the Gastrointestinal Tract, Second Edition 62: 1671–1697, 1987.
  88. Granger HJ, Laine GA, Barnes GE, and Lewis RE. Dynamics and Control of Transmicrovascular Fluid Exchange. Edema 8: 189–224, 1984.
  89. Griffith LG and Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7: 211–224, 2006. 10.1038/nrm1858. [PubMed: 16496023] [CrossRef]
  90. Guyton AC. Interstitial Fluid Pressure. II. Pressure-Volume Curves of Interstitial Space. Circ Res 16: 452–460, 1965. [PubMed: 14289154]
  91. Guyton AC, Granger HJ, and Taylor AE. Interstitial fluid pressure. Physiol Rev 51: 527–563, 1971. [PubMed: 4950077]
  92. Haddy FJ and Gilbert RP. The relation of a venous-arteriolar reflex to transmural pressure and resistance in small and large systemic vessels. Circ Res 4: 25–32, 1956. [PubMed: 13277104]
  93. Haldenby, KA, Chappell DC, Winlove CP, Parker KH, and Firth JA. Focal and regional variations in the composition of the glycocalyx of large vessel endothelium. J Vasc Res 31: 2–9, 1994. [PubMed: 7506062]
  94. Hamm S, Dehouch B, Kraus J, Wolburg-Buchholz K, Wolburg H, Risau W, Cecchelli R, Engelhardt B, and Dehouck MP. Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res 315: 157–166, 2004. 10.1007/s00441-003-0825-y. [PubMed: 14615934] [CrossRef]
  95. Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW, and Oliver G. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 37: 1072–1081, 2005. 10.1038/ng1642. [PubMed: 16170315] [CrossRef]
  96. Helm CL, Fleury ME, Zisch AH, Boschetti F, and Swartz MA. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 102: 15779–15784, 2005. 10.1073/pnas.0503681102. [PMC free article: PMC1276047] [PubMed: 16249343] [CrossRef]
  97. Helm CL, Zisch A, and Swartz MA. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioend 96: 167–176, 2007. 10.1002/bit.21185. [PubMed: 17133613] [CrossRef]
  98. Hillman NJ, Whittles CE, Pocock TM, Williams B, and Bates DO. Differential effects of vascular endothelial growth factor-C and placental growth factor-1 on the hydraulic conductivity of frog mesenteric capillaries. J Vasc Res 38: 176–186, 2001. 10.1159/000051044. [PubMed: 11316953] [CrossRef]
  99. Hogan RD. Lymph formation in the bat wing. Kensington: Univ. of New South Wales, 1981.
  100. Hogan RD, Unthank JL. The initial lymphatics as sensors of interstitial fluid volume. Microvasc Res 31: 317–324, 1986. 10.1016/0026-2862(86)90020-8. [PubMed: 3713549] [CrossRef]
  101. Hollywood MA, Cotton KD, Thornbury KD, and McHale NG. Tetrodotoxin-sensitive sodium current in sheep lymphatic smooth muscle. J Physiol 503: 13–20, 1997. 10.1111/j.1469-7793.1997.013bi.x. [PMC free article: PMC1159882] [PubMed: 9288670] [CrossRef]
  102. Hu X and Weinbaum S. A new view of Starling’s hypothesis at the ultra-structural level. Microvasc Res 58: 281–304, 1999. 10.1006/mvre.1999.2177. [PubMed: 10527770] [CrossRef]
  103. Huntington GS and McClure CFW. The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Am J Anat 10: 177–312, 1910.
  104. Huxley VH and Curry FE. Albumin modulation of capillary permeability: Test of an absorption mechanism. Am J Physiol, 248: H264-H273, 1985. [PubMed: 3871592]
  105. Huxley VH and Meyer Jr DJ. Capillary permeability: atrial peptide action is independent of “protein effect”. Am J Physiol 259: H1351-H1356, 1990. [PubMed: 2146887]
  106. Huxley VH and Williams DA. Basal and adenosine-mediated protein flux from isolated coronary arterioles. Am J Physiol 271: H1099-H1108, 1996. [PubMed: 8853347]
  107. Huxley VH and William DA. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am J Physiol 278: H1177-H1185, 2000. [PubMed: 10749712]
  108. Huxley VH, Curry FE, and Adamson RH. Quantitative fluorescence microscopy on single capillaries: a-lactalbumin transport. Am J Physiol, 252: H188-H197, 1987. [PubMed: 3492924]
  109. Huxley VH, Tucker VL, Verbug KM, and Freeman RH. Increased capillary hydraulic conductivity induced by atrial natriuretic peptide. Circ. Res. 60: 304–307, 1987. [PubMed: 2952366]
  110. Huxley VH, McKay MK, Meyer Jr DJ, Williams DA, and Zhang R-S. Vasoactive hormones and autocrine activation of capillary exchange barrier function. Blood Cells 19: 309–324, 1993. [PubMed: 8312566]
  111. Ichimura K, Stan RV, Kurihara H, and Sakai T. Glomerular endothelial cells form diaphragms during development and pathologic conditions. J Am Soc Nephrol 19: 1463–1471, 2008. 10.1681/ASN.2007101138. [PMC free article: PMC2488267] [PubMed: 18480313] [CrossRef]
  112. Ikomi F, Kawai Y, Nakayama J, Ogiwara N, Sasaki K, Mizuno R, and Ohhashi T. Critical roles of VEGF-C-VEGF receptor 3 in reconnection of the collecting lymph vessels in mice. Microcirculation 15: 591–603, 2008. 10.1080/10739680701815538. [PubMed: 18951277] [CrossRef]
  113. Iruela-Arispe ML and Davis GE. Cellular and Molecular Mechanisms of Vascular Lumen Formation. Developmental Cell 16: 222–231, 2009. 10.1016/j.devcel.2009.01.013. [PMC free article: PMC8606173] [PubMed: 19217424] [CrossRef]
  114. Issa A, Le TX, Shoushtari AN, Shields JD, and Swartz MA. Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69: 349–357, 2009. 10.1158/0008-5472.CAN-08-1875. [PubMed: 19118020] [CrossRef]
  115. Iwakiri Y and Groszmann RJ. Vascular endothelial dysfunctioin in cirrhosis. J Hepatol 46: 927–934, 2007. 10.1016/j.jhep.2007.02.006. [PubMed: 17391799] [CrossRef]
  116. Jackson DG. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. APMIS 112: 526–538, 2004. 10.1111/j.1600-0463.2004.apm11207-0811.x. [PubMed: 15563314] [CrossRef]
  117. Jacobsson S and Kjellmer I. Flow and Protein Content of Lymph in Resting and Exercising Skeletal Muscle. Acta Physiol Scand 60: 278–285, 1964. 10.1111/j.1748-1716.1964.tb02889.x. [PubMed: 14131841] [CrossRef]
  118. Järhult J and Mellander S. Autoregulation of capillary hydrostatic pressure in skeletal muscle during regional arterial hypo- and hypertension. Acta Physiol Scand 91: 32–41, 1974. 10.1111/j.1748-1716.1974.tb05654.x. [PubMed: 4835709] [CrossRef]
  119. Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, and Alitalo K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276: 1423–1425, 1997. 10.1126/science.276.5317.1423. [PubMed: 9162011] [CrossRef]
  120. Jerome SN, Akimitsu T, and Korthuis RJ. Leukocyte adhesion, edema, and development of postischemic capillary no-reflow. Am J Physiol 267: H1329–1336, 1994. [PubMed: 7943378]
  121. Ji RC. Lymphatic endothelial cells, lymphedematous lymphangiogenesis, and molecular control of edema formation. Lymphat Res Biol 6: 123–137, 2008. 10.1089/lrb.2008.1005. [PubMed: 19093784] [CrossRef]
  122. Joh T, Granger DN, and Benoit JN. Endogenous vasoconstrictor tone in intestine of normal and portal hypertensive rats. Am J Physiol 264: H1135-H1143, 1993. [PubMed: 8430843]
  123. Johansson B and Mellander S. Static and dynamic components in the vascular myogenic response to passive changes in length as revealed by electrical and mechanical recordings from the rat portal vein. Circ Res 36: 76–83, 1975. [PubMed: 1116232]
  124. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, and Oliver G. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 22: 3282–3291, 2008. 10.1101/gad.1727208. [PMC free article: PMC2600759] [PubMed: 19056883] [CrossRef]
  125. Johnson PC. Effect of venous pressure on mean capillary pressure and vascular resistance in the intestine. Circ Res 16: 294–300, 1965. [PubMed: 14268450]
  126. Jurgen W, VanTeeffelen GE, Constantinescu AA, Brands J, Spaan JAE, and Vink H. Bradykinin- and sodium nitroprusside-induced increases in capillary tube haematocrit in mouse cremaster muscle are associated with impaired glycocalyx barrier properties. J Physiol, 586: 3207–3218, 2008. 10.1113/jphysiol.2008.152975. [PMC free article: PMC2538786] [PubMed: 18450777] [CrossRef]
  127. Jussila L and Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev 82: 673–700, 2002. [PubMed: 12087132]
  128. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O’Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, and McDonald DM. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol. 290: H560–576, 2006. 10.1152/ajpheart.00133.2005. [PubMed: 16172168] [CrossRef]
  129. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, and Alitalo K. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5: 74–80, 2004. 10.1038/ni1013. [PubMed: 14634646] [CrossRef]
  130. Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI, Yla-Herttuala S, Finegold DN, Ferrell RE, and Alitalo K. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 98: 12677–12682, 2001. 10.1073/pnas.221449198. [PMC free article: PMC60113] [PubMed: 11592985] [CrossRef]
  131. Kerin A, Patwari P, Kuettner K, Cole A, and Grodzinsky A. Molecular basis of osteoarthritis: biomechanical aspects. Cell Mol Life Sci 59: 27–35, 2002. 10.1007/s00018-002-8402-1. [PubMed: 11846029] [CrossRef]
  132. Khandoga AG, Khandoga A, Reichel CA, Bhiari P, Rehberg M, and Krombach F. In Vivo Imaging and Quantitative Analysis of Leukocyte Directional Migration and Polarization in Inflamed Tissue. PLoS ONE 4: e4693, 2009. 10.1371/journal.pone.0004693. [PMC free article: PMC2649502] [PubMed: 19259262] [CrossRef]
  133. Kikuchi K, Tancharoen S, Matsuda F, Biswas KK, Ito T, Morimoto Y, Oyama Y, Takenouchi K, Miura N, Arimura N, Nawa Y, Meng X, Shrestha B, Arimura S, Iwata M, Mera K, Sameshima H, Ohno Y, Maenosono R, Tajima Y, Uchikado H, Kuramoto T, Nakayama K, Shigemori M, Yoshida Y, Hashiguchi T, Maruyama I, and Kawahara KI. Edaravone attenuates cerebral ischemic injury by suppressing aquaporin-4. Biochim Biophys Res Commun Sept. 6 [Epub ahead of print], 2009. 10.1016/j.bbrc.2009.09.015. [PubMed: 19737535] [CrossRef]
  134. Kim MH, Harris NR, and Tarbell JM. Regulation of capillary hydraulic conductivity in response to acute change in shear. Am J Physiol 289: H2126-H2136, 2005. 10.1152/ajpheart.01270.2004. [PubMed: 15994851] [CrossRef]
  135. Kim MH, Harris NR, and Tarbell JM. Regulation of hydraulic conductivity in response to sustained changes in pressure. Am J Physiol 289: H2551-H2558, 2005. 10.1152/ajpheart.00602.2005. [PubMed: 16113077] [CrossRef]
  136. Kim M, Harris NR, Korzich DH, and Tarbell JM. Control of the arteriolar myogenic response by transvascular fluid filtration. Microvasc Res 68: 30–37, 2004. 10.1016/j.mvr.2004.03.002. [PubMed: 15219418] [CrossRef]
  137. Kimura M, Dietrich HH, Huxley VH, Reichner DR, and Dacey RG Jr. Measurement of hydraulic conductivity in isolated arterioles of rat brain cortex. Am J Physiol 264: H1788-H1797, 1993. [PubMed: 8322907]
  138. Kirkpatrick CT and McHale NG. Electrical and mechanical activity of isolated lymphatic vessels [proceedings]. J Physiol 272: 33P-34P, 1977. [PubMed: 592136]
  139. Komarova YA, Mehta D, and Malik AB. Dual regulation of endothelial junctional permeability. Sci STKE, re8, 2007. 10.1126/stke.4122007re8. [PubMed: 18000237] [CrossRef]
  140. Korpos E, WC, Song J, Hallmann R, and Sorokin L. Role of the extracellular matrix in lymphocyte migration. Cell Tissue Res, 330, 47–572010. [PubMed: 19697064]
  141. Korthuis RJ and Taylor AE. Interstitium and Lymphatic Techniques. Microcirculatory Technology 21: 317–342, 1986.
  142. Korthuis RJ, Granger DN, and Taylor AE. A new method for estimating skeletal muscle capillary pressure. Am J Physiol 246: H880-H885, 1984. [PubMed: 6742154]
  143. Korthuis RJ, Pitts VH, and Granger DN. Intestinal capillary filtration in experimental diabetes mellitus. Am J Physiol 253: G20-G25, 1987. [PubMed: 2955703]
  144. Korthuis RJ, Granger DN, Townsley MI, and Taylor AE. Autoregulation of capillary pressure and filtration rate in isolate rat hindquarters. Am J Physiol 248: H835-H842, 1985. [PubMed: 4003564]
  145. Korthuis RJ, Kerr CR, Townsley MI, and Taylor AE. Microvascular pressure, surface area, and permeability in isolated hindquarters of SHR. Am J Physiol 249: H498-H504, 1985. [PubMed: 4037100]
  146. Korthuis RJ, Benoit JN, Kvietys PR, Townsley MI, Taylor AE, and Granger DN. Humoral factors may mediate increased rat hindquarter blood flow in portal hypertension. Am J Physiol 249: H827-H833, 1985. [PubMed: 4051018]
  147. Korthuis RJ, Kinden DA, Brimer GE, Slattery KA, Stogsdill P, and Granger DN. Intestinal capillary filtration in acute and chronic portal hypertension. Am J Physiol 254: G339-G345, 1988. [PubMed: 3348400]
  148. Krogh A, Landis EM, Turner AH. The movement of fluid through the human capillary wall in relation to venous pressure and to the colloid osmotic pressure of the blood. J Clin Invest 11: 63–95, 1932. 10.1172/JCI100408. [PMC free article: PMC435798] [PubMed: 16694035] [CrossRef]
  149. Kwaku MP and Burman KD. Myxedema Coma. J Intensive Care Med 22: 224–231, 2007. 10.1177/0885066607301361. [PubMed: 17712058] [CrossRef]
  150. Lämmermann T, Renkawitz J, Wu X, Hirsch K, Brakebusch C, Sixt M. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113: 5703–5710, 2009. 10.1182/blood-2008-11-191882. [PubMed: 19190242] [CrossRef]
  151. Landis EM, Jonas L, Angevine M, and Erb W. The passage of fluid and protein through the human capillary wall during venous congestion. J Clin Invest 11: 717–734, 1932. 10.1172/JCI100445. [PMC free article: PMC435847] [PubMed: 16694072] [CrossRef]
  152. Landis EM and Gibbon JH. The effects of temperature and of tissue pressure on the movement of fluid through the human capillary wall. J Clin Invest 12: 105–138, 1933. 10.1172/JCI100482. [PMC free article: PMC435894] [PubMed: 16694107] [CrossRef]
  153. Leak LV. Electron microscopic observations on lymphatic capillaries and the structural components of the connective tissue-lymph interface. Microvasc Res 2: 361–391, 1970. 10.1016/0026-2862(70)90031-2. [PubMed: 5523935] [CrossRef]
  154. Leak LV. Studies on the permeability of lymphatic capillaries. J Cell Biol 50: 300–323, 1971. 10.1083/jcb.50.2.300. [PMC free article: PMC2108278] [PubMed: 4329612] [CrossRef]
  155. Leak LV. The transport of exogenous peroxidase across the blood-tissue-lymph interface. J Ultrastruct Res 39: 24–42, 1972. 10.1016/S0022-5320(72)80004-2. [PubMed: 4111668] [CrossRef]
  156. Leak LV and Burke JF. Ultrastructural studies on the lymphatic anchoring filaments. J Cell Biol 36: 129–149, 1968. 10.1083/jcb.36.1.129. [PMC free article: PMC2107348] [PubMed: 19806699] [CrossRef]
  157. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, and Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60: 4324–4327, 2000. [PubMed: 10969769]
  158. Levick, JR. Revision of the Starling principle: new views of tissue fluid balance. J Physiol 557: 704, 2004. [PMC free article: PMC1665155] [PubMed: 15131237]
  159. Levick JR. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol 76: 825–857, 1991. [PubMed: 1768414]
  160. Li S, Huang NF, and Hsu S. Mechanotransduction in endothelial cell migration. J Cell Biochem 96: 1110–1126, 2005. 10.1002/jcb.20614. [PubMed: 16167340] [CrossRef]
  161. Lopez-Quintero SV, Amaya R, Pahakis M, and Tarbell JM. The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity. Am J Physiol 296: H1451-H1456, 2009. 10.1152/ajpheart.00894.2008. [PMC free article: PMC2685345] [PubMed: 19286951] [CrossRef]
  162. Luft JH. Fine structure of capillary and endocapillary layer as revealed by ruthenium red. Microcirc Symp Fed Proc 25: 1773–2783, 1966. [PubMed: 5927412]
  163. Lum H, KA. and Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol 280: C719-C741, 2001. [PubMed: 11245588]
  164. Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, Klein R, and Wilkinson GA. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 19: 397–410, 2005. 10.1101/gad.330105. [PMC free article: PMC546518] [PubMed: 15687262] [CrossRef]
  165. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, and Alitalo K. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. Embo J 20: 4762–4773, 2001. 10.1093/emboj/20.17.4762. [PMC free article: PMC125596] [PubMed: 11532940] [CrossRef]
  166. Mathews, MB. Connective Tissue, Macromolecular Structure and Evolutions, Mol Biol Biochm Biophys 19: 1–318, 1975. [PubMed: 134255]
  167. Mayerson HS. The physiologic importance of lymph. Baltimore, MD: Williams & Wilkins, 1963.
  168. McCloskey KD, Hollywood MA, Thornbury KD, Ward SM, and McHale NG. Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res 310: 77–84, 2002. 10.1007/s00441-002-0623-y. [PubMed: 12242486] [CrossRef]
  169. McHale NG. Nature of lymphatic innervation. London: Portland Press, 1995.
  170. Mehlhorn U, Geissler HJ, Laine GA, and Allen SJ. Myocardial fluid exchange. Eur J Cardiothorac Surg 20: 1220–1230, 2001. 10.1016/S1010-7940(01)01031-4. [PubMed: 11717032] [CrossRef]
  171. Mehta D and Malik AB. Signaling Mechanisms Regulating Endothelial Permeability. Physiol Rev, 86: 279–367, 2006. 10.1152/physrev.00012.2005. [PubMed: 16371600] [CrossRef]
  172. Mellander S, and Johansson B. Control of resistance, exchange and capacitance functions in the peripheral circulation. Pharmacol Rev 20: 117–196, 1968. [PubMed: 4878307]
  173. Mellander S, Maspers M, Björnberg J, and Andersson LO. Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone. Acta Physiol Scand 129: 337–351, 1987. 10.1111/j.1748-1716.1987.tb08077.x. [PubMed: 2883809] [CrossRef]
  174. Michel CC. Transport of macromolecules through microvascular wall. Cardiovasc Res, 32: 644–653, 1996. 10.1016/S0008-6363(96)00064-8. [PubMed: 8915183] [CrossRef]
  175. Michel CC. Starling: the formulation of his hypothesis of microvascular fluid exchange and its significance after 100 years. Exp Physiol 82: 1–30, 1997. [PubMed: 9023503]
  176. Michel CC and Curry FE. Microvascular Permeability Physiol Rev 79: 703 - 761; 2004. [PubMed: 10390517]
  177. Michel CC. Fluid exchange in the microcirculation, J Physiol 557: 701–702, 1999. 10.1113/jphysiol.2004.063511. [PMC free article: PMC1665141] [PubMed: 15020690] [CrossRef]
  178. Michel CC and Phillips ME. Steady-state fluid filtration at different capillary pressures in perfused frog mesenteric capillaries. J Physiol 388: 421–435, 1987. [PMC free article: PMC1192556] [PubMed: 3498833]
  179. Mulivor AW and Lipowsky HH. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol. 286: H1672-H1680, 2004. 10.1152/ajpheart.00832.2003. [PubMed: 14704229] [CrossRef]
  180. Mumprecht V and Detmar M. Lymphangiogenesis and cancer metastasis. J Cell Mol Med 13: 1405–1416, 2009. 10.1111/j.1582-4934.2009.00834.x. [PMC free article: PMC3572232] [PubMed: 19583813] [CrossRef]
  181. Muthuchamy M, Gashev A, Boswell N, Dawson N, and Zawieja D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J 17: 920–922, 2003. [PubMed: 12670880]
  182. Negrini D and Fabbro MD. Subatmospheric pressure in the rabbit pleural lymphatic network. J Physiol 520: 761–769, 1999. 10.1111/j.1469-7793.1999.00761.x. [PMC free article: PMC2269608] [PubMed: 10545142] [CrossRef]
  183. Ng CP and Swartz MA. Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am J Physiol 288: H3016, 2005. 10.1152/ajpheart.01008.2002. [PubMed: 12531726] [CrossRef]
  184. Ng CP and Swartz MA. Mechanisms of interstitial flow-induced remodeling of fibroblast-collagen cultures. Ann Biomed Eng 34: 446–454, 2006. 10.1007/s10439-005-9067-3. [PubMed: 16482410] [CrossRef]
  185. Ng CP, Helm CL, and Swartz MA. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Macrovasc Res 68: 258–264, 2004. 10.1016/j.mvr.2004.08.002. [PubMed: 15501245] [CrossRef]
  186. Ng CP, Hinz B, and Swartz MA. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118: 4731–4739, 2005. 10.1242/jcs.02605. [PubMed: 16188933] [CrossRef]
  187. Northover Am and Northover BJ. Involvement of protein kinase C in the control of microvascular permeability to colloidal carbon. Inflammation Res 39: 132–136, 1993. [PubMed: 8304240]
  188. O’Morchoe CC, Jones WR, 3rd, Jarosz HM, O’Morchoe PJ, and Fox LM. Temperature dependence of protein transport across lymphatic endothelium in vitro. J Cell Biol 98: 629–640, 1984. 10.1083/jcb.98.2.629. [PMC free article: PMC2113077] [PubMed: 6693499] [CrossRef]
  189. Ohaski KL, Tung DK, Wilson J, Zweifach BW, and Schmid-Schönbein GW. Transvascular and interstitial migration of neutrophils in rat mesentery. Microcirculation 3: 199–210, 1996. 10.3109/10739689609148289. [PubMed: 8839442] [CrossRef]
  190. Ohhashi T, Azuma T, and Sakaguchi M. Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am J Physiol 239: H88–95, 1980. [PubMed: 7396023]
  191. Ohtani O and Ohtani Y. Organization and developmental aspects of lymphatic vessels. Arch Histol Cytol 71: 1–22, 2008. 10.1679/aohc.71.1. [PubMed: 18622090] [CrossRef]
  192. Oki S, Desaki J, Taguchi Y, Matsuda Y, Shibata T, and Okumur H. Capillary changes with fenestrations in the contralateral soleus muscle of the rat following unilateral limb immobilization. J Orthopaed Sci 4: 28–31, 1999. 10.1007/s007760050070. [PubMed: 9914426] [CrossRef]
  193. Olszewski WL. The lymphatic system in body homeostasis: physiological conditions. Lymphat Res Biol 1: 11–21, 2003. 10.1089/15396850360495655. [PubMed: 15624317] [CrossRef]
  194. Ono N, Mizuno R, and Ohhashi T. Effective permeability of hydrophilic substances through walls of lymph vessels: roles of endothelial barrier. Am J Physiol 289: H1676–1682, 2005. 10.1152/ajpheart.01084.2004. [PubMed: 15964919] [CrossRef]
  195. Pang Z and Tarbell JM. In vitro study of Starling’s hypothesis in a cultured monolayer of bovine aortic endothelial cells. J Vasc Res 40: 351–358, 2003. 10.1159/000072699. [PubMed: 12891004] [CrossRef]
  196. Pang Z, Antonetti DA, and Tarbell JM. Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation. Ann Biomed Eng 33: 1536–1545, 2005. 10.1007/s10439-005-7786-0. [PubMed: 16341921] [CrossRef]
  197. Pappenheimer JR, and Soto-Rivera A. Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimb of cats and dogs. Am J Physiol 152: 471–491, 1948. [PubMed: 18863145]
  198. Pardo A and Selman M. Idiopathic pulmonary fibrosis: new insights in its pathogenesis. Int J Biochem Cell Biol 34: 1534–1538, 2002. 10.1016/S1357-2725(02)00091-2. [PubMed: 12379275] [CrossRef]
  199. Parker RE, Roselli RJ, Harris TR, Brigham KL. Effects of graded increases in pulmonary vascular pressures on long fluid balance in unanesthetized sheep. Circ Res 49: 1164–1172, 1981. [PubMed: 7296782]
  200. Parsons RJ and McMaster PD. The effect on the pulse upon the formation and flow of lymph. J Exp Med 68: 353–376, 1938. 10.1084/jem.68.3.353. [PMC free article: PMC2133678] [PubMed: 19870793] [CrossRef]
  201. Patterson RM, Ballard CL, Wasserman K, and Mayerson HS. Lymphatic permeability to albumin. Am J Physiol 194: 120–124, 1958. [PubMed: 13559438]
  202. Pedersen JA and Swartz MA. Mechanobiology in the third dimension. Ann Biomed Eng 33: 1469–1490, 2005. 10.1007/s10439-005-8159-4. [PubMed: 16341917] [CrossRef]
  203. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7: 462–468, 2001. [PubMed: 11297234]
  204. Petri B, Phillipson M, and Kubes P. The physiology of leukocyte recruitment: an in vivo perspective. J Immunol 180: 6439–3446, 2008. [PubMed: 18453558]
  205. Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Yla-Herttuala S, Miura N, and Alitalo K. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10: 974–981, 2004. 10.1038/nm1094. [PubMed: 15322537] [CrossRef]
  206. Ping P and Johnson PC. Role of myogenic response in enhancing autoregulation of flow during sympathetic nerve stimulation. Am J Physiol 263: H1177-H1184, 1992. [PubMed: 1415767]
  207. Predescu D, Vogel SM, and Malik AB. Functional and morphological studies of protein transcytosis in continuous endothelia. Am J Physiol 287: L895-L901, 2004. 10.1152/ajplung.00075.2004. [PubMed: 15475492] [CrossRef]
  208. Price GM, Chrobak KM, and Tien J. Effect of cyclic AMP on barrier function of human lymphatic microvascular tubes. Microvasc Res 76: 46–51, 2008. 10.1016/j.mvr.2008.02.003. [PMC free article: PMC2574545] [PubMed: 18440562] [CrossRef]
  209. Quick CM, Venugopal AM, Gashev AA, Zawieja DC, and Stewart RH. Intrinsic pump-conduit behavior of lymphangions. Am J Physiol 292, R1510, R1518, 2007. 10.1152/ajpregu.00258.2006. [PubMed: 17122333] [CrossRef]
  210. Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111: 573–583, 1998. [PubMed: 9454731]
  211. Randolph GJ, Angeli V, and Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5: 617–628, 2005. 10.1038/nri1670. [PubMed: 16056255] [CrossRef]
  212. Reddy NP. Lymph circulation: physiology, pharmacology, and biomechanics. Crit Rev Biomed Eng 14: 45–91, 1986. [PubMed: 3524994]
  213. Reddy NP, Krouskop TA, and Newell PH, Jr. Biomechanics of a lymphatic vessel. Blood Vessels 12: 261–278, 1975. [PubMed: 1182313]
  214. Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP, Lee LK, Swartz MA, and Hubbell JA. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnology 25: 1159–1164, 2007. 10.1038/nbt1332. [PubMed: 17873867] [CrossRef]
  215. Reed RK, Liden A, and Rubin K. Edema and fluid dynamics in connective tissue remodeling. J Molec Cell Cardiol in press, 2010. 10.1016/j.yjmcc.2009.06.023. [PubMed: 19595693] [CrossRef]
  216. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, and oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454: 345–359, 2007. 10.1007/s00424-007-0212-8. [PMC free article: PMC1915585] [PubMed: 17256154] [CrossRef]
  217. Renkin EM. Some consequences of capillary permeability to macromolecules: Starling’s hypothesis reconsidered. Am J Physiol 250: H706-H710, 1986. [PubMed: 3706547]
  218. Rippe B, Haraldsson B, Folkow B. Evaluation of the ‘stretched pore phenomenon’ in isolated rat hindquarters. Acta Physiol Scand 125: 453–459, 1985. 10.1111/j.1748-1716.1985.tb07742.x. [PubMed: 4083047] [CrossRef]
  219. Roberts, WG and Palade, GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 57, 765–772, 1997. [PubMed: 9044858]
  220. Rockson SG. Lymphedema. Am J Med 110: 288–295, 2001. 10.1016/S0002-9343(00)00727-0. [PubMed: 11239847] [CrossRef]
  221. Roden L. Structure and metabolism of connective tissue proteoglycans. The Biochemistry of Glycoproteins and Proteoglycans, 267–371, 1980.
  222. Rumbaut RE, Harris N, Sial AJ, Huxley VH, and Granger DN. Leakage responses to L-NAME differ with fluorescent dye used to label albumin. Am J Physiol. 276: H333-H339, 1999. [PubMed: 9887048]
  223. Runyon BA. Ascites and Spontaneous Bacterial Peritonitis. Sleisenger & Furdtran’s Gastrointestinal and Liver Disease, edited by Feldman M, Scharschmidt BF, and Sleisenger MIT, and Saunders WB, 78: 1310, 1993.
  224. Rutkowski JM and Swartz MA. A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol 17: 44–50, 2007. 10.1016/j.tcb.2006.11.007. [PubMed: 17141502] [CrossRef]
  225. Rutkowski JM, Moya M, Johannes J, Goldman J, and Swartz MA. Secondary lymphedema iin the mouse tail: Lymphatic hyperplasia, VEGF-C upregulation, and the protective role of MMP-9. Microvasc Res 72: 161–171, 2006. 10.1016/j.mvr.2006.05.009. [PMC free article: PMC2676671] [PubMed: 16876204] [CrossRef]
  226. Saasoun S and Papadopoulous MC. Aquaporin-4 in brain and spinal cord oedema. Neuroscience Aug 12 [Epub ahead of print], 2009. 10.1016/j.neuroscience.2009.08.019. [PubMed: 19682555] [CrossRef]
  227. Sabin FR. On the origin of the lymphatic system from the veins, and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1: 367–389, 1902. 10.1002/aja.1000010310. [CrossRef]
  228. Saetzlera RK, Jalloa J, Lehre HA, Philipsa CM, Vastharea U, Arfors KE, and Tuma RF. Intravital Fluorescence Microscopy: Impact of Light-induced Phototoxicity on Adhesion of Fluorescently Labeled Leukocytes. J Histochem Cytochem, 45: 505–514, 1997. [PubMed: 9111229]
  229. Sano Y, Shimizu F, Nakayama H, Abe M, Maeda T, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Takahashi R, and Kanda T. Endothelial cells constituting blood-nerve barrier have highly specialized characteristics as barrier-forming cells. Cell Struct Funct 32: 139–147, 2007. 10.1247/csf.07015. [PubMed: 18057801] [CrossRef]
  230. Sarelius IH, Kuebel JM, Wang J-J, and Huxley VH. Macromolecule permeability of in situ and excised rodent skeletal muscle arterioles and venules. Am J Physiol 209: H474–81, 2006. 10.1152/ajpheart.00655.2005. [PMC free article: PMC1540455] [PubMed: 16126813] [CrossRef]
  231. Scallan JP and Huxley VH. In vivo determination of collecting lymphatic permeability to albumin: a role for lymphatics in exchange. J Physiol (London), 588: 243–254, 2010. [PMC free article: PMC2821562] [PubMed: 19917564]
  232. Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev 70: 987–1028, 1990. [PubMed: 2217560]
  233. Selman M, Thannickal VJ, Pardo A, Zisman DA, Martinez FJ, and Lynch JP 3rd. Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs 64: 405–430, 2004. 10.2165/00003495-200464040-00005. [PubMed: 14969575] [CrossRef]
  234. Semba T, Mizonishi T, Ikeda Y, and Nagao Y. Influence of intestinal inhibitory reflex on mesenteric blood flow through an intestinal segment of the dog. Jpn J Physiol 27: 439–450, 1977. [PubMed: 599739]
  235. Semino CE, Kamm RD, and Lauffenburger DA. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow. Exp Cell Res 312: 289–298, 2006. 10.1016/j.yexcr.2005.10.029. [PubMed: 16337626] [CrossRef]
  236. Shields JD, Fluery ME, Yong C, Tomei AA, Randolph GJ, and Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11: 526–538, 2007. 10.1016/j.ccr.2007.04.020. [PubMed: 17560334] [CrossRef]
  237. Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, Ueda M, Ohtsuki S, Terasaki T, Obinata M, and Kanda T. Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 217: 388–399, 2008. 10.1002/jcp.21508. [PubMed: 18543246] [CrossRef]
  238. Shirley HH Jr, Wolfram CG, Wasserman K, and Mayerson HS. Capillary permeability to macromolecules: stretched pore phenomenon. Am J Physiol 190: 189–193, 1957. [PubMed: 13458438]
  239. Skobe M, Hamberg LM, Hawighorst T, Shirner M, Wolf GL, Alitalo K, and Detmar M. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 159: 893–903, 2001. [PMC free article: PMC1850477] [PubMed: 11549582]
  240. Slaaf DW, Reneman RS, and Widerehielm CA. Pressure regulation in muscle of unanesthetized bats. Microvasc Res 33: 315–326, 1987. 10.1016/0026-2862(87)90026-4. [PubMed: 3613983] [CrossRef]
  241. Sonsino J, Gong H, Wu P, and Freddo TF. Co-localization of junction-associated proteins of the human blood–aqueous barrier: occludin, ZO-1 and F-actin. Exp Eye Res 74: 123–129, 2002. 10.1006/exer.2001.1100. [PubMed: 11878825] [CrossRef]
  242. Squire JM, Chew M, Nneji G, Neal C, Barry J, and Michel C. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136: 239–255, 2001. 10.1006/jsbi.2002.4441. [PubMed: 12051903] [CrossRef]
  243. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, and Oliver G. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 21: 2422–2432, 2007. 10.1101/gad.1588407. [PMC free article: PMC1993873] [PubMed: 17908929] [CrossRef]
  244. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, and Achen MG. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7: 186–191, 2001. 10.1038/84635. [PubMed: 11175849] [CrossRef]
  245. Stamatovic SM, Keep RF, and Andjelkovic AV. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol 6: 179–192, 2008. 10.2174/157015908785777210. [PMC free article: PMC2687937] [PubMed: 19506719] [CrossRef]
  246. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol (Lond) 19: 312–326, 1896. [PMC free article: PMC1512609] [PubMed: 16992325]
  247. Staub NC and Taylor AE. Edema, New York, Raven Press, 1984.
  248. Stratman AN, Saunders WB, Sacharidou A, Koh W, Fisher KE, Zawieja DC, Davis MJ, and Davis GE. Endothelial cell lumen and vascular guidance tunnel formation requires MT1-MMP-dependent proteolysis in 3-deminsional collagen matrices. Blood 114: 237–247, 2009. 10.1182/blood-2008-12-196451. [PMC free article: PMC2714200] [PubMed: 19339693] [CrossRef]
  249. Stratman AN, Malotte KM, Mahan RD, Davis MJ, and Davis GE. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood, 2009. [Epub ahead of print]. 10.1182/blood-2009-05-222364. [PMC free article: PMC2788982] [PubMed: 19822899] [CrossRef]
  250. Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev 50: 3–20, 2001. 10.1016/S0169-409X(01)00150-8. [PubMed: 11489331] [CrossRef]
  251. Swartz MA and Skobe M. Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech 55: 92–99, 2001. 10.1002/jemt.1160. [PubMed: 11596154] [CrossRef]
  252. Swartz MA. The role of interstitial stress in lymphatic function and lymphangiogenesis. Ann NY Acad Sci 979: 197–210, 2002. 10.1111/j.1749-6632.2002.tb04880.x. [PubMed: 12543729] [CrossRef]
  253. Swartz MA and Fleury ME. Interstitial Flow and Its Effects in Soft Tissues. Annu Rev Biomed Eng 9:229–256, 2007. 10.1146/annurev.bioeng.9.060906.151850. [PubMed: 17459001] [CrossRef]
  254. Swartz MA, Hubbell JA, and Reddy ST. Lymphatic drainage function and its immunological implications: From dendritic cell homing to vaccine design. Seminars in Immunology 20: 147–156, 2008. 10.1016/j.smim.2007.11.007. [PubMed: 18201895] [CrossRef]
  255. Tada S and Tarbell JM. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall. Ann Biomed Eng 29: 456–466, 2001. 10.1114/1.1376410. [PubMed: 11459339] [CrossRef]
  256. Tada S and Tarbell JM. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations). Am J Physiol 282: H576-H584, 2002. 10.1152/ajpheart.00751.2001. [PubMed: 11788405] [CrossRef]
  257. Tada S and Tarbell JM. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am J Physiol 278: H1589-H1597, 2000. [PubMed: 10775138]
  258. Takahashi T, Shibata M, and Kamiya A. Mechanism of macromolecule concentration in collecting lymphatics in rat mesentery. Microvasc Res 54: 193–205, 1997. 10.1006/mvre.1997.2043. [PubMed: 9441890] [CrossRef]
  259. Tarbell JM and Ebong EE. The endothelial glycocalyx: a mechano-sensor and –transducer. Sci Signal 1: 8, 2008. [PubMed: 18840877]
  260. Tarbell JM, Demaio L, and Zaw MM. Effect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress. J Appl Physiol 87: 261–268, 1999. [PubMed: 10409584]
  261. Taylor A and Gibson H. Concentrating ability of lymphatic vessels. Lymphology 8: 43–49, 1975. [PubMed: 1160387]
  262. Taylor AE, Gaar KA, and Gibson H. Effect of tissue pressure on lymph flow. Biophys J 10: 45A, 1970.
  263. Taylor AE, Gibson WH, Granger HJ, and Guyton AC. The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 6: 192–208, 1973. [PubMed: 4592823]
  264. Thannickal VJ, Toews GB, White ES, Lynch JP 3rd, and Martinez FJ. Mechanisms of pulmonary fibrosis. Annu Rev Med 55: 395–417, 2004. 10.1146/annurev.med.55.091902.103810. [PubMed: 14746528] [CrossRef]
  265. Tomei AA, Siegert S, Britschgi MR, Luther SA, and Swartz MA. Fluid Flow Regulates Stromal Cell Organization and CCL21 Expression in a Tissue-Engineered Lymph Node Microenvironment. J Immunol 183: 4273–4283, 2009. 10.4049/jimmunol.0900835. [PubMed: 19734211] [CrossRef]
  266. Trzewik J, Mallipattu SK, Artmann GM, Delano FA, and Schmid-Schonbein GW. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 15: 1711–1717, 2001. 10.1096/fj.01-0067com. [PubMed: 11481218] [CrossRef]
  267. Vainionpaa N, Butzow R, Hukkanen M, Jackson DG, Pihlajaniemi T, Sakai LY, and Virtanen I. Basement membrane protein distribution in LYVE-1-immunoreactive lymphatic vessels of normal tissues and ovarian carcinomas. Cell Tissue Res 328: 317–328, 2007. 10.1007/s00441-006-0366-2. [PubMed: 17265066] [CrossRef]
  268. Van Helden DF, von der Weid PY, and Crowe MJ. Electrophysiology of lymphatic smooth muscle. London: Portland Press, 1995.
  269. Vollmar B and Menger MD. The Hepatic Microcirculation: Mechanistic Contributions and Therapeutic Targets in Liver Injury and Repair. Physiol Rev 89: 1269–1339, 2009. 10.1152/physrev.00027.2008. [PubMed: 19789382] [CrossRef]
  270. von der Weid PY. Review article: lymphatic vessel pumping and inflammation–the role of spontaneous constrictions and underlying electrical pacemaker potentials. Aliment Pharmacol Ther 15: 1115–1129, 2001. 10.1046/j.1365-2036.2001.01037.x. [PubMed: 11472314] [CrossRef]
  271. von der Weid PY and Zawieja DC. Lymphatic smooth muscle: the motor unit of lymph drainage. Int J Biochem Cell Biol 36: 1147–1153, 2004. 10.1016/j.biocel.2003.12.008. [PubMed: 15109561] [CrossRef]
  272. von der Weid PY, Rahman M, Imtiaz MS, and van Helden DF. Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am J Physiol 295: H1989-H2000, 2008. 10.1152/ajpheart.00007.2008. [PubMed: 18790842] [CrossRef]
  273. Wang S and Tarbell JM. Effect of Fluid Flow on Smooth Muscle Cells in a 3-Dimensional Collagen Gel Model. Arterioscler Thromb Vasc Biol 20: 2220–2225, 2000. [PubMed: 11031207]
  274. Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, Sorokin L, and Nourshargh S. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 203: 1519–1532, 2006. 10.1084/jem.20051210. [PMC free article: PMC2118318] [PubMed: 16754715] [CrossRef]
  275. Weinbaum S, Tarbell JM, and Damiano ER. The Structure and Function of the Endothelial Glycocalyx Layer. Annu Rev Biomed Eng 9: 121–167, 2007. 10.1146/annurev.bioeng.9.060906.151959. [PubMed: 17373886] [CrossRef]
  276. Weiss N, Miller F, Cazaubon S, and Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788: 842–857, 2009. 10.1016/j.bbamem.2008.10.022. [PubMed: 19061857] [CrossRef]
  277. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, and Oliver G. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. Embo J 21: 1505–1513, 2002. 10.1093/emboj/21.7.1505. [PMC free article: PMC125938] [PubMed: 11927535] [CrossRef]
  278. Wiig H, Reed RK, and Aukland K. Measurement of interstitial fluid pressure in dogs: evaluation of methods. Am J Physiol 253: H283–290, 1987. [PubMed: 3618802]
  279. Wiig H, Rubin K, and Reed RK. New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaethesiol Scand 47: 111–121, 2003. 10.1034/j.1399-6576.2003.00050.x. [PubMed: 12631039] [CrossRef]
  280. Wiig H, Gyenge C, Iversen PO, Gullberg D, and Tenstad O. The role of the extracellular matrix in tissue distribution of macromoleculates in normal and pathological tissues: patential therapeutic consequences. Microcirculation 15: 283–296, 2008. 10.1080/10739680701671105. [PubMed: 18464158] [CrossRef]
  281. Williams DA. A shear stress component to the modulation of capillary hydraulic conductivity (Lp). Microcirculation 3: 229–232, 1996. 10.3109/10739689609148293. [PubMed: 8839445] [CrossRef]
  282. Williams DA. Intact capillaries sensitive to rate, magnitude, and pattern of shear stress stimuli as assessed by hydraulic conductivity (Lp). Microvasc Res 66: 147–158, 2003. 10.1016/S0026-2862(03)00038-4. [PubMed: 12935773] [CrossRef]
  283. Wong CH and Cheng CY. The blood-testis barrier: its biology, regulation, and physiological role in spermatogenesis, Curr Top Dev Biol 71: 263–295, 2005. 10.1016/S0070-2153(05)71008-5. [PubMed: 16344108] [CrossRef]
  284. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, and Eichmann A. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129: 4797–4806, 2002. [PubMed: 12361971]
  285. Zawieja DC and Barber BJ. Lymph protein concentration in initial and collecting lymphatics of the rat. Am J Physiol 252: G602–606, 1987. [PubMed: 3578518]
  286. Zawieja DC. Contractile physiology of lymphatics. Lymphat Res Biol. 7: 87–96, 2009. 10.1089/lrb.2009.0007. [PMC free article: PMC2925033] [PubMed: 19534632] [CrossRef]
  287. Zaweija DC, von der Weid P-Y, and Gashev AA. Microlymphatic biology. In: Handbook of Physiology: Microcirculation, edited by Tuma RF, Duran WN, and Ley K, Chap 5, pp 125–158, Amsterdam, Elsevier, 2008.
  288. Zhang RZ, Gashev AA, Zawieja DC, and Davis MJ. Length-tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation. Am J Physiol 292: H1943–1952, 2007. 10.1152/ajpheart.01000.2005. [PubMed: 17172274] [CrossRef]
  289. Zhang X, Adamson RH, Curry FE, and Weinbaum S. Transient regulation of transport by pericytes in venular microvessels via trapped microdomains. PNAS 105: 1374–1379, 2008. 10.1073/pnas.0710986105. [PMC free article: PMC2234146] [PubMed: 18216252] [CrossRef]
  290. Zweifach BW and Prather JW. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am J Physiol 228: 1326–1335, 1975. [PubMed: 1130536]
Copyright © 2010 by Morgan & Claypool Life Sciences.
Bookshelf ID: NBK53444

Views

  • PubReader
  • Print View
  • Cite this Page

Related Items in Bookshelf

Related information

  • PMC
    PubMed Central citations
  • PubMed
    Links to PubMed

Recent Activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...