

Comparative Effectiveness of Nonoperative and Operative Treatments for Rotator Cuff Tears

This report is based on research conducted by the University of Alberta Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-02-0023). The findings and conclusions in this document are those of the author(s), who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information, i.e., in the context of available resources and circumstances presented by individual patients.

This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

Comparative Effectiveness of Nonoperative and Operative Treatments for Rotator Cuff Tears

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov

Contract No. 290-02-0023

Prepared by: University of Alberta Evidence-based Practice Center Edmonton, Alberta, Canada

Research Team Jennifer C. Seida, M.P.H. (project coordinator) Janine R. Schouten, B.Sc. Shima S. Mousavi, M.D. Lisa Tjosvold, M.L.I.S. Ben Vandermeer, M.Sc. Andrea Milne, B.Sc.N. Kenneth Bond, B.Ed., M.A. Lisa Hartling, B.Sc.P.T., M.Sc.

Clinical Investigators David M. Sheps, M.D., M.Sc., F.R.C.S.C. Claire LeBlanc, M.D., F.R.C.P.C.

AHRQ Publication No. 10-EHC050-EF July 2010

This document is in the public domain and may be used and reprinted without permission except those copyrighted materials noted for which further reproduction is prohibited without the specific permission of copyright holders.

None of the investigators have any affiliations or financial involvement that conflicts with the material presented in this report.

Suggested citation: Seida J, Schouten J, Mousavi S, Tjosvold L, Vandermeer B, Milne A, Bond K, Hartling L, LeBlanc C, Sheps D. Comparative Effectiveness of Nonoperative and Operative Treatment for Rotator Cuff Tears. Comparative Effectiveness Review No. 22. (Prepared by the University of Alberta Evidence-based Practice Center under Contract No. 290-02-0023.) AHRQ Publication No. 10-EHC050. Rockville, MD: Agency for Healthcare Research and Quality. July 2010. Available at: www.effectivehealthcare.ahrq.gov/reports/final.cfm.

Preface

The Agency for Healthcare Research and Quality (AHRQ) conducts the Effective Health Care Program as part of its mission to organize knowledge and make it available to inform decisions about health care. As part of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003, Congress directed AHRQ to conduct and support research on the comparative outcomes, clinical effectiveness, and appropriateness of pharmaceuticals, devices, and health care services to meet the needs of Medicare, Medicaid, and the Children's Health Insurance Program (CHIP).

AHRQ has an established network of Evidence-based Practice Centers (EPCs) that produce Evidence Reports/Technology Assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care. The EPCs now lend their expertise to the Effective Health Care Program by conducting Comparative Effectiveness Reviews (CERs) of medications, devices, and other relevant interventions, including strategies for how these items and services can best be organized, managed, and delivered.

Systematic reviews are the building blocks underlying evidence-based practice; they focus attention on the strength and limits of evidence from research studies about the effectiveness and safety of a clinical intervention. In the context of developing recommendations for practice, systematic reviews are useful because they define the strengths and limits of the evidence, clarifying whether assertions about the value of the intervention are based on strong evidence from clinical studies. For more information about systematic reviews, see http://effectivehealthcare.ahrq.gov/reference/purpose.cfm.

AHRQ expects that CERs will be helpful to health plans, providers, purchasers, government programs, and the health care system as a whole. In addition, AHRQ is committed to presenting information in different formats so that consumers who make decisions about their own and their family's health can benefit from the evidence.

Transparency and stakeholder input from are essential to the Effective Health Care Program. Please visit the Web site (www.effectivehealthcare.ahrq.gov) to see draft research questions and reports or to join an e-mail list to learn about new program products and opportunities for input. Comparative Effectiveness Reviews will be updated regularly.

Carolyn M. Clancy, M.D. Director Agency for Healthcare Research and Quality Jean Slutsky, P.A., M.S.P.H. Director, Center for Outcomes and Evidence Agency for Healthcare Research and Quality

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Ms. Annabritt Chisholm (article retrieval and data entry), Ms. Liza Bialy (extraction of graphical data, formatting of evidence tables), Dr. Donna M. Dryden (presentation of results), Mr. David Jones (study screening and selection), Ms. Nicola Hooten (study selection) and Mr. Kai Wong (data extraction of prognostic factors). We also thank Ms. Rose Campbell of the Scientific Resource Center, AHRQ Effective Health Care Program, for her assistance with searching the grey literature.

Technical Expert Panel

Judy Chepeha, M.Sc.P.T., Ph.D. (candidate) University of Alberta Edmonton, AB

James Chesnutt, M.D. Oregon Health Sciences University School of Medicine Portland, OR

Philip McClure, P.T., Ph.D. Arcadia University Glenside, PA

James Mold, M.D., M.P.H. University of Oklahoma Health Sciences Center Oklahoma City, OK

AHRQ Contacts

Stephanie Chang, M.D., M.P.H. Acting Director, Evidence-based Practice Center Program Agency for Healthcare Research and Quality Rockville, MD

CAPT Karen Lohmann Siegel, P.T., M.A. Task Order Officer, Evidence-based Practice Center Program Agency for Healthcare Research and Quality Rockville, MD

David Stutz, M.D., F.A.C.P. East Ann Arbor Health and Geriatrics Center Ann Arbor, MI

Amir Qaseem, M.D., Ph.D., M.H.A. American College of Physicians Philadelphia, PA

Ken Yamaguchi, M.D. Barnes-Jewish Hospital Washington University School of Medicine Saint Louis, MO

Contents

Executive Summary ES	-1
Chapter 1. Introduction	1
Condition and Prevalence	1
Diagnosis and Treatment	2
Outcome Assessment Scales	4
Objectives	8
Key Questions	8
Chapter 2. Methods	11
Topic Refinement and Technical Expert Panel	11
Literature Search Strategy	11
Criteria for Study Selection	12
Assessment of Methodological Quality	13
Data Extraction	13
Applicability	
Rating the Body of Evidence	14
Data Analysis	14
Chapter 3. Results	17
Literature Search	17
Description of Included Studies	18
Methodological Quality of Included Studies	19
Results of Included Studies	21
Question 1. Early Surgical Repair vs. Late Surgical Repair	21
Question 2. Comparative Effectiveness of Operative Interventions and Postoperative	
Rehabilitation	25
Question 3. Comparative Effectiveness of Nonoperative Treatments	
Question 4. Comparative Effectiveness of Nonoperative vs. Operative Treatments 11	11
Question 5. Complications11	19
Question 6. Evidence on the Role of Prognostic Factors on Treatment Outcomes 14	14
Chapter 4. Discussion	59
Summary of Findings	59
Applicability	
Limitations of the Existing Evidence16	53
Future Research	55
Conclusions16	56
References	59
Abbreviations	79

Tables

Table 1. Summary of most frequently reported outcome measures	5
Table 2. Eligibility criteria for the review	. 12
Table 3. Study and patient characteristics for studies assessing early RCR vs. delayed RCR	. 23
Table 4. Outcome data for studies assessing early RCR vs. delayed RCR	
Table 5. Strength of evidence for early RCR vs. delayed RCR	
Table 6. Study and patient characteristics for studies assessing open vs. mini-open RCR	
Table 7. Outcome data for studies assessing open vs. mini-open RCR	
Table 8. Study and patient characteristics for studies assessing mini-open vs.	
arthroscopic RCR	. 35
Table 9. Outcome data for studies assessing mini-open vs. arthroscopic RCR	
Table 10. Open vs. arthroscopic RCR on measures of functional outcome	
Table 11. Study and patient characteristics for studies assessing open vs. arthroscopic RCR	. 41
Table 12. Outcome data for studies assessing open vs. arthroscopic RCR	
Table 13. Study and patient characteristics for studies assessing open or mini-open vs.	
arthroscopic RCR	. 45
Table 14. Outcome data for studies assessing open or mini-open vs. arthroscopic RCR	. 45
Table 15. Study and patient characteristics for studies assessing open RCR vs. arthroscopic	
debridement	. 48
Table 16. Outcome data for studies assessing open RCR vs. arthroscopic debridement	. 49
Table 17. Study and patient characteristics for studies assessing arthroscopic RCR vs.	
acromioplasty	. 51
Table 18. Outcome data for studies assessing arthroscopic RCR vs. acromioplasty	. 51
Table 19. Study and patient characteristics for studies assessing other operative approaches	
Table 20. Outcome data for studies assessing other approaches	
Table 21. Strength of evidence for operative approaches	
Table 22. Study and patient characteristics for studies assessing operative techniques	
Table 23. Outcome data for studies assessing operative techniques	
Table 24. Strength of evidence for operative techniques	
Table 25. Study and patient characteristics for studies assessing operative augmentations	
Table 26. Outcome data for studies assessing operative augmentations	
Table 27. Strength of evidence for operative augmentation	
Table 28. Study and patient characteristics for studies assessing postoperative rehabilitations	
Table 29. Outcome data for studies assessing postoperative rehabilitation	
Table 30: Strength of evidence for postoperative rehabilitation	
Table 31. Study and patient characteristics for studies assessing nonoperative interventions 1	
Table 32. Outcome data for studies assessing nonoperative interventions	
Table 33. Strength of evidence for nonoperative interventions	
Table 34. Study and patient characteristics for studies assessing operative vs. nonoperative	
interventions	115
Table 35. Outcome data for studies assessing operative vs. nonoperative interventions	
Table 36. Strength of evidence for nonoperative vs. operative treatment	
Table 37. Re-tear	
Table 38. Technical failure	
Table 39. Infection	

Table 40. Stiffness	127
Table 41. Reflex sympathetic dystrophy	129
Table 42. Neurological injury	130
Table 43. Reoperation - NOS	
Table 44. Postoperative pain or impingement syndrome	132
Table 45. Glenohumeral instability	
Table 46. Fracture of the greater tuberosity	133
Table 47. Biceps pathology	
Table 48. Deltoid disruption	134
Table 49. Heterotopic bone formation	134
Table 50. Arthropathy	135
Table 51. Hematoma	135
Table 52. Seroma	136
Table 53. Lymphedema	
Table 54. Reactive synovitis	
Table 55. Local reaction to suture material	137
Table 56. Wound dehiscence	137
Table 57. Delayed wound healing	138
Table 58. Cosmetic deformity	138
Table 59. Other medical complications	
Table 60. No complications	
Table 61. Complications not reported	141
Table 62. Prognostic factors in operative studies	147
Table 63. Prognostic factors in postoperative rehabilitation studies	
Table 64. Prognostic factors in nonoperative studies	157
Table 65. Prognostic factors in operative vs. nonoperative studies	
Table 66. Summary of strength of evidence for nonoperative and operative interventions	161

Figures

Figure 1. Analytic framework corresponding to the key questions	0
Figure 2. Flow-diagram for study retrieval and selection1	8
Figure 3. Open vs. mini-open RCR on measures of functional outcome 2	28
Figure 4. Open vs. mini-open RCR on time to return to work 2	29
Figure 5. Mini-open vs. arthroscopic RCR on measures of functional outcome	34
Figure 6. Mini-open vs. arthroscopic RCR on cuff integrity	34
Figure 7. Open or mini-open vs. arthroscopic RCR for pain VAS 4	14
Figure 8. Open RCR vs. open or arthroscopic debridement for measures of	
functional outcome	1 7
Figure 9. Arthroscopic RCR with acromioplasty vs. RCR without acromioplasty for measures	
of functional outcome	50
Figure 10. Uncontrolled examining functional outcomes for open RCR	50
Figure 11. Cohort studies examining functional outcomes for open RCR	50
Figure 12. Trials examining functional outcomes for open RCR	51
Figure 13. Uncontrolled studies examining functional outcomes for mini-open RCR	

Figure 14. Cohort studies examining functional outcomes for mini-open RCR
Figure 15. Trials examining functional outcomes for mini-open RCR
Figure 16. Uncontrolled examining functional outcomes for arthroscopic RCR
Figure 17. Cohort studies examining functional outcomes for arthroscopic RCR
Figure 18. Trials examining functional outcomes for arthroscopic RCR
Figure 19. Studies examining cuff integrity for arthroscopic RCR
Figure 20. Studies examining functional outcomes for combined RCR approaches
Figure 21. Studies examining functional outcomes for arthroscopic debridement
Figure 22. Single-row vs. double-row fixation on measures of functional outcome71
Figure 23. Single-row vs. double-row fixation on cuff integrity
Figure 24. Mattress stitch vs. simple stitch for measures of functional outcome
Figure 25. Mattress stitch vs. simple stitch for cuff integrity
Figure 26. Studies examining functional outcomes for operative augmentation with repair 89
Figure 27. Studies examining cuff integrity for operative augmentation with repair
Figure 28. Continuous passive motion with physical therapy vs. physical therapy alone for
measures of functional outcome
Figure 29. Forest plot comparing pain in continuous passive motion vs. no continuous passive
motion groups
Figure 30. Studies examining functional outcomes for nonoperative treatments
Figure 31. Nonoperative treatment vs. RCR for measures of functional outcome 113
Figure 32. Nonoperative treatment vs. RCR for pain 114

Appendixes

Appendix A. Expert Panel and Peer Reviewers

Appendix B. Literature Search Strings

Appendix C. Review Forms

Appendix D. Methodological Quality of Included Studies

Appendix E. Evidence Tables

Appendix F. List of Excluded Studies and Unobtained Studies

Executive Summary

Introduction

The rotator cuff (RC) is comprised of four muscle-tendon units, which stabilize the humeral head within the shoulder joint and aid in powering the movement of the upper extremity.¹ RC tears refer to a partial or full discontinuation of one or more of the muscles or tendons and may occur as a result of traumatic injury or degeneration over a period of years. The incidence of RC tears is related to increasing age; 54 percent of patients over the age of 60 years have a partial or complete RC tear compared with only 4 percent of adults under 40 years of age.² Although not a life-threatening condition, RC tears may cause significant pain, weakness, and limitation of motion.¹

Both nonoperative and operative treatments are used in an attempt to relieve pain and restore movement and function of the shoulder.³ The majority of patients first undergo 6 weeks to 3 months of nonoperative treatment, which may consist of any combination of pain management (medications and injections), rest from activity, passive and active exercise, and treatments with heat, cold or ultrasound. Failing nonoperative treatment, the cuff may be surgically repaired using an open, mini-open, or all-arthroscopic approach. A variety of postoperative rehabilitation programs are used to restore range of motion, muscle strength, and function following operative treatment.

Earlier operative treatment has been proposed to improve patient outcomes and result in an earlier return to work, and decreased costs;^{4,5} therefore, patients and clinicians face the difficult decision of when to forgo attempts at nonoperative treatment in favor of operative treatment. Moreover, the comparative effectiveness of the various nonoperative and operative treatment options for patients with RC tears remains uncertain.

Key Questions

The following key questions (KQ) were investigated for a population of adult patients with partial- and full-thickness RC tears:

- 1. Does early surgical repair compared to late surgical repair (i.e., nonoperative intervention followed by surgery) lead to improved health-related quality of life, decreased disability, reduced time to return to work/activities, higher rate of cuff integrity, less shoulder pain, and increased range of motion and/or strength?
- 2. What is the comparative effectiveness of operative approaches (e.g., open surgery, miniopen surgery, and arthroscopy) and postoperative rehabilitation on improved healthrelated quality of life, decreased disability, reduced time to return to work/activities, higher rate of cuff integrity, less shoulder pain, and increased range of motion and/or strength?
 - i. Which operative approach should be used for different types of tears (e.g., partial-thickness or full-thickness; small, medium, large, or massive; with or without fatty infiltration of muscle tissue)?
- 3. What is the comparative effectiveness of nonoperative interventions on improved healthrelated quality of life, decreased disability, reduced time to return to work/activities, higher rate of cuff integrity, less shoulder pain, and increased range of motion and/or strength? Nonoperative interventions include, but are not limited to, exercise, manual

therapy, cortisone injections, acupuncture, and treatments and modalities typically delivered by physical therapists, osteopaths, and chiropractors.

- i. Which nonoperative treatment approach should be used for different types of tears (e.g., partial-thickness, full-thickness; small, medium, large, or massive; with or without fatty infiltration of muscle tissue)?
- 4. Does operative repair compared with nonoperative treatment lead to improved healthrelated quality of life, decreased disability, reduced time to return to work/activities, higher rate of cuff integrity, less shoulder pain, and increased range of motion and/or strength?
- 5. What are the associated risks, adverse effects, and potential harms of nonoperative and operative therapies?
- 6. Which demographic (e.g., age, gender, ethnicity, comorbidities, workers' compensation claims) and clinical (e.g., size/severity of tear, duration of injury, fatty infiltration of muscle) prognostic factors predict better outcomes following nonoperative and operative treatment?
 - i. Which (if any) demographic and clinical factors account for potential differences in surgical outcomes between patients who undergo early versus delayed surgical treatment?

Methods

Literature Search

The following bibliographic databases were searched systematically for studies published between 1990 and 2009: Medline[®], Embase, Evidence-Based Medicine Reviews – The Cochrane Library, AMED, Cumulative Index to Nursing and Allied Health Literature (CINAHL), SPORTDiscus with Full Text, Academic Search Elite, Health Source, Science Citation Index Expanded (via Web of Science[®]), Scopus[®], BIOSIS Previews[®], and PubMed. Additional searches of the Grey Literature were conducted in Conference Papers Index, Computer Retrieval of Information on Scientific Projects (CRISP), Scopus[®], as well as government Web sites by the U.S. Food and Drug Administration and Health Canada. Databases that yielded included studies (Medline[®], Embase, Central, and CINAHL[®]) were searched again in September 2009 to identify recently published studies. Hand searches were conducted to identify literature from symposia proceedings from the following scientific meetings: Arthroscopy Association of North America (2007-2009), American Academy of Orthopaedic Surgeons (2007-2009), American Physical Therapy Association (2006-2008), American Shoulder and Elbow Surgeons (2005-2008), American Society of Shoulder and Elbow Therapists (2004-2008), European Congress of Physical and Rehabilitation Medicine 2008, Congress of the European Society for Surgery of the Shoulder and the Elbow (2009), and the Mid-America Orthopaedic Association (2006-2008). Ongoing studies were identified by searching clinical trials registers and by contacting experts in the field. Reference lists of relevant reviews were searched to identify additional studies. No language restrictions were applied.

Study Selection

Two reviewers independently screened titles and abstracts using general inclusion criteria. The full text publication of all articles identified as "include" or "unclear" were retrieved

for formal review. Each full-text article was assessed independently by two reviewers using detailed a priori inclusion criteria and a standardized form. Disagreements were resolved by consensus or by third-party adjudication.

Controlled and prospective uncontrolled studies were included in the review if they were published in 1990 or later, included a minimum of 11 participants, focused on adults with a partial or full-thickness tear that was confirmed by imaging or intraoperative findings, and examined any operative or nonoperative intervention or postoperative rehabilitation. In addition, studies were required to report on at least one outcome of interest (quality of life, function, time to return to work, cuff integrity, pain, range of motion, and/or strength) and have a minimum followup duration of 12 months for operative studies. For the review update, only controlled studies were included.

Quality Assessment and Rating of the Body of Evidence

Two reviewers independently assessed the methodological quality of included studies. The Cochrane Collaboration's "risk of bias" tool was used to assess randomized controlled trials and controlled clinical trials. Observational analytic studies were assessed using modified cohort and case-control Newcastle-Ottawa Quality Assessment Scales. The methodological quality of uncontrolled studies was assessed using a quality checklist developed by the University of Alberta Evidence-based Practice Center; the checklist consisted of three items: consecutive enrollment, incomplete outcome data, and standardized/independent approach to outcome assessment. In addition, the source of funding was recorded for all studies.

The body of evidence was rated by one reviewer using the EPC GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. The strength of evidence was assessed for four key outcomes considered by the clinical investigators to be most clinically relevant: health-related quality of life, functional outcomes, time to return to work, and cuff integrity. The following four major domains were assessed: risk of bias (low, medium, high), consistency (no inconsistency, inconsistency present, unknown, or not applicable), directness (direct, indirect), and precision (precise, imprecise).

Data Extraction

Data were extracted by one reviewer using a standardized form and verified for accuracy and completeness by a second reviewer. Extracted data included study characteristics, inclusion/exclusion criteria, participant characteristics, interventions, and outcomes. Reviewers resolved discrepancies by consensus or in consultation with a third party.

Data Analysis

Evidence tables and qualitative descriptions of results were presented for all included studies. Comparative studies were considered appropriate to combine in a meta-analysis if the study design, study population, interventions being compared, and outcomes were deemed sufficiently similar. Results were combined using random effects models. Statistical heterogeneity was quantified using the I-squared (I^2) statistic. Graphs were created to display the preoperative and postoperative scores of uncontrolled studies, cohort studies, and trials over the duration of the study followup period.

Results

Description of Included Studies

The search strategy identified 5,677 citations; 137 unique studies met the eligibility criteria and were included in the review. The studies included 27 trials, 39 cohort studies, and 71 uncontrolled studies. The number of participants in the studies ranged from 12 to 224 (median=55 [IQR: 33 to 93]). The mean age of study participants ranged from 41.2 to 80 years.

Methodological Quality of Included Studies

All the randomized controlled trials and controlled clinical trials were considered to have a high risk of bias. The most common sources of potential bias were inadequate blinding, inadequate allocation concealment, and incomplete outcome data. The methodological quality of the cohort studies was moderate, with a median score of 5 stars on a possible score of 8 stars (IQR: 4 to 6). Common weaknesses in the design of the studies included lack of independent blind outcome assessment and failure to control adequately for potential confounding factors. Uncontrolled studies generally had moderate quality, with consecutive enrollment, adequate followup, and standardized outcome assessment being reported in 63 percent, 77 percent, and 44 percent of studies, respectively. Across all studies, a source of funding was rarely reported (n=49, 36 percent).

Results of Included Studies

The results of the included studies are presented by the key question(s) they address. A table with the summary of findings for nonoperative and operative interventions is presented below.

Key Question 1: Early versus late surgical repair. One study compared early surgical repair versus late surgical repair after failed nonoperative treatment. Patients receiving early surgery had superior function compared with the delayed surgical group; however, the level of significance was not reported.

Key Question 2: Comparative effectiveness of operative interventions and postoperative rehabilitation. A total of 113 studies examined the effectiveness of operative interventions, while 11 studies evaluated postoperative rehabilitation protocols following surgery. A median of 55 patients (IQR: 34 to 95) with a median age of 58.6 years (IQR: 55.5 to 61.7) were included in the operative studies. Males comprised an average of 64.6 percent of study participants. For postoperative rehabilitation, studies included a median of 61 participants (IQR: 36 to 79.5) with a median age of 58.0 years (IQR: 56.3 to 60.8). Males comprised an average of 58.9 percent of study participants.

Studies assessing operative treatments were categorized as focusing on an operative approach (e.g., open, mini-open, arthroscopic, and debridement), technique (i.e., suture or anchor type or configuration) or augmentation for RC repair. The majority of surgical studies (32 comparative studies and 58 uncontrolled studies) evaluated operative approaches. The comparative studies provided moderate evidence indicating no statistical or clinically important differences in function between open and mini-open repairs; however, there was some evidence suggesting an earlier return to work by approximately 1 month for mini-open repairs. Similarly, there was moderate evidence demonstrating no difference in function between mini-open and

arthroscopic repair and arthroscopic repair with and without acromioplasty. There was moderate evidence for greater improvement in function for open repairs compared with arthroscopic debridement. The strength of evidence was low for the remaining comparisons and outcomes examined in the studies, precluding any conclusions regarding their comparative effectiveness. The uncontrolled studies consistently reported functional improvement from preoperative to postoperative scores, regardless of the type of approach used (open, mini-open, or arthroscopic), the study design, the sample size of the study, or the type of outcome measure used.

Operative techniques were examined in 15 comparative studies. Six studies compared single-row versus double-row fixation of repairs, providing moderate evidence of no clinically significant difference in function and no difference in cuff integrity. There was moderate evidence for no difference in cuff integrity between mattress locking and simple stitch. The evidence was too limited to make conclusions about the other techniques.

Eight studies, including three comparative and five uncontrolled studies, assessed augmentations for operative repair. The three comparative studies were relatively small and no overall conclusions were possible. Although the five uncontrolled studies evaluated different types of augmentation, they all indicated improvement in functional score from baseline to final followup.

Of the 11 postoperative rehabilitation studies (10 comparative, 1 uncontrolled), 3 compared continuous passive motion with physical therapy versus physical therapy alone. These three studies provided moderate evidence of no clinically important or statistically significant difference in function, but some evidence for earlier return to work with continuous passive motion. Each of the remaining studies examined different rehabilitation protocols; therefore, the evidence was too limited to make any conclusions regarding their comparative effectiveness.

Key Question 3: Comparative effectiveness of nonoperative interventions. Nonoperative interventions were examined in three comparative and seven uncontrolled studies. The studies included a median of 42 patients (IQR: 25.3 to 73.3), with a median age of 61 years (IQR: 60.4 to 61.5). Males comprised an average of 50 percent of participants. Each of the comparative studies assessed different interventions, including: sodium hyaluraonate versus dexamethasone; rehabilitation versus no rehabilitation (not otherwise specified); and physical therapy, oral medications, and steroid injection versus physical therapy, oral medications, and no steroid injection. The limited evidence precludes conclusions of comparative effectiveness. The degree of improvement in functional outcome scores varied considerably across the uncontrolled studies.

Key Question 4: Comparative effectiveness of nonoperative versus operative interventions. Five studies compared nonoperative to operative treatments, with a median sample size of 103 (IQR: 40 to 108). The mean ages in the studies ranged from 46.8 to 64.8 years. Males represented 55 percent of study participants. The interventions varied across studies, but generally the nonoperative arms included components such as steroid injection, stretching, and strengthening and were compared with open repair or debridement. The evidence was too limited to make conclusions regarding the comparative effectiveness of the interventions.

Key Question 5: Complications. A total of 85 studies provided data on 34 different complications of nonoperative, operative, and postoperative rehabilitation interventions. Complications were poorly reported, with studies providing limited information on how

complications were defined and assessed. In 21 studies, it was reported that no complications occurred during the course of the study. In general, the rates of complication were low and the majority of complications were not deemed to be clinically important or were reported in few studies.

Key Question 6: Prognostic factors. Overall, 72 of the 137 studies examined the impact of prognostic factors on patient outcomes. General conclusions are limited, due to the varied methodologies across studies, particularly the different outcomes for which prognostic factors were evaluated. There is some evidence that tear size, age, and extent of preoperative symptoms may modify outcomes; while, workers' compensation board (WCB) status, sex, and duration of symptoms generally showed no significant impact.

The following table summarizes the findings of the studies and indicates the overall strength of the evidence on each topic examined.

Summary of streng	th of evidence for nonoperative and operative interventions for RC tears

Comparison (number of studies)	Strength of evidence	Summary
Early vs. late repair		
Early RCR vs. late RCR (n=1)	Low	The evidence was too limited to make a conclusion.
Operative approaches		
Open RCR vs. mini-open RCR (n=3)	Moderate	No statistically significant or clinically important difference for function. Some evidence for earlier return to work or sports (by approximately 1 month) with mini-open repairs.
	Low	The evidence was too limited to make a conclusion for health-related quality of life.
Mini-open RCR vs. arthroscopic RCR (n=10)	Moderate	No difference in function or cuff integrity.
Open RCR vs. arthroscopic RCR (n=3)	Low	The evidence was too limited to make a conclusion.
Open or mini-open RCR vs. arthroscopic RCR	Moderate	No difference in function.
(n=2)	Low	The evidence was too limited to make a conclusion for cuff integrity.
Open RCR vs. open or arthroscopic debridement (n=4)	Moderate	Some evidence for greater improvement in function for open RCR.
Arthroscopic RCR with acromioplasty vs. without acromioplasty (n=3)	Moderate	No difference in function.
Arthroscopic RCR vs. acromioplasty alone	Low	The evidence was too limited to make a conclusion.
Biceps tenotomy vs. tenodesis (n=1)	Low	The evidence was too limited to make a conclusion.
RCR vs. palliative treatment (n=1)	Low	The evidence was too limited to make a conclusion.
Arthroscopic RCR with SLAP repair vs. arthroscopic RCR with biceps tenotomy (n=1)	Low	The evidence was too limited to make a conclusion.
Mini-open RCR plus tenodesis with detachment vs. without detachment (n=1)	Low	The evidence was too limited to make a conclusion.
Arthroscopic debridement with biceps tenotomy vs. without tenotomy (n=1)	Low	The evidence was too limited to make a conclusion.
Complete open RCR vs. partial open RCR vs. debridement (n=1)	Low	The evidence was too limited to make a conclusion.

Summary of strength of evidence for nonoperative and operative interventions for RC tears (continued)

Comparison (number of studies)	Strength of evidence	Summary
Operative approaches (continued)		
Open RCR with classic open acromioplasty vs. open RCR with modified open acromioplasty (n=1)	Low	The evidence was too limited to make a conclusion.
Operative techniques		
Single-row vs. double-row suture anchor fixation (n=6)	Moderate	No clinically important difference for function and no difference for cuff integrity.
Bioabsorbable tacs vs. suture tying (n=1)	Low	The evidence was too limited to make a conclusion.
Side-to-side vs. tendon-to-bone fixation (n=1)	Low	The evidence was too limited to make a conclusion.
Nonabsorbable vs. absorbable sutures (n=1)	Low	The evidence was too limited to make a conclusion.
Bioabsorbable corkscrews vs. metal suture anchor (n=1)	Low	The evidence was too limited to make a conclusion.
Mattress locking vs. simple stitch (n=2)	Moderate	No difference in cuff integrity.
	Low	The evidence was too limited to make a conclusion for function.
Mattress vs. transosseous suture (n=1)	Low	The evidence was too limited to make a conclusion.
Ultrasonic welding vs. hand-tied knots (n=1)	Low	The evidence was too limited to make a conclusion.
Staple fixation vs. side-to-side suture (n=1)	Low	The evidence was too limited to make a conclusion.
Operative augmentation		
Porcine small intestine submucosa vs. no augmentation (n=2)	Low	The evidence was too limited to make a conclusion.
Patch graft vs. no augmentation (n=1)	Low	The evidence was too limited to make a conclusion.
Postoperative rehabilitation		
Continuous passive motion with PT treatment vs. PT treatment (n=3)	Moderate	No clinical or statistical difference in function. Some evidence for earlier return to work with continuous passive motion.
Aquatic therapy with land-based therapy vs. land-based therapy (n=1)	Low	The evidence was too limited to make a conclusion.
Inpatient vs. day patient rehabilitation (n=1)	Low	The evidence was too limited to make a conclusion.
Individualized PT program with home exercise vs. home exercise (n=1)	Low	The evidence was too limited to make a conclusion.
Progressive vs. traditional loading (n=1)	Low	The evidence was too limited to make a conclusion.
Inpatient rehabilitation vs. outpatient CGE (n=1)	Low	The evidence was too limited to make a conclusion.
Standardized vs. non-standardized PT program (n=1)	Low	The evidence was too limited to make a conclusion.
Videotape vs. PT home exercise instruction (n=1)	Low	The evidence was too limited to make a conclusion.

Summary of strength of evidence for nonoperative and operative interventions for RC tears (continued)

Comparison (number of studies)	Strength of Summary evidence	
Nonoperative interventions		
Sodium hyaluraonate vs. dexamethasone (n=1)	Low	The evidence was too limited to make a conclusion.
Rehabilitation vs. no rehabilitation (n=1)	Low	The evidence was too limited to make a conclusion.
Physical therapy, oral medications and steroid injection vs. physical therapy, oral medications and no steroid injection (n=1)	Low	The evidence was too limited to make a conclusion.
Nonoperative vs. operative treatment		
Shock-wave therapy vs. mini-open RCR (n=1)	Low	The evidence was too limited to make a conclusion.
Steroid injection, physical therapy, and activity modification vs. open repair (n=1)	Low	The evidence was too limited to make a conclusion.
Physical therapy vs. open or mini-open RCR	Low	The evidence was too limited to make a conclusion.
Physical therapy treatment, oral medication, and steroid injection vs. arthroscopic debridement vs. open repair (n=1)	Low	The evidence was too limited to make a conclusion.
Passive stretching, strengthening, and corticosteroid injection vs. open repair with	Low	The evidence was too limited to make a conclusion.

CGE = Concept Global d'Epaule; RCR = rotator cuff repair; SLAP = superior labral from anterior to posterior

Future Research

Recommendations for further research:

- Primary evidence is needed, comparing the effectiveness of early versus delayed surgery, nonoperative versus operative interventions, and among the nonoperative treatment options. Future research examining the comparative effectiveness of open, mini-open, or arthroscopic approaches is also a priority, as arthroscopic procedures are more costly and technically difficult.
- All future studies should employ a comparison or control group and should ensure comparability of treatment groups, optimally through the use of randomization.
- Future research should seek to minimize bias by blinding outcome assessors, using validated and standardized outcome assessment instruments, and ensuring adequate allocation concealment (where applicable) and the appropriate handling and reporting of missing data.
- Studies examining the long-term effectiveness of treatments over the course of several years are needed; at the very least, studies should follow patients for a minimum of 12 months.
- To avoid numerous studies on disparate interventions, the interventions and comparisons chosen for study should be guided by consensus regarding the most promising and/or controversial interventions.

- To ensure consistency and comparability across future studies, consensus is needed on outcomes that are important to both clinicians and patients. Moreover, consensus on minimal clinically important differences is needed to guide study design and interpretation of results.
- To permit the appropriate interpretation of results, future research needs to be reported in a consistent and comprehensive manner.

Conclusions

For the majority of interventions, only sparse data are available, precluding firm conclusions for any single approach or for the optimal overall management of this condition. The paucity of evidence related to early versus delayed surgery is of particular concern, as patients and providers must decide whether to attempt initial nonoperative management or proceed immediately with surgical repair. The majority of the data is derived from studies of low methodological quality or from study designs associated with higher risk of bias (e.g., observational and before-and-after studies). Overall, the evidence shows that all interventions result in substantial improvements; however, few differences of clinical importance are evident when comparisons between interventions are available. Complication rates were generally low and the majority of complications were not deemed to be clinically important; therefore, the benefit of receiving treatment for rotator cuff tears appears to outweigh the risk of associated harms. Future research is needed to determine the relative effectiveness of rotator cuff treatment options.

Chapter 1. Introduction

Condition and Prevalence

The rotator cuff (RC) is comprised of four muscle-tendon units (supraspinatus, infraspinatus, subscapularis, and teres minor) that originate on the scapula and combine to form a covering or "cuff" around the top of the humeral head.¹ The RC helps to stabilize the humeral head within the shoulder joint and aids in powering the upper extremity through the movements of flexion, extension, abduction, adduction and external and internal rotation.

A "tear" is the term given to a discontinuation in either one or more of the tendons or muscles that make up the RC; tears are classified as either partial or full thickness. Partial-thickness tears involve only a portion of the tendon thickness and do not lead to retraction of the muscle-tendon unit.⁶ In contrast, full-thickness tears refer to a complete discontinuity of RC fibers, resulting in contact between the articular and bursal spaces. RC tears are rated as small (<1 cm), medium (1-3 cm), large (3-5 cm), and massive (>5 cm). Tears that involve two or more tendons may also be classified as massive and may require more complex reconstruction.⁷ The degree of functional impairment of the muscle depends in part on the size of the tear.⁸

The RC can be torn from a single traumatic injury or, more commonly, a tear may result from overuse of the muscles and tendons over a period of years, leading to degeneration of the tendon that progresses to a tear.⁹ A cuff tear may also occur concurrently with another injury to the shoulder, such as a fracture or dislocation, or be the result of poor vascular supply, impingement, glenohumeral instability, scapulothoracic dysfunction or congenital abnormalities, such as os acromiale.¹⁰ RC tears also occur in the shoulders of overhead or throwing athletes, whose throwing motion involves maximum abduction and external rotation making the shoulder vulnerable to injury from repetitive high energy forces.¹¹ Once a tear occurs, it is unlikely to heal without treatment.⁶ Left untreated, large tears may result in chronically retracted muscle-tendon units that undergo fatty degeneration resulting in weakness, a potentially irreversible process.⁹

The incidence of RC tears is expected to increase with the growth of an aging population that is more active and less willing to accept functional limitations.¹² Magnetic resonance imaging (MRI) studies have shown partial or complete tears in only 4 percent of patients under 40 years of age compared with 54 percent of patients over 60 years of age.² Larger tear size and occurrence of bilateral RC tears also increase with age.¹³ Although large proportion of patients with RC tears are asymptomatic, research has shown that over 50 percent of individuals with asymptomatic RC tears will develop pain over an average of 2.8 years.¹⁰

Although not a life-threatening condition, RC tears may cause significant pain, weakness, and limitation of motion.¹ A shoulder disorder can increase functional dependency in the elderly due to difficulties in completing activities of daily living.¹³ In younger adults, this morbidity may also lead to significant disability, including absenteeism from work and lost productivity. The impact of RC disease on lost productivity is reflected in the high costs associated with shoulder injuries in the workers' compensation system, and has been found to be the second most common cause after back pain for time away from work in manual laborers.¹⁴⁻¹⁶ According to data from the United States Department of Labor, 253,670 occupational shoulder injuries ranged from 4.3 to 7.5 days; however, 41.5 percent of occupational shoulder injuries required more than 31 days away from work in 2007.¹⁷ In addition, severe pain may affect sleep. The impact of RC disease on health-related quality of life, as measured by the SF-36, is comparable to the effects of

hypertension, myocardial infarction, congestive heart failure, diabetes mellitus, and clinical depression.¹⁸

Diagnosis and Treatment

Diagnosis of an RC tear involves a complete history, appropriate clinical examination, and a comparison of the involved shoulder to the uninjured side. The shoulder is palpated to identify areas of tenderness and range of motion of the shoulder is assessed both actively and passively.¹⁹ RC strength is evaluated and a number of provocative maneuvers are completed to assist in the development of a differential diagnosis. Since most clinical tests for rotator cuff pathology have been shown to have poor diagnostic accuracy²⁰ and give poor estimates of cuff tear size,²¹ diagnostic imaging should be employed as part of the preliminary work-up for chronic shoulder pain. Radiographs may be used initially followed by MRI, arthrography, computed tomography (CT) or ultrasound for further evaluation and clarification of possible pathology.¹⁹

Two treatment modalities, nonoperative and operative, are used in an attempt to relieve pain and restore movement and function of the shoulder.³ Most patients initially undergo 6 weeks to 3 months of nonoperative treatment; however, surgical repair may be indicated early on in the appropriate patient with a traumatic RC injury and a significant functional deficit.²² The most common nonoperative interventions include pain management (medications and injections), rest from activity, and a variety of treatments, both passive and active, delivered by physical therapists. Success rates with nonoperative treatments vary from less than 50 percent to greater than 90 percent; however, studies have used a variety of interventions and evaluation tools.²²

Modalities used to decrease pain include heat or cold, ultrasound, and iontophoresis,^{13,23} as well as medications such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs), and corticosteroid injections. When pain is controlled the patient can participate in physical therapy exercises designed to increase shoulder flexibility and strength. These exercises are designed to return the shoulder to optimal functioning through improvements in range of motion, proprioception and strength.²³ When other nonoperative modalities have failed to reduce pain (e.g., relative rest, activity modification, physical therapy, and NSAIDs), corticosteroid injections combined with a local anesthetic may be used.²⁴ Controversy exists regarding the benefit of corticosteroid injections in the treatment of RC tears. Study results investigating the efficacy of injections vary, and it is unclear if corticosteroid injections provide significant benefit to the patient over treatment with NSAIDs.^{13,23}

Failing nonoperative treatment, there are three surgical approaches to rotator cuff repair (RCR): open, mini-open, and arthroscopic, the last two of which have evolved throughout the last decade.²⁵ The first surgical repair of a torn RC was performed in 1909 by Ernest Codman.²⁶ In 1972, Charles Neer developed an open surgical technique, which uses a large (9-centimetre) incision over the shoulder from the anterior edge of the acromion to a point just lateral to the coracoid. The deltoid is split (5 centimetres) and dissected from the anterolateral acromion and the distal clavicle. This allows for adequate visualization of the RC tear. A small wedge-shaped piece of bone is removed from underneath the acromion, as is the coracoacomial ligament. In the case of acromioclavicular osteophytes and acromioclavicular arthritis, up to 2 centimetres of the distal clavical may be excised along with any prominences on the acromial side. Careful reattachment of the deltoid to the acromion and clavicle is required following the repair.²⁷

A mini-open repair combines an open technique with arthroscopy to reduce the size of the incision required to perform the repair. Initially, portals are created to allow the insertion of the arthroscope and arthroscopic tools. To perform the repair, an additional incision is created to visualize the RC. The surgeon reaches the RC tear by splitting the deltoid muscle in line with its fibers rather than releasing it from the acromion. A temporary suture is placed in the deltoid to prevent further tearing of the muscle and damage to the axillary nerve while the RCR is completed. Mini-open repair is currently considered best suited for small and medium tears, but may be used for larger tears.²⁶ The mini-open approach reduces the chance of deltoid injury and failure of the deltoid repair that may occur with a traditional open technique.²⁷

Arthroscopic surgery uses specially designed instruments (a camera, a fiberoptic light source, and the instruments required for the repair) that are inserted into the joint through a series of small incisions or portals. Modern arthroscopic techniques now allow for not only the evaluation of both the bursal and articular surfaces of the RC, as well as other structures within the shoulder joint, but also allow for definitive treatment of the injured RC.¹¹ Most authors agree that indications for arthroscopic repair are similar to those for open repair.²⁷ Arthroscopic repair has a number of benefits over open repair including: shorter hospital stays, lower levels of pain, better cosmetic outcomes, preservation of the deltoid muscle, and direct inspection of the glenohumeral joint.²⁷

Regardless of whether surgery is open, mini-open, or arthrocopic, treatment may involve any combination of RCR, debridement, and acriomplasty. The repair itself involves suturing the torn edges of the involved tendon(s) together and repair of the tendon back to the humeral head. A full or partial repair may be performed, depending on the severity of the tear. As its name implies, full repair is the complete repair of the tear. When a complete repair is not feasible, such as when the tear is extremely large, a partial repair may be performed in order to restore adequate function and delay the progression of the tear.⁸ Debridement involves removing loose fragments of tendon, bursa, and other debris from the space in the shoulder where the RC moves.¹¹ Acromioplasty involves the removal of bone from the underside of the anterolateral acromion (the tip of the shoulder blade), thus creating more room in the subacromial space, and decreasing mechanical impingement of the acromion on the RC. Subacromial decompression combines an acromioplasty with the removal of the subacromial bursa and, in some cases, removal of the coracoacromial ligament. Though performed on their own, debridement, acromioplasty and/or subacromial decompression are often performed in combination with an RCR.

Other procedures that may accompany RCR include labral repair, biceps tenotomy or tenodesis, and acromioclavicular joint arthroplasty. A labral repair involves the surgical repair of the labrum, a cuff of cartilage that circles the glenoid or socket of the shoulder and helps to stabilize the shoulder. A labral tear may occur as a result of trauma to the shoulder or fray and tear as part of the aging process. A biceps tenodesis detaches the tendon from its insertion at the top of the labrum and reattaches the tendon in the bicipital groove at the anterolateral aspect of the proximal humerus. Biceps tenotomy involves the release of the biceps tendon from its attachment without reattachment to the proximal humerus, thus allowing the tendon to retract distally in the upper arm outside of the shoulder joint. These procedures are performed for partial tears of the biceps tendon that cannot be repaired, bicep tendons that are subluxed or dislocated, or in situations when tears of the superior glenoid labrum cannot be repaired.

The final step in the surgical treatment of RC tears is a program of rehabilitation, the development of which is based on the type of surgery, size of tear, tissue quality, fixation methods, and patient characteristics.³ Following surgery, the shoulder is generally immobilized using a sling, both as a comfort measure and as a reminder to the patient to avoid use of the shoulder. Passive motion, continuous passive motion (the continuous movement of the repaired

shoulder by a machine), and unassisted exercises are then used to restore range of motion and muscle strength, and to re-establish shoulder stability and function. Strengthening exercises are generally added gradually with progressive levels of resistance as sudden increases in exercise demands may lead to a failure of the repair. The primary goal of rehabilitation should be to protect the cuff repair, promote healing, restore passive and active motion, and increase muscular strength.³

It has been proposed that earlier surgical intervention may result in better outcomes, earlier return to work and decreased costs;^{4,5} thus, clinicians face the difficult decision of when to forego attempts at nonoperative management in favour of surgical treatment. Despite the significant morbidity and cost associated with RC tears, there remains much uncertainty regarding the comparative effectiveness of the many nonoperative and operative treatment options.

Outcome Assessment Scales

A wide variety of outcome measures have been used to evaluate the efficacy of RC treatments by assessing changes in patient function over the study period. A list of the frequently reported outcome measures is provided in Table 1. The majority of scales used in the RC literature are disease-specific questionnaires developed for the assessment of the shoulder; however, generic scales (e.g., SF-36) have also been used. The scales can broadly be classified into health-related quality of life and functional outcome measures. Health-related quality scales are developed with the intent of assessing patients' perception of the impact of their condition on their physical, social, psychological/emotional, and cognitive state. Functional outcome measures evaluate a patient's ability to perform activities of daily living and frequently incorporate clinically assessed components, such as range-of-motion or strength.

Three health-related quality of life measures were used in the studies reviewed in this report: the Rotator Cuff Quality of Life (RC-QOL) scale, the Short-Form-36 (SF-36) and the Western Ontario Rotator Cuff (WORC) index. These self-reported scales assess similar domains, such as pain, physical symptoms, social and emotional functioning. The RC-QOL and SF-36 are scored on a scale of 0 to 100 points, where higher scores indicate better quality of life, while the WORC Index provides a score of up to 2,100 points with higher scores indicating poorer outcomes. There is evidence to support the reliability and convergent validity of each of the scales.

Nine scales assessing functional outcomes were frequently used in the included studies. Of these, four scales were entirely patient self-reported, while the remaining five included both self-reported and health professional-assessed components. The majority of the measures assessed pain, activities of daily living, range of motion and strength. Less commonly evaluated domains included patient satisfaction, joint stability, and recreation activities. Most scoring systems calculated an overall score out of 100 points, however the distribution of the points by domain varied across the tools. Psychometric properties also varied across the scales. The majority of the scales have evidence to support their reliability. In addition, some scales demonstrated strong correlations with other commonly used shoulder assessment scales.

		ated quality of life scales	
Outcome measure	Domains	Scaling	Psychometric properties (validity; reliability; responsiveness)
Rotator Cuff Quality of Life (RC-QOL) ²⁸ Patient self-reported	Symptoms & physical complaints (16 items) Work-related concerns (4 items) Sports & recreation (4 items) Lifestyle issues (5 items) Social & emotional issues (5 items)	34 items, each rated on a 100-point VAS. Total score ranges from 0 (worst) to 100 (best).	Correlation with SF-36 (r_p =0.778), ASES (r_p =0.842), ²⁸ Correlation with WORC (r_s ≥0.70); ²⁹ ICC 0.97* (test-retest reliability presented as avg error difference of 5.05%); ²⁸ SRM 1.43, ²⁹ MCID NR
Short Form-36 (SF- 36) ³⁰ Patient self-reported	Physical function (10 items) Role-physical (4 items) Bodily pain (2 items) General health (5 items) Vitality (4 items) Social function (2 items) Role-emotional (3 items) Mental health (5 items)	Items are scored using 5-level response options. Domains are summed & translated to two aggregate summary measures (physical health & mental health), with scores ranging from 0 (worst health) to 100 (best health)	 Moderate correlation with shoulder instruments (SPADI, SST, ASES) 0.58≤r_p≤0.72;³¹ Cronback's α≥0.85; ICC≥0.80 for all dimensions except social functioning (0.76);³⁰ Low responsiveness: SRM: PCSS 1.0, MCSS 0, subscales on bodily pain: 1.1³²
Western Ontario Rotator Cuff Index (WORC) ³³ Patient self-reported	Physical Symptoms (6 items) Sports/Recreation (4 items) Work (4 items) Lifestyle (4 items) Emotions (3 items)	21 items, each rated on a 100-point VAS. Scores presented in raw form or converted to a percentage. Best score (no decrease in shoulder-related QOL) is 100% (raw score=0). Worst score (extreme decrease in shoulder-related QOL) is 0% (raw score=2100).	As a discriminative instrument, correlated most strongly with ASES (r=0.68) & DASH (r=0.63); as a evaluative instrument, correlated with ASES (r=0.75) & UCLA (r=0.65); ³³ ICC 0.96; ³³ SRM 1.44, ²⁹ MID change in total score of 245.26 (11.7%), moderate difference change in total score of 371.3 (17.68%), and large difference change in total score of 773.4 (36.82%) ³³
	Functional o	utcome scales: self-reported	
Outcome measure	Domains	Scaling	Psychometric properties (validity; reliability; responsiveness)
Disabilities of the Arm, Shoulder and Hand (DASH) ^{34,35} Patient self-reported	Items related to activities of daily living, pain, weakness & function. *Optional modules to assess: high performance sport/ music or work.	30 items, rated on a 5-point Likert scale. Total score ranges from 0 points (best) to 100 points (worst).	 Strong correlation (r≥0.70) with commonly used scales, except SF-36 and clinical variables (r=0.30–0.70);³⁶ ICC 0.82–0.98, weighted avg 0.90, SEM 2.84–5.22, weighted avg 4.5, MDC (90% CI) 6.6–12.2, weighted avg 10.5;³⁶ Responsiveness similar to other joint-specific measures. ES 0.4–1.4, weighted avg 1.1, SRM 1.1–1.7, weighted avg 1.3, MCID 10.2³⁶

ASES = American Shoulder and Elbow Surgeons scale; avg = average; CMS = Constant-Murley score; DASH = Disabilities of the Arm, Shoulder and Hand; ES = effect size; ICC = interclass correlation coefficient; JOA = Japanese Orthopaedic Association scale; MCID = minimal clinically important difference; MCSS = mental component summary score; MDC = minimal detectable change; MID = minimal important difference; PCSS = physical component summary score; PENN = University of Pennsylvania Shoulder Score; RC-QOL = Rotator Cuff Quality of Life questionnaire; ROM = range of motion; SEM = standard error of the measure; SF-36 = Short Form-36; SST = Simple Shoulder Test; SPADI = Shoulder Pain and Disability Index; SRM = standardized response mean (mean change score/SD change score); SRQ = Shoulder Rating Scale; UCLA = University of California Los Angeles scale; UEFI = upper extremity functional index; VAS = visual analogue scale; WORC = Western Ontario Rotator Cuff Index *Calculated by UAEPC using raw data from Hollinshead et al.

Table 1. Summary of most frequently reported outcome measures

Functional outcome scales: self-reported					
Outcome measure	Domains	Scaling	Psychometric properties (validity; reliability; responsiveness)		
Insalata Shoulder Rating Questionnaire (SRQ) ³⁷ Patient self-reported	Global Assessment Domain (10-point VAS) Pain (4 items) Activities of Daily Living (6 items) Recreation & Athletic Activities (3 items) Work (4 items) Satisfaction (1 item) Importance (patients ranks the 2 areas most important for improvement)	 18 items rated using 5-level response options; one item rated on a 10-point VAS. Total scores range from 17 (worst) to 100 (best) points & are calculated using a weighting system. 	High correlation with the Arthritis Impact Measurement Scales 2 (0.56–0.89), ³⁷ Cronbach's α 0.86, Kappa 0.73–0.97; ³⁷ SRM 1.9, ³⁷ MCID 13 ³⁸		
Simple Shoulder Test (SST) ³⁹ Patient self-reported	Items related to activities of daily living.	12 functional task questions answered yes=1 or no=0. Total score is the number of "yes" responses; Best score 12/12, represents no disability; Total score range is 0-12 (transformed to a percentage).	 Strong correlation (r≥0.70) with commonly used scales, except SF-36 and clinical variables (r=0.30–0.70);³⁶ Cronbach's α 0.85, SEM (95% CI) 11.65 (22.8),⁴⁰ ICC 0.97–0.99, weighted avg 0.98, MDC not defined;³⁶ ES 0.8, SRM 0.8–1.8, weighted avg 0.9, MCID not defined³⁶ 		
Shoulder Pain and Disability Index (SPADI) ^{41,42} Patient self-reported	Pain (5 items) Disability (8 items)	13 items each scored on a scale from 0 to 10. Total score ranges from 0 points (best) to 100 points (worst)	Strong correlation (r≥0.70) with commonly used scales, except SF-36 and clinical variables (r=0.30–0.70); ³⁶ Cronbach's α 0.95,0.96, ICC>0.85, 0.85–0.95, weighted avg 0.89, SEM 6.2–7.8, MDC (90% CI) 18.1; ³⁶ ES 1.2–2.1, weighted avg 1.6, SRM 1.1–1.7, weighted avg 1.3, MCID 8, 13.2 ^{36,38}		
	Functional outcome scale	s: self-reported and clinician-assess			
Outcome measure	Domains	Scaling	Psychometric properties (validity; reliability; responsiveness)		
American Shoulder and Elbow Surgeons (ASES) ^{43,44} Patient self-reported & clinician-assessed	Pain (1 item, 10-point VAS) Activities of daily living (10 items, rated on 4-point scale) ROM – active & passive Physical signs (0 to 3) Strength (0 to 5 grade) Instability (0 to 3)	Shoulder score derived from self- reported components (pain & cumulative activities of daily living score), ranging from 0 points (worst) to 100 points (best).	 Strong correlation (r≥0.70) with commonly used scales, except SF-36 and clinical variables (r=0.30–0.70);³⁶ Cronbach's α 0.86, ICC>0.84, ICC 0.84–0.96, weighted avg 0.91,³⁶ MDC (90% CI) 9.4, SEM 6.7;⁴⁵ ES 0.9–3.5, weighted avg 1.4, SRM 0.5–1.6, weighted avg 1.1, MCID 6.4^{36,45} 		
Japanese Orthopaedic Association (JOA) Patient self-reported & clinician-assessed	Pain (30 points) Function (strength in abduction, endurance, activities of daily living) (20 points) ROM (30 points) Radiographic evaluation (5 points) Joint stability (15 points)	Total score ranges from 0 points (worst) to 100 points (best).	Spearman's rank correlation coefficient between observers: r>0.78		

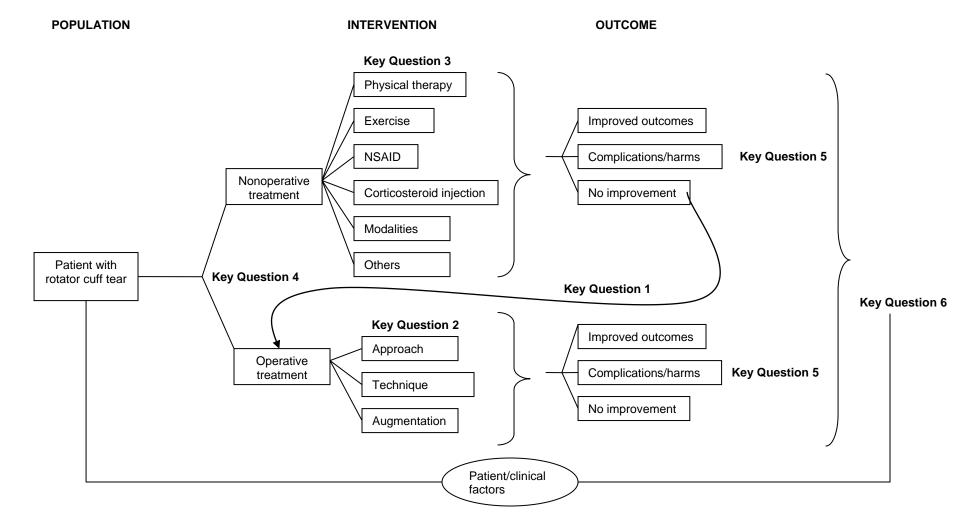
Table 1. Summary	/ of most fre	equently re	eported outcomes	measures	(continued)

Functional outcome scales: self-reported and clinician-assessed			
Outcome measure	Domains	Scaling	Psychometric properties (validity; reliability; responsiveness)
University of California Los Angeles (UCLA) ^{46,47} Patient self-reported & clinician-assessed	Pain (10 points) Function (10 points) ROM (5 points) Strength (5 points) Patient satisfaction (5 points)	Maximum 35 points (best).	Fair correlation with CMS (r_s =0.66) & SST(r_s =0.76); ⁴⁷ ICC: pain (0.59–0.78), function (0.51–0.89), satisfaction (0.79) ⁴⁸
University of Pennsylvania Shoulder Score (PENN) ⁴⁹ Patient self-reported & clinician-assessed	Pain (30 points) Satisfaction Function (20 items, 4-category Likert scale) ROM Strength	Maximum 100 points for both the self-reported and clinician- assessed measures; higher scores indicate greater (best) function	Strong correlation with CMS (r=0.85) & ASES (r=0.87); Cronbach's α 0.93, ICC (95% CI) 0.94 (0.89-0.97), MDC (90% CI) 8.5, SEM (90% CI) 12.1 ES 1.01, SRM 1.27, MCID 11.4 ⁴⁹

Table 1. Summary	v of most frequent	v reported outcome	measures (continued)

Objectives

The objective of this review is to provide a comprehensive synthesis of the evidence examining the effectiveness of nonoperative and operative interventions for the treatment of RC tears. The report is intended for a broad audience, including professional societies developing clinical practice guidelines, patients and their care providers, as well as researchers conducting studies on treatments of this condition. Outcomes of interest include health-related quality of life, shoulder function, time to return to work, cuff integrity, pain, range of motion and strength of the shoulder. The key questions investigated in this report are presented below, alongside an analytic framework (Figure 1).


Key Questions

The following key questions were investigated for a population of adult patients with partial- and full-thickness RC tears:

- 1. Does early surgical repair compared to late surgical repair (i.e., nonoperative intervention followed by surgery) lead to improved health-related quality of life, decreased disability, reduced time to return to work/activities, higher rate of cuff integrity, less shoulder pain, and increased range of motion and/or strength?
- 2. What is the comparative effectiveness of operative approaches (e.g., open surgery, miniopen surgery, arthroscopy) and postoperative rehabilitation on improved health-related quality of life, decreased disability, reduced time to return to work/activities, higher rate of cuff integrity, less shoulder pain, and increased range of motion and/or strength?
 - a. Which operative approach should be used for different types of tears (e.g., partial-thickness, full-thickness, small, medium, large or massive, with or without fatty infiltration of muscle tissue)?
- 3. What is the comparative effectiveness of nonoperative interventions on improved healthrelated quality of life, decreased disability, reduced time to return to work/activities, higher rate of cuff integrity, less shoulder pain, and increased range of motion and/or strength? Nonoperative interventions include, but are not limited to, exercise, manual therapy, cortisone injections, acupuncture, other treatments and modalities typically delivered by physical therapists, osteopaths and chiropractors.
 - b. Which nonoperative treatment approach should be used for different types of tears (e.g., partial-thickness, full-thickness, small, medium, large or massive, with or without fatty infiltration of muscle tissue)?
- 4. Does operative repair compared to nonoperative treatment lead to improved healthrelated quality of life, decreased disability, reduced time to return to work/activities, higher rate of cuff integrity, less shoulder pain, and increased range of motion and/or strength?
- 5. What are the associated risks, adverse effects, and potential harms of nonoperative and operative therapies?

- 6. Which demographic (e.g., age, gender, ethnicity, comorbidities, workers' compensation claims) and clinical (e.g., size / severity of tear, duration of injury, fatty infiltration of muscle) prognostic factors predict better outcomes following nonoperative and operative treatment?
 - c. Which (if any) demographic and clinical factors account for potential differences in surgical outcomes between patients who undergo early vs. delayed surgical treatment?

Figure 1. Analytic framework corresponding to the key questions

Chapter 2. Methods

This chapter describes the prospectively designed protocol that the University of Alberta Evidence-based Practice Center (UAEPC) used to synthesize the evidence on nonoperative and operative interventions for RC tears. The topic refinement process for developing the key questions is described. We outline the literature search strategy, the selection process for identifying relevant articles, the process for extracting data from eligible studies, the methods for assessing the methodological quality of individual studies and for rating the overall body of evidence, and our approach to data analysis and synthesis.

Topic Refinement and Technical Expert Panel

The UAEPC was commissioned to conduct a preliminary literature review to gauge the availability of evidence and to draft the key research questions for a full comparative effectiveness review. In consultation with AHRQ and the Scientific Resource Center, a Technical Expert Panel (TEP) was invited to provide input in the development of the key questions and scope of the evidence report. The public was invited to comment on these questions over a period of 3 months. After reviewing the public commentary, the key questions were finalized and submitted to AHRQ for approval.

The TEP was subsequently invited to provide high-level content and methodological expertise throughout the development of the comparative effectiveness report. The names of technical experts are available in Appendix A.

Literature Search Strategy

Search strategies were designed and implemented to identify evidence relevant to the report. The following bibliographic databases were searched systematically for studies published from 1990 to 2009: Medline[®], Embase, EBM Reviews–The Cochrane Library, AMED, Cinahl[®], SPORTDiscus with Full Text, Academic Search Elite, Health Source, Science Citation Index Expanded (via Web of Science[®]), Scopus[®], BIOSIS Previews[®], and PubMed. Additional searches of the Grey Literature were conducted in Conference Papers Index, Computer Retrieval of Information on Scientific Projects (CRISP), Scopus[®], as well as government websites by the U.S. Food and Drug Administration and Health Canada. Databases that yielded included studies (Medline[®], Embase, Central, and CINAHL) were searched again in September 2009 to identify recently published studies.

Search terms were selected by scanning search strategies of systematic reviews on similar topics and by examining index terms of potentially relevant studies. A combination of subject headings and textwords were adapted for each electronic resource which included terms for rotator cuff ('rotator cuff*' or 'rotator interval*' or 'supraspin?tus' or infraspin?tus or "teres minor" or 'subscapularis' or 'anterosuperior' or 'posterosuperior') and tear terms ('tear' or 'tears' or 'tore' or 'torn' or 'lesion*' or 'rupture*' or 'avuls*' or 'injur*' or 'repair*' or 'debride*). Language restrictions were not applied. (See Appendix B for detailed search strategies)

Hand searches were conducted to identify literature from symposia proceedings from the following scientific meetings: Arthroscopy Association of North America (2007-2009), American Academy of Orthopaedic Surgeons (2007-2009), American Physical Therapy

Association (2006-2008), American Shoulder and Elbow Surgeons (2005-2008), American Society of Shoulder and Elbow Therapists (2004-2008), European Congress of Physical and Rehabilitation Medicine 2008, Congress of the European Society for Surgery of the Shoulder and the Elbow (2009) and the Mid-America Orthopaedic Association (2006-2008). Ongoing studies were identified by searching clinical trials registers (See Appendix B) in addition to contacting experts in the field. Reference lists of relevant reviews were searched to identify additional studies.

The results from the literature searches were entered into a Reference Manager for Windows bibliographic database version 11.0 (© 2004-2005 Thomson ResearchSoft) for management.

Criteria for Study Selection

The study inclusion and exclusion criteria were developed in consultation with the TEP (Table 2). In consultation with the TEP, a post hoc decision was made to exclude uncontrolled studies that were either retrospective or unclear in their direction, as well as case series. For the literature update, only comparative studies were included. The decision was made to include only operative studies published in English due to lack of translation resources. English, German and French publications were considered for studies examining nonoperative treatments and postoperative rehabilitation, since the literature on these interventions was sparse (n=7). This resulted in the exclusion of 80 of the 1010 studies (7.9 percent) retrieved for selection.

Category Criteria	
Publication type	Include: Primary research published in 1990 or later
	Exclude: Non-English studies, with the exception of nonoperative studies
	published in French or German
Study design	Include: Any controlled study design and prospective uncontrolled studies (for
	update, only controlled designs)
	<i>Exclude:</i> Studies with ≤10 participants
Population	Adults (≥18 years) with partial- or full-thickness RC tear(s), confirmed by
	imaging or intraoperative findings. Excluded were studies whose primary
	intention is not the treatment of RC tears, or in which greater than 20% of
	participants have rheumatoid or other inflammatory arthritis (not OA), or are
	undergoing revision of failed RC tears.
Intervention	Any operative or nonoperative intervention or postoperative rehabilitation for
	the treatment of RC tears. Studies examining tendon transfers, arthroplasty
	or postoperative pain management were excluded.
Comparator	Any operative or nonoperative intervention or postoperative rehabilitation was
	an eligible comparator.
Outcomes of interest	Studies must report at least one of the following outcomes: quality of life,
	disability / function, time to return to work / activities, pain, range of motion,
	strength. Minimum duration of followup was 12 months for operative studies.

Table 2. Eligibility criteria for the review

Article screening was conducted in two phases. First, two reviewers (AM, DJ, LH, JS, NH) independently screened the titles, keywords and abstracts (when available) to determine if an article met the general inclusion criteria. Each article was rated as "include," "exclude," or "unclear." The full text of all articles classified as "include" or "unclear" by one or both of the reviewers was retrieved for detailed review. Second, two reviewers independently assessed each study using a standard inclusion/exclusion form (Appendix C1). Disagreements were resolved by consensus or third-party adjudication. Non-English studies were assessed by only one reviewer.

Assessment of Methodological Quality

The internal validity of randomized controlled trials (RCTs) and controlled clinical trials (CCTs) was assessed using the Cochrane Collaboration Risk of Bias tool.⁵⁰ (Appendix C2) This tool consists of six domains (sequence generation, allocation concealment, blinding, incomplete outcome data, selective outcome reporting, and "other" sources of bias) and a categorization of the overall risk of bias. Each separate domain is rated "yes," "unclear," or "no." Blinding and incomplete outcome data were assessed separately for subjective outcomes (e.g., quality of life or function scales) and objective clinical outcomes (e.g., range of motion). The overall assessment was based on the responses to individual domains. If one or more individual domains were assessed as having a high risk of bias, the overall score was rated as high risk of bias. The overall risk of bias for all other studies was rated as unclear. In addition, information was collected for each study on the source of funding⁵¹ and whether an intention-to-treat analysis was performed.^{52,53}

Observational analytic studies were assessed using modified cohort and case-control Newcastle-Ottawa Quality Assessment Scales (NOQAS) (Appendix C2).⁵⁴ The NOQAS includes seven items assessing sample selection, comparability of cohorts, and the assessment of outcomes. One star was allotted for each item that was adequately addressed in the study, with the exception of the comparability of cohorts, for which a maximum of two stars could be given. The overall score was calculated by tallying the stars, with a total possible score of eight stars. In addition, information regarding the source of funding was collected.⁵¹

The methodological quality of uncontrolled studies was assessed using a quality checklist developed by the UAEPC (Appendix C2). The checklist assessed three components theoretically associated with bias in observational studies: consecutive enrollment, incomplete outcome data and standardized/independent approach to outcome assessment. In addition, the source of funding was documented for each study.⁵¹

Two reviewers (JS, JRS, KB, SM) independently assessed the methodological quality of the included studies. Non-English studies were assessed by only one reviewer (LH, JS) due to limited translation resources. Each assessment form was pilot tested on a sample of studies. Decision rules regarding application of the tools was developed a priori through discussions with content and methodology experts. Discrepancies in quality assessment were resolved through consensus or third-party adjudication.

Data Extraction

Data were extracted using a standardized form and entered into a Microsoft Excel[™] database (Microsoft Corp., Redmond, WA) (Appendix C3). Data were extracted by one reviewer (AM, JS, JRS, KB, LH, SM) and checked for accuracy and completeness by a second (JS, JRS, KB, SM). Extracted data included study characteristics, inclusion/exclusion criteria, participant characteristics, interventions, and outcomes. Reviewers resolved discrepancies in data extraction by consensus or in consultation with a third party.

Operative studies were divided into three broad categories by type of intervention: approach, technique, and augmentation. Studies which focused on the use of an open, mini-open or arthroscopic approach to RC repair (RCR), debridement, acromioplasty or other procedure were categorized as "operative approach." Studies that compared the effectiveness of different suture or anchor types or configurations were labelled as investigating an "operative technique." "Operative augmentation" was reserved for studies that examined the use of a surgical augment, such as the use of grafts or patches in the repair of an RC tear.

Before-and-after (BA) studies were defined as single-arm studies that report both baseline and followup data scores. Cohort studies that compared the effectiveness of a single intervention across two patient populations (e.g., open repair in older vs. younger patients) were classified as "cohort studies with BA data." For the purposes of examining the effectiveness of operative procedures (Key Question 2), the data across the patient groups was combined and analysed as for a BA study. BA studies and cohort studies with BA data are collectively referred to as uncontrolled studies. The effects of prognostic variables on treatment outcomes were explored separately in Key Question 6.

A post hoc decision was made to extract data on cuff integrity as an additional outcome of interest for all the included studies. For the uncontrolled studies, the decision was made to examine only four key outcomes considered to be the most clinically relevant by the clinical investigators (DS, CL): health-related quality of life, functional outcomes, time to return to work, and cuff integrity.

Applicability

The applicability of the body of evidence was assessed following the PICOTS (population, intervention, comparator, outcomes, timing of outcome measurement, setting) format used to assess study characteristics. Factors that may potentially weaken the applicability of individual studies were extracted and presented in the evidence tables (Appendix E).

Rating the Body of Evidence

We used the EPC GRADE approach, based on the standard GRADE approach,^{55,56} to assess the quality of the body of evidence for each outcome. The strength of evidence was assessed for four key outcomes identified by the clinical investigators to be most clinically important: health-related quality of life, functional outcomes, time to return to work, and cuff integrity. The following four major domains were examined: risk of bias (low, medium, high), consistency (no inconsistency, inconsistency present, unknown or not applicable), directness (direct, indirect), and precision (precise, imprecise). When no studies were available for an outcome or comparison of interest, the evidence was simply graded as insufficient. Each key outcome on each comparison of interest was given an overall evidence grade based on the ratings for the individual domains. The overall strength of evidence was graded as high (further research is very unlikely to change our confidence in the estimate of effect), moderate (further research may change our confidence in the estimate of effect and is likely to change the estimate), low (further research is likely to change the confidence in the estimate of effect and is likely to change the estimate) or insufficient (evidence either is unavailable or does not permit estimation of an effect). The body of evidence was graded by one reviewer (LH).

Data Analysis

The following data assumptions were made and imputations performed to transform reported data into the form required for analysis. Graphical data was extracted using CorelDRAW[®] 9.0 (Corel Corp., Ottawa, Canada). If necessary, means were approximated by

medians, and 95 percent confidence intervals (95% CI) were used to calculate approximate standard deviations (SD).

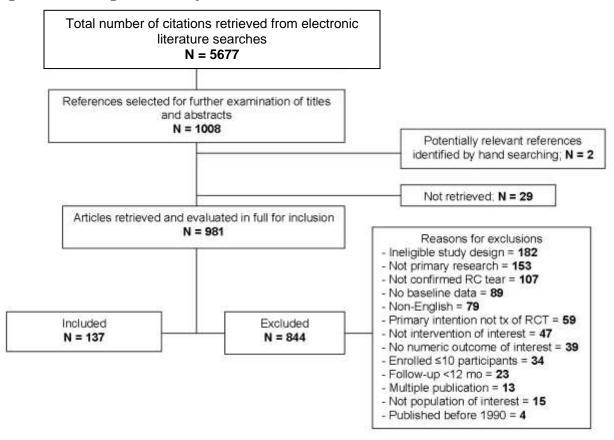
Evidence tables and qualitative description of results are presented for all included studies. When appropriate, meta-analyses were performed to support inferences on the effectiveness of nonoperative and operative interventions for treatment of RC tears. We reported outcomes only if numeric data were available in the study or could be derived from graphs. Outcomes that were only described qualitatively (e.g., "pain improved by 6 weeks") or reported only as a p-value were not included in the evidence tables or data analysis.

Decision-making criteria regarding the instances in which pooled estimates should be derived from individual studies were established a priori. Comparative studies were considered appropriate to combine if the study design, study population, interventions being compared, and outcomes were sufficiently similar. Trials (RCTs and CCTs) and cohort studies were analysed separately. Study populations were considered similar if the type of tear (full-thickness or partial-thickness) and size of tear was common among eligible studies. More than two studies comparing the same intervention arms were necessary in order to conduct a meta-analysis. Finally, studies were only combined when they reported the use of similar outcome measures. Scales were classified as being either health-related quality of life measures or as functional outcome scales, and meta-analyses were only conducted within scales of the same classification.

Graphs were created to display the preoperative and postoperative scores of uncontrolled studies, cohort studies and trials, over the duration of the study followup period. Due to the low level of evidence represented by uncontrolled studies, these studies were not analyzed quantitatively.

Quantitative results were meta-analyzed in Review Manager version 5.0 (The Cochrane Collaboration, Copenhagen, Denmark). For continuous variables measured on the same scale (e.g., range of motion), mean differences were calculated for individual studies, and weighted mean differences (WMD) was calculated for the pooled estimates. For continuous variables measured on different scales (e.g., health-related quality of life or functional outcome scales), mean differences were calculated for separate studies and standardized mean differences (SMD) were calculated for the pooled estimates. All results are reported with 95% CI when possible. Statistically significant results were considered to be clinically relevant if they exceeded a minimal clinically important difference of ten percent on any given scale.⁵⁷

Results were combined using random effects models. Statistical heterogeneity was quantified using the I-squared (I^2) statistic. A value greater than 50 percent was considered to be substantial heterogeneity.^{58,59}


Chapter 3. Results

Literature Search

The search strategy identified 5,677 citations from electronic databases. After screening titles and abstracts, 1008 studies were assessed to be potentially relevant. Two additional study were identified for further examination by hand searching the reference lists from previous systematic reviews and conference proceedings. The full text articles of twenty-nine studies could not be retrieved through the university interlibrary loan service (Appendix F). Therefore, the full text of 981 potentially relevant reports was retrieved and evaluated for inclusion in the review. The application of the selection criteria to the 981 reports resulted in 137 studies being included and 844 being excluded (Figure 2).

The five main reasons for excluding studies from this review were (1) ineligible study design (n=182), (2) the article did not report on primary research (n=153), (3) the diagnosis of RC tear was not confirmed using imaging or intraoperative findings (n=107), (4) no baseline data was reported in a single-arm study (n=89), and (5) the study was not published in English (n=79). Two hundred and thirty-four studies were excluded for other reasons (Figure 2). A complete list of excluded studies and reasons for exclusion is provided in Appendix F.

Thirteen studies were excluded because they were considered to be multiple publications; that is, they were either abstracts of full reports, reports published subsequent to the primary study or reported secondary outcomes. Generally, the report that provided the longest followup data or the largest sample size was regarded as the primary study. For one study, the initial publication was included since it reported full baseline data,⁶⁰ however the 10-year followup data from a subsequent publication was incorporated into the results.⁶¹ In two instances, both the primary publication^{62,63} and their respective secondary publications^{64,65} were included in the review, since the articles focused on different key questions.

Figure 2. Flow-diagram for study retrieval and selection

Description of Included Studies

One hundred and thirty-seven studies provided evidence on the six key questions addressed in this report. Appendix F describes the key characteristics of the studies included in the review. One study⁶⁶ examined the effect of early vs. late surgical RCR (Question 1). All of the included studies addressed the effectiveness of an intervention for the treatment of RC tears (Questions 2 to 4). Operative treatments (Question 2) were evaluated in 113 (82 percent) studies,^{60,62-65,67-174} while postoperative rehabilitation procedures (Question 2) were examined in 11 (8 percent) studies.¹⁷⁵⁻¹⁸⁵ Ten (7 percent) studies^{165,186-194} examined the effectiveness of nonoperative treatments (Question 3) and five (4 percent) studies^{66,165,195-197} compared nonoperative therapy to operative intervention (Question 4). One of the studies¹⁶⁵ included four study arms (two operative and two nonoperative) and was included in three categories: operative interventions, nonoperative interventions and nonoperative vs. operative interventions. Complications (Question 5) were addressed in 85 studies.^{63-68,70,73-78,80-84,88,91-99,101,103,107-114,117-122,124,127,129-132,134,136-140,145-147,151-153,155-159,161-163,167,169-171,173,174,176,179,180,182,184,186,189,190,194}

Prognostic factors (Question 6) were examined in 72 studies.^{60,62,64,65,68,70-77,80,83,84,86,89,90,92,93,99-101,103-105,107-110,112,114-117,119-125,128,130,131,133-135,141,142,144,145,147-149,151,154,157,160,162,164,166,173-175,180,181, 184,187,188,197}

The studies were published between 1990 and 2010 (median=2005 [interquartile range (IQR): 2003 to 2007]). All of the studies were published as peer reviewed articles, with the

exception of four abstracts.^{87,140,183,195} Studies were conducted in the United States (n=49, 36 percent), Europe (n=56, 41 percent), Asia (n=18, 13 percent) and other regions (n=14, 10 percent). The studies were published in English, with the exception of four French (two nonoperative^{186,190} and two postoperative rehabilitation^{177,181}) and three German (two nonoperative^{188,193} and one postoperative rehabilitation¹⁸²) studies. The number of participants in the studies ranged from 12 to 224 (median=55 [IQR: 33 to 93]). The mean age of study participants ranged from 41.2 to 80 years.

Of the 137 included studies, 21 (15 percent) were RCTs. All were parallel, two-arm, superiority trials. One RCT¹⁹⁴ examined nonoperative interventions, twelve^{71,73,78,81,96-98,102,105,109,133,136} evaluated operative interventions and six^{178-180,182,184,185} assessed postoperative rehabilitation and two studies^{66,195} compared operative and nonoperative treatments. Six (4 percent) of the included studies were CCTs, of which five assessed operative treatments. Six (4 percent) of the included studies were CCTs, of which five assessed operative treatments^{114,117,137,143,163} and one¹⁷⁶ assessed postoperative rehabilitation. Thirteen prospective cohort studies were included. Operative interventions were evaluated in eleven, ^{64,72,77,85,88,112,118,129,140,147,148} while one study¹⁹⁶ compared operative to nonoperative treatments, and one¹⁷⁷ evaluated postoperative rehabilitation. There were 26 retrospective cohort studies included in the review, including two postoperative rehabilitation study,^{181,183} 22 operative studies, ^{63,68,75,87,94,106,113,119,125,132,134,138,139,154,157,159,165,167,170-173} one nonoperative study¹⁹¹ and two studies comparing nonoperative vs. operative treatments.

There were 71 uncontrolled studies, including 55 BA studies, 10 prospective cohorts with BA data, and five retrospective cohort with BA data. Of the BA studies, six^{186,187,189,190,192,193} evaluated a nonoperative intervention, 48 examined an operative intervention, ^{60,65,67,69,70,74,76,79,80,82-84,89-91,95,99-101,103,104,108,110,111,115,116,120-124,127,130,131,142,145,151-153,155,156,158,160,161,166,168,169,174} and one¹⁷⁵ assessed postoperative rehabilitation. Nine of 10

prospective cohort studies with BA data evaluated operative interventions,^{62,86,92,93,107,126,141,144,146} while the remaining study¹⁸⁸ examined a nonoperative intervention. All five retrospective cohorts with BA data examined operative interventions.^{128,135,149,150,162} One case-control BA study¹⁶⁴ assessed an operative procedure.

Methodological Quality of Included Studies

The methodological quality of each included study was assessed by two independent reviewers and the consensus ratings are presented in Appendix D, Tables D1 to D3. A summary of the overall quality trends by study design is presented below.

Randomized Controlled and Controlled Clinical Trials

The risk of bias assessments for each of the RCTs and CCTs is presented in Appendix D, Table D1. All of the 21 RCTs were rated as having high risk of bias for both patient-rated and clinically assessed outcomes. The allocation sequence was adequately generated in 16 trials. ^{66,73,78,96-98,102,105,109,133,136,178-180,182,185} Allocation concealment was adequate in eight trials, ^{66,78,96,98,105,133,136,179} inadequate in three trials, ^{73,81,178} and unclear in the remaining trials. No trial used sufficient methods to ensure the blinding of participants and outcome assessors for either patient-reported or clinically assessed outcomes. Half of the RCTs adequately addressed incomplete outcome data (n=11). ^{66,73,78,81,97,102,105,109,136,182,194} All but two studies^{136,195} were free of selective outcome reporting, and other sources of bias were identified in five trials. ^{78,109,136,182,184} Five trials reported conducting an intention-to-treat analysis. ^{66,96,98,136,182} The six CCTs were similarly all rated as having high risk of bias. None of these trials reported adequate sequence generation, allocation concealment or blinding. Three trials addressed incomplete outcome data adequately.^{114,117,163} All of the trials were free of suggestion of selective outcome reporting. The impact of other sources of bias was unclear in four studies.^{114,137,163,176} Intention-to-treat analysis was reported in one CCT.¹⁷⁶

The source of funding was not reported in the majority of the trials (n=15, 56 percent). For studies that reported funding, sources included an academic institution,^{136,179} government,^{109,136,178} foundation^{136,185} and industry.^{78,109,182} Five studies reported receiving no funding.^{73,105,117,143,180}

Cohort Studies

The Newcastle-Ottawa quality assessment of the 39 cohort studies is presented in Appendix D, Table D2. Data was prospectively collected in 13 cohort studies^{64,72,77,85,88,112,118,129,140,147,148,177,196} and retrospective in 26 studies.^{63,68,75,87,94,106,113,119,125,132,134,138,139,154,157,159,165,167,170-173,181,183,191,197} Overall, the methodological quality of the cohort studies was moderate (median score=5/8 stars; IQR: 4 to 6). The majority enrolled patients that were rated to be truly or somewhat representative of average patients in the community (n=28, 72 percent). The nonexposed cohort was drawn from the same community as the exposed cohort in 36 studies; in three studies, the nonexposed cohort was drawn from a different source.^{94,139,197} All studies ascertained the exposure status from a secure source, most commonly from surgical records. Nearly half of the studies (n=18, 46 percent) controlled for potential confounding variables in their design or analysis.^{72,75,77,87,112,119,125,134,147,148,154,159,165,167,170,173,181,196} In four studies, there was independent blind outcome assessment;^{112,134,147,148} the remaining studies had self-reported outcomes (n=20, 51 percent), were described as unblinded (n=6, 15 percent), or did not describe methods for outcome assessment (n=9, 23 percent). All of the cohort studies had a followup duration of at least 12 months, with the exception of two postoperative rehabilitation studies^{177,183} and one nonoperative study.¹⁹¹ The rate of followup was considered unlikely to introduce bias in the majority of studies (n=24, 62 percent); however, nine studies were rated as having inadequate followup,^{72,113,119,129,132,134,157,167,177} and six did not describe the followup rate.^{85,87,94,106,138,140} Source of funding was not reported by 29 of the cohort studies (74 percent). One study

Source of funding was not reported by 29 of the cohort studies (74 percent). One study received government funding,¹⁴⁸ one received foundation and government funding,⁷² and one received industry funding.¹³⁴ The remaining seven studies reported receiving no funding.^{68,75,94,106,125,147,170}

Uncontrolled Studies

The methodological quality of the 55 BA studies, 15 cohort studies with BA data, and one case-control study with BA data was assessed for three domains: consecutive enrollment, incomplete outcome data, and approach to outcome assessment. The quality assessment is presented in Appendix D, Table D3. Of the 71 studies, 45 (63 percent) reported consecutive enrollment of participants, three (4 percent) did not use consecutive enrollment^{76,79,93} and the remaining 23 studies were unclear. The majority of studies (n=55, 77 percent) adequately addressed incomplete outcome data. Seven studies^{69,116,131,142,160,175,187} had inadequate followup and nine were unclear.^{89,107,123,124,149,158,186,189,190} A standardized approach was used to assess

outcomes in 29 studies (41 percent). Of the remaining studies, 31 (44 percent) were unclear and 11 used no standardized assessment approach.^{80,90,93,100,101,131,149,160,161,168,175}

Source of funding was not reported in the majority of studies (n=44, 62 percent). No funding was received in 22 studies (31 percent).^{74,80,83,99,100,107,110,111,120-123,127,131,135,141,144,153,158,160,164,174} The remaining studies were supported through foundations,^{116,168,187} industry,¹⁹³ or professional associations.¹⁷⁵

Results of Included Studies

This section is organized by the six key research questions addressed in this report. For each intervention category, the evidence from comparative studies (trials and cohorts) and uncontrolled studies is presented separately. A summary of key findings is provided, followed by a description of the characteristics and findings of the individual trials and cohort studies. Tables summarizing the general patient and summary characteristics, as well as the outcome data, are presented for each comparative study. In addition, a grading of the body of evidence is based on the comparative studies only and presented by key outcome. The uncontrolled studies are described in aggregate form and the results are presented visually for each intervention category. Appendix E presents detailed evidence tables on each of the included studies.

Question 1. Early Surgical Repair vs. Late Surgical Repair

One RCT recently conducted by Moosmayer et al.⁶⁶ provided data for the comparison of early vs. delayed surgical RCR. One hundred and three patients with small or medium-sized fullthickness RC tears were randomly assigned to nonoperative treatment consisting of manual techniques and exercises (n=51) or immediate surgical repair (n=52); 102 were followed for a minimum of 12 months. Nine of the patients initially randomized to nonoperative treatment were not satisfied with their degree of improvement after completing 15 treatment sessions, and were offered secondary surgery; these patients constituted the late surgery group. Health-related quality of life was assessed using the Short Form-36 Health Survey (SF-36) scale, while function was measured using the Constant-Murley score (CMS), the American Shoulder and Elbow Surgeons (ASES) index. In addition, cuff integrity was evaluated in the two surgical groups using magnetic resonance imaging (MRI). SF-36 scores were not reported for the secondary surgical group. Both the early and delayed surgical groups showed clinically important improvement from baseline to 12 month assessments. The improvement in the ASES score was similar between the early and late surgery groups (improvement of 47.1 and 46.8 points, respectively), however the improvement in the early surgical group was superior to the late surgical group on the CMS (improvement of 41.5 points and 33.6 points, respectively. The level of significance between these difference scores was not reported. Comparisons between the early surgery group and the nonoperative treatment arm are presented under Question 5 (nonoperative vs. operative treatment).

No other studies directly compared the effectiveness of early vs. late surgical repair of RC tears. However, a number of studies conducted a subgroup or regression analysis to assess whether time to surgery was a significant factor in predicting operative outcomes. Results of these studies are presented under Question 6 (prognostic variables).

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; Size of tear Duration of symptoms (mo), mean±SD (range)
Moosmayer S, ⁶⁶ 2010	G1: PT (51) G2: Open / mini-open RCR (early) (52)	G1: 61±7.6 yr / Males: 36 (71) G2: 59±7.5 yr / Males: 37 (71)	FTT; Sm, Med
	G3: Secondary surgery (late) (9)*	G3: NR	G1: 9.8±9.8 mo; G2: 12.3±18.7 mo; G3: NR
	RCT		

Table 3. Study and patient characteristics for studies assessing early RCR vs. delayed RCR

FTT = full-thickenss tear; med = medium; mo = month; RCT = rotator cuff tear; SD = standard deviation; sm = small; yr = year

*Subset of patients who were initially randomized to PT, however later underwent secondary surgery due to lack of improvement; total sample size is 103 patients

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 / Group 3 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Moosmayer	G1: PT (51)	SF-36 (95%CI)	PCSS: 38.6 (36.2–41.1)	PCSS: 38.2 (36.6–39.9)	G1 vs. G2:
S, ⁶⁶ 2010	G2: Open / mini-open	6 mo	47.3 (44.7–50.0)	47.9 (45.3–50.4)	PCSS: 0.84>p>0.10‡
	repair (early) (51)	12 mo	48.9 (46.0–51.7), p=NR	50.7 (47.8–53.6), p=NR	MCSS: 0.92>p>0.29‡
	G3: Secondary surgery		MCSS: 57.3 (54.7–59.9)	MCSS: 54.1 (50.9–57.3)	
	(late) (9)†	6 mo	57.6 (55.5–59.7)	57.5 (55.0-60.0)	
		12 mo	57.5 (55.4–59.5), p=NR	56.2 (53.7–58.8), p=NR	G2 vs. G3: NR
	12 mo			G3: NR	_
		ASES*(95%CI)	48.2 (44.1–52.2)	45.5 (41.5–49.6)	G1 vs. G2: p<0.0005‡
		6 mo	75.8 (70.2–81.4)	84.5 (80.3-88.6)	
		12 mo	79.2 (72.7–85.5), p=NR	92.6 (88.6–96.6), p=NR	
				G3: 42.1 (30.1–54.2)	G2 vs. G3: NR
				Pre-op§: 48.9 (32.6–65.2)	
				6 mo: 75.4 (59.2–91.7)	
				12 mo: 88.9 (77.4–100.0), p=NR	
		CMS* (95%CI)	38.4 (34.4–42.4)	35.3 (31.6–39.0)	G1 vs. G2: p=0.002‡
		6 mo	64.1 (58.5–69.7)	64.9 (60.2–69.7)	
		12 mo	66.8 (60.6–73.1), p=NR	76.8 (72.6–80.9), p=NR	
				G3: 36.2 (27.3–45.2)	G2 vs. G3: NR
				Pre-op§: 35.9 (26.9–44.9)	
				6 mo: 57.9 (43.8–72.0)	
				12 mo: 69.8 (55.1–84.4), p=NR	
		Cuff integrity n/N	NR	38/50 (76)	G1 vs. G2: NR
		(%), MRI 12 mo		G3: 8/9 (89)	G2 vs. G3: p=0.67‡

Table 4. Outcome data for studies assessing early RCR vs. delayed RCR

ABD = abduction; ASES = American Shoulder and Elbow Surgeon score; CI = confidence interval; cm = centimetre; CMS = Constant-Murley Score; G = group; mo = month; MCSS = mental component summary score; MRI = magnetic resonance imaging; NR = not reported; PCSS = physical component summary score; PT = physical therapy; SF-36 = Short Form-36 Health Survey; VAS = visual analogue scale

Subscores reported

†Subset of patients who were initially randomized to PT, however later underwent secondary surgery due to treatment failure; total sample size is 103 patients ‡Calculated by UAEPC

§Score after failed PT, prior to surgery

|| One case was unable to undergo MRI

Technique	Number of studies; subjects (analyzed)*	Outcome		Strengt	h of evidence d	omains		Strength of evidence
	· · · ·		Risk of bias	Consistency	Directness	Precision	Confounding	
Early vs. late RCR	1; 103 (102)	HRQL	RCT Medium	Unknown	Direct	Unknown	Absent	Low
	1; 103 (102)	Function	RCT Medium	Unknown	Direct	Unknown	Absent	Low
	1; 103 (102)	Cuff integrity	RCT Medium	Unknown	Direct	Unknown	Absent	Low
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

Table 5. Strength of evidence for early RCR vs. delayed RCR

HRQL = health-related quality of life; n/a = not applicable; RCR = rotator cuff repair; RCT = randomized controlled trial

Question 2. Comparative Effectiveness of Operative Interventions and Postoperative Rehabilitation

One hundred and thirteen studies examined the comparative effectiveness of operative interventions, while an additional eleven studies evaluated postoperative rehabilitation therapies. Studies assessing operative treatments were categorized as focusing on an operative approach (e.g., open, mini-open, arthroscopic, debridement), technique (i.e., suture or anchor type or configuration) or augmentations for RCR.

Overall, operative approaches were examined in 90 studies (32 comparative studies, 58 uncontrolled studies). Operative techniques were evaluated in 15 comparative studies. Augmentations for RCR were assessed in eight studies (three comparative studies, five uncontrolled studies). Eleven studies examined postoperative rehabilitation (10 comparative studies, one uncontrolled study).

Operative Approach—Comparative Studies

Summary. Thirty-two controlled studies making 13 comparisons assessed the effectiveness of different operative approaches for RCR. The following is a summary of results by comparison:

- One RCT¹³⁶ and two retrospective cohort studies^{68,106} compared open RCR against miniopen RCR. Overall there was no statistically significant difference in function; however, the two cohort studies demonstrated significantly earlier return to work or sports by approximately 1 month for mini-open repairs. The individual studies showed no statistical or clinically important differences between groups for health-related quality of life, range of motion, or strength.
- Ten studies (one CCT,¹¹⁴ two prospective^{85,148} and seven retrospective cohort studies^{119,125,154,157,167,171,173}) compared mini-open vs. arthroscopic RCR. All studies measured function and overall there was no difference between groups. However, heterogeneity was observed between the CCT and cohort studies, with the cohort studies showing more conservative results. Other outcomes were assessed across the studies and no differences were found for range of motion (n=5), strength (n=2), cuff integrity (n=2), and pain VAS (n=4). While the majority of these studies were retrospective cohorts, the studies were relatively well done and scored moderate or high on the relevant quality assessment instrument.
- One prospective¹¹² and two retrospective cohort studies^{87,134} compared open RCR vs. arthroscopic RCR. Two prospective cohort studies^{72,77} compared open/mini-open RCR with arthroscopic RCR. There were no differences between the groups for function. One study⁷⁷ found better pain relief for the group receiving arthroscopic repair than the open/mini-open group at final followup.
- Two CCTs^{137,143} and two retrospective cohort studies^{139,165} compared open RCR with open or arthroscopic debridement. Overall, improvement in function was significantly greater for open RCR. The magnitude of the difference varied across studies from an absolute difference of 2.2 on a 35-point scale¹⁴³ to 11.5 on an 83-point scale;¹⁶⁵ the cohort studies showed larger absolute differences than the trials. One of the cohort studies¹⁶⁵ showed a significantly shorter time to maximum range of motion in the arthroscopic debridement group (3.2 vs. 6.8 months).

- Two RCTs^{102,133} compared arthroscopic RCR vs. arthroscopic RCR with acromioplasty, while one prospective cohort study¹⁴⁰ compared arthroscopic RCR vs. acromioplasty alone. No differences in function were reported between the groups.
- Seven additional studies compared different operative approaches: biceps tenotomy vs. tenodesis,⁷⁵ RCR vs. palliative treatment (partial repair or biceps tenotomy),⁹⁴ arthroscopic RCR plus superior labral from anterior to posterior (SLAP) lesion repair vs. arthroscopic RCR plus biceps tenotomy,⁹⁶ arthroscopic RCR plus tenodesis with proximal biceps detachment vs. without proximal biceps detachment,⁹⁷ arthroscopic debridement with tenotomy vs. without tenotomy,⁶³ complete open RCR vs. partial open RCR vs. debridement,¹³⁸ and open RCR plus classic open acromioplasty vs. open RCR plus modified open acromioplasty.¹⁶³ There were few clinically important differences between groups being compared across studies. No differences in function were observed for five of the comparisons.^{63,75,97,138,163} One study⁹⁴ found a significant difference in function favouring RCR over palliative treatment. Another study⁹⁶ showed greater postoperative University of Califonia Los Angeles (UCLA) index scores for arthroscopic RCR with biceps tenotomy compared with arthroscopic RCR plus SLAP repair; however, the absolute difference of 4 points on the 35-point scale is of questionable clinical importance.

Overall conclusions for operative approaches are challenging due to the wide variation in comparisons across studies. Generally, the studies showed few differences in function between interventions. One exception was greater improvement for open RCR compared with arthroscopic debridement; the strength of evidence for this finding was considered moderate. In addition, watertight anatomical repair was favoured for function compared with palliative treatment in patients with massive RC tears, and one small study⁹⁶ suggested greater postoperative function for arthroscopic RCR with biceps tenotomy compared to arthroscopic RCR plus SLAP repair; the strength of evidence for these findings was low and needs replication in future studies before general conclusions can be made.

Results by individual study. Thirty-two comparative studies ^{63,68,72,75,77,85,87,94,96,97,102,106,112,114,119,125,133,134,136-140,143,148,154,157,163,165,167,171,173} examined the effectiveness of different operative approaches for RCR. Five of the studies were RCTs, four were CCTs, six were prospective cohort designs, and 17 were retrospective cohort designs. The median sample size was 77 patients (IQR: 53 to 101). The following operative approaches were assessed: open vs. mini-open RCR,^{68,106,136} mini-open vs. arthroscopic RCR,^{85,114,119,125,148,154,157,167,171,173} open vs. arthroscopic RCR,^{87,112,134} open or mini-open RCR vs. arthroscopic RCR,^{72,77} open RCR vs. arthroscopic debridement,^{137,139,143,165} arthroscopic RCR vs. acromioplasty,^{102,133,140} biceps tenotomy vs. tenodesis,⁷⁵ complete repair vs. palliative treatment (partial repair with biceps tenotomy),⁹⁴ arthroscopic RCR with SLAP repair vs. arthroscopic RCR with biceps tenotomy,⁹⁶ RCR with tenodesis with proximal biceps detachment vs. RCR with tenodesis without proximal biceps detachment,⁹⁷ arthroscopic debridement with biceps tenotomy vs. without biceps tenotomy,⁶³ complete open RCR vs. partial open RCR vs. debridement.¹³⁸ open RCR with classic vs. modified acromioplasty.¹⁶³ Five comparisons contained studies that were sufficiently similar in terms of conditions, interventions, and outcomes that meta-analysis was possible: open RCR vs. mini-open RCR, mini-open vs.

arthroscopic RCR, open vs. arthroscopic RCR; open or mini-open RCR vs. arthroscopic RCR, and open RCR vs. arthroscopic debridement. Table 21 summarizes the rating of the body of evidence for operative approaches.

Open vs. mini-open RCR. Three studies (one RCT^{136} and two cohort studies^{68,106}) compared open RCR against mini-open RCR. Pooled results are shown in Figure 3 and Figure 4. Patient and study characteristics and outcome data are presented in Table 6 and Table 7, respectively.

Mohtadi et al.¹³⁶ conducted a RCT in patients with small to massive full-thickness tears. Seventy-three patients were randomly assigned to the interventions (37 to open surgical repair and acromioplasty, 36 to mini-open repair with arthroscopic acromioplasty) and 60 were followed up for at least 2 years. Patient quality of life was assessed using the RC-QOL and function was assessed using the ASES, Shoulder Rating Questionnaire (SRQ), range of motion (flexion, external and internal rotation), and functional shoulder elevation test (FSET). At the 2-year followup, mean RC-QOL score had improved for both groups, but the differences were not statistically significant (p=0.94). Mean ASES and SRQ scores had improved for both groups, but there was no statistically significant differences between the postoperative scores (p=0.94 and p=0.806, respectively). Range of motion and FSET were assessed at 12 months. Both groups showed some improvement in range of motion measures at 12 months; however, the difference between groups was not statistically significant. Both groups also showed improvement in FSET scores; however, the differences in postoperative scores were not statistically significant (p=0.899).

Baker et al.⁶⁸ conducted a retrospective cohort study in patients with small, medium, and large full-thickness tears. Thirty-six patients were evaluated (20 received open repair with acromioplasty, 16 received mini-open repair with arthroscopic acromioplasty), and all patients were followed for at least 2 years. The mean followup was 3.3 years. Patients were evaluated using the UCLA score, range of motion (flexion, external rotation, and abduction), strength (flexion, external rotation, and abduction), and time to return to work. At final postoperative followup, the two groups both demonstrated improvement in the UCLA score and range of motion, but the difference between the two groups was not statistically significant (p>0.05). Strength scores also improved from baseline to endpoint, however there were no significant differences between the groups at endpoint except in abduction strength (p=0.002), which favored mini-open repair. The mean time to return to work was 5.6 months (range: 4.2 to 7.2) for the open repair group and 4.5 months (range: 3.7 to 6.5) for the mini-open group. Cuff integrity was examined at final followup using arthrography. In the open RCR group, 10 patients (50 percent) had an intact cuff, compared with nine patients (52.9 percent) in the mini-open group. There was no significant difference between the groups for cuff integrity.

Hata et al.¹⁰⁶ conducted a retrospective cohort study in patients with small, medium, and large RC tears. Seventy-eight patients were evaluated (43 received open repair with acromioplasty, 35 received mini-open repair with acromioplasty), and all patients were followed for at least 2 years. The mean followup was 4 years. Patient function was assessed using the UCLA score and time to return to work. At the 2-year followup, mean UCLA score improved for both groups; however, the difference between the postoperative scores was not statistically significant. For the mini-open group, the mean time to return to work or sports activities (2.4 months) was significantly shorter than in the open repair group (3.4 months) (p \leq 0.05). Cuff integrity was examined at 12 months using MRI. No ruptures were detected in either group. One RCT¹³⁶ and two cohort studies^{68,106} provided data for a meta-analysis of the effects of open vs. mini-open RCR on functional outcome measures (Figure 3). Data from the trial at various time points (3, 6, 12, 24 months) and two cohorts is presented separately. The ASES is presented for the RCT,¹³⁶ while the cohort studies both used the UCLA score. For all studies, mean change scores between preoperative and postoperative scores were compared between groups. The combined estimate of change in function for the cohort studies shows no significant difference between the interventions, yet favors mini-open repair (SMD=-0.40; 95% CI, -0.95 to 0.15). There was moderate heterogeneity between the studies (p=0.16; I²=49 percent). Differences in the patient population may account for some of the heterogeneity between studies, since the study population for Baker et al.⁶⁸ included a substantial proportion of both recreational athletes and manual laborers.

Open RCR Mini-open RCR Std. Mean Difference Std. Mean Difference SD Total Weight IV, Random, 95% CI IV, Random, 95% CI Study or Subgroup Mean SD Total Mean 1.2.1 RCT/CCT - 3 months Mohtadi 2008 -0.21 [-0.70, 0.29] 13.6 20.52 30 18 21.69 33 100.0% Subtotal (95% CI) 30 33 100.0% -0.21 [-0.70, 0.29] Heterogeneity: Not applicable Test for overall effect: Z = 0.81 (P = 0.42) 1.2.2 RCT/CTT - 6 months Mohtadi 2008 26.9 19.34 33 100.0% -0.30 [-0.80, 0.19] 20.7 21.1 30 Subtotal (95% CI) 30 33 100.0% -0.30 [-0.80, 0.19] Heterogeneity: Not applicable Test for overall effect: Z = 1.19 (P = 0.23) 1.2.3 RCT/CTT - 12 months Mohtadi 2008 37 16.71 30 32.3 18.17 33 100.0% 0.27 [-0.23, 0.76] Subtotal (95% CI) 0.27 [-0.23, 0.76] 30 33 100.0% Heterogeneity: Not applicable Test for overall effect: Z = 1.05 (P = 0.30) 1.2.4 RCT/CTT - 24 months Mohtadi 2008 0.21 [-0.28, 0.71] 39.3 16.41 30 36.1 13.19 33 100.0% Subtotal (95% CI) 30 33 100.0% 0.21 [-0.28, 0.71] Heterogeneity: Not applicable Test for overall effect: Z = 0.84 (P = 0.40) 1.2.5 Cohort Studies Baker 1995 -0.07 [-0.72, 0.58] 22.1 1.4 20 22.2 1.4 17 40.5% Hata 2004 59.5% -0.64 [-1.09, -0.18] 18.7 1.4 43 19.6 1.4 35 Subtotal (95% CI) 63 52 100.0% -0.40 [-0.95, 0.15] Heterogeneity: Tau² = 0.08; Chi² = 1.96, df = 1 (P = 0.16); l² = 49% Test for overall effect: Z = 1.44 (P = 0.15) -0.5 0.5 ò

Figure 3. Open vs. mini-open RCR on measures of functional outcome

Favours Mini-open RCR Favours Open RCR

Data from two cohort studies^{68,106} was pooled for time to return to work (Figure 4). The pooled estimate indicates significantly shorter time to return to work for the mini-open RCR group compared with the open RCR group (mean difference=1.08 months; 95% CI, 0.63 to 1.52 months). There was no evidence of heterogeneity between the two studies (p=0.85, I²=0 percent).

Fig	jure 4. Open	vs. mini-o	pen l	RCR on time	e to return	to w	ork		
_	Ope	en RCR	-	Mini-c	pen RCR			Mean Difference	Mean Difference
Study or Subgroup	Mean [Months]	SD [Months]	Total	Mean [Months]	SD [Months]	Total	Weight	IV, Random, 95% CI [Months]	IV, Random, 95% CI [Months]
1.9.1 Cohort Studies									
Baker 1995	5.6	0.8	20	4.5	0.78	17	75.4%	1.10 [0.59, 1.61]	
Hata 2004 Subtotal (95% CI)	3.4	2	43 63	2.4	2	35 52	24.6% 1 00.0%	1.00 [0.11, 1.89] 1.08 [0.63, 1.52]	
Heterogeneity: Tau ² = Test for overall effect:	, , ,	· ·	5); I ² = 0)%					
Total (95% CI)			63			52	100.0%	1.08 [0.63, 1.52]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 0.04,	df = 1 (P = 0.85	5); l ² = 0)%					
Test for overall effect:	Z = 4.76 (P < 0.00	001)	-						-1 -0.5 0 0.5 1 Favours open Favours mini-open
Test for subgroup diffe	erences: Not applic	able							

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range)/Males, N (%) Other characteristics	Type of tear; Size of tear Duration of symptoms (mo), mean±SD (range)
Baker CL, ⁶⁸ 1995	G1: Open RCR (20)	G1: 62 yr (38–81)/Males: 12 (60)	FTT; Sm, Med, Lg
	G2: Mini-open RCR (16)	Athletes: 4 (20)	
		Manual laborers: 6 (30)	NR
	Retrospective cohort	G2: 59 yr (41–71)/Males: 9 (56)	
	•	Athletes: 4 (25)	
		Manual laborers: 5 (31)	
Hata Y, ¹⁰⁶ 2004	G1: Open RCR (43)	G1: 58.1 yr (31–78)/Males: 25 (58)	NR; Sm, Med, Lg
	G2: Mini-open RCR (35)	G2: 60.6 yr (39–71)/Males: 21 (60)	
			NR
	Retrospective cohort		
Mohtadi NG, ¹³⁶ 2008	G1: Open RCR (37)	G1: 56.2 yr (44–77)/Males: 22 (60)	FTT; Sm, Med, Lg, Mass
~	G2: Mini-open RCR (36)	G2: 57 yr (33–82)/Males: 20 (55)	
	,	· · · · · · · ·	>3 mo
	RCT		

Table 6. Study and patient characteristics for studies assessing open vs. mini-open RCR

FTT = full-thickness tear; G = group; Lg = large; Mass = massive; Med = medium; NR = not reported; RCR = rotator cuff repair; RCT = randomized controlled trial; SD = standard deviation; Sm = small

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Baker CL, ⁶⁸	G1: Open RCR (20)	UCLA*	9.1 / 31.2, p≤0.05	10.5 / 32.7, p≤0.05	p>0.05
1995	G2: Mini-open RCR (16)	Time to return to work (mo)	5.6 (4.2–7.2)	4.5 (3.7–6.5)	NR
	3.3 yr	ROM (degrees)	F: 99 / 153, p≤0.05 ER: 30 / 155, p≤0.05 ABD: 96 / 47, p≤0.05	F: 104 / 161, p≤0.05 ER: 34 / 49, p≤0.05 ABD: 100 / 159, p≤0.05	p>0.05 p>0.05 p>0.05
		Strength	F: 2.4 / 4.5, p≤0.05 ER: 3 / 4.2, p≤0.05 ABD: 3.2 / 4.4, p≤0.05	F: 2.7 / 4.6, p≤0.05 ER: 2.9 / 4.8, p≤0.05 ABD: 3.4 / 4.7, p≤0.05	NR NR p=0.002
		Cuff integrity n/N (%), arthrography	10/20 shoulders (50)	9/17 shoulders (52.9)	p=1.0‡
Hata Y, ¹⁰⁶	G1: Open RCR (43)	UCLA* 2 yr	14.3 (6–26) / 33.0, p<0.01	13.8 (6–26) / 33.4, p<0.01	p>0.05†
2004 G2: Mini-open RCR (35)	G2: Mini-open RCR (35)	Time to return to work (mo)	3.4	2.4	p≤0.05
	4 yr (2–6.8)	Cuff integrity n/N (%), MRI 12 mo	0/43 (0)	0/35 (0)	NA
/lohtadi NG, ¹³⁶ 2008	G1 : Open RCR (29) G2 : Mini-open RCR (31)	RC-QOL 3 mo 6 mo	40.9 (95% Cl, 35.5–46.2) 55.6 (47.5–63.7) 72.4 (65.0–79.8)	45.5 (95% CI, 38.5–52.5) 71.3 (63.8–78.9) 82.3 (78.3–86.3)	p=0.005 p=0.015
	2 yr	12 mo	85.0 (79.2–90.8)	88.5 (84.1–92.9)	p=0.34
		2 yr	86.9 (81.8–92.0)	87.2 (80.6–93.8)	p=0.94
		ASES 3 mo 6 mo 12 mo 2 yr	48.2 (95% CI, 40.7–55.6) 61.8 (54.8–68.7) 68.9 (61.7–76.1) 85.2 (79.5–90.9) 87.5 (81.9–93.1)	53.8 (95% CI, 47.1–60.5) 71.8 (64.4–79.1) 80.7 (74.2–87.3) 86.1 (79.9–92.2) 89.9 (85.4–94.4)	p=0.048 p=0.016 p=0.84 p=0.94
		SRQ 3 mo 6 mo 12 mo	46.7 (95% CI, 41.3–52.1) 63.3 (57.5–69.1) 73.6 (68.2–79.1) 83.4 (78.1–88.8)	50.3 (95% Cl, 45.2–55.4) 69.4 (62.6–76.3) 79.8 (74.7–84.9) 85.2 (81.2–89.2)	p=0.170 p=0.096 p=0.587
		2 yr ROM(degrees)	85.1 (80.2–90.1) F: 147.7±35.1 / 162.3±19.2	85.9 (81.7–90.0) F: 155.2±35.2 / 158.3±22.61	p=0.806 F: p=0.46‡
		12 mo	ER on side: 46.1±15.3 / 54.1±28.6 ER at 90°: 73.1±27.6 / 78.4±16.7 IR§ (range): 2.3 (-1– +9) / 1.2 (-5– +7)	ER on side: 46.6±22.3 / 48.1±29.7 ER at 90°: 78.8±16.8 / 79.0±13.6 IR§ (range, n): 3.0 (-3 -+12) / 0.96 (-5-+5)	ER on side: p=0.43‡ ER at 90°: p=0.88‡
		FSET 6 mo 12 mo	31.4 (19.2–43.6) (95% Cl) 53.4 (35.7–71.1) 74.8 (61.0–88.5)	34.1 (21.6–46.6) (95% CI) 58.7 (46.0–71.4) 75.9 (63.3–88.5)	p=0.601 p=0.899

Table 7. Outcome data for studies assessing open vs. mini-open RCR

ABD = abduction; ASES = American Shoulder and Elbow Scale; ER = external rotation; F = flexion; FSET = functional shoulder elevation test; G = group; IR = internal rotation; mo = month; MRI = magnetic resonance imaging; N = number; NA = not applicable; NR = not reported; RCR = rotator cuff repair; RC-QOL = rotator cuff quality of life scale; ROM = range of motion; SD = standard deviation; SRQ = Shoulder Rating Questionnaire; UCLA = University of California Los Angeles Scale

*Subscales reported; †No significant differences were detected between groups at 3, 6, 12 mo or 2 yr; ‡Calculated by UAEPC; §Vertebral level, involved-uninvolved difference

Mini-open vs. arthroscopic RCR. Ten studies (one CCT, ¹¹⁴ two prospective cohort studies^{85,148} and seven retrospective cohort studies^{119,125,154,157,167,171,173}) compared mini-open RCR against arthroscopic RCR. Pooled results are shown in Figure 5 and Figure 6. Patient and study characteristics and outcome data are presented in Table 8 and Table 9, respectively.

Colgate-Stone and colleagues⁸⁵ compared mini-open vs. arthroscopic RCR in a prospective cohort study. Patients with tear sizes exceeding 30 mm underwent mini-open repair (n=31), while those with tears less than 30 mm were treated with arthroscopic repair (n=92). Patients were followed for 24 months and were evaluated using the CMS, the DASH and the Oxford Shoulder Score. In both groups, scores significantly improved between baseline and endpoint. There was a significant difference between the groups at 12 months (p≤0.05), yet not at 3, 6 or 24 months.

Kim et al.¹¹⁴ conducted a CCT in patients with medium or large full-thickness tears. Seventy-six patients were analyzed in the two treatments (34 received mini-open repair with acromioplasty, 42 received all-arthroscopic repair with acromioplasty) and were followed for at least 2 years. The mean followup was 3.3 years (2.0 to 5.3 years). Patients were evaluated on ASES and UCLA scores, percent function on a visual analogue scale, pain, range of motion, and strength. Shoulder scores improved in all ratings in both groups ($p \le 0.05$) at followup; however, no statistically significant differences were seen between the two groups at study endpoint (p > 0.05).

Kose et al.¹¹⁹ conducted a retrospective cohort study with patients with small, medium, and large tears. Fifty-seven patients were selected and 50 evaluated (25 received mini-open repair with acromioplasty, 25 received arthroscopic repair with acromioplasty) at 2.2 years (range: 12 months to 6.8 years). Patients' function was evaluated using the Constant-Murley Score (CMS) and UCLA score. The improvements between pre- and postoperative CMS and UCLA scores were statistically significant within both groups (p<0.01); however, the difference in postoperative scores between the two groups was not significant (p=0.24 and p=0.63, respectively).

Liem et al.¹²⁵ conducted a retrospective cohort study of patients with small, medium, and large tears. Seventy-seven patients were selected and 38 evaluated (19 received mini-open repair with acromioplasty, 19 received arthroscopic repair with acromioplasty) at a minimum of 12 months. Patient function was evaluated using the CMS and early range of motion (flexion, abduction, and external rotation). At followup, both groups showed statistically significant improvement in the CMS (p=0.0001) and for all range of motion tests, except abduction and external rotation in the open RCR group. However, the between group differences in all scores were not statistically significant. Cuff integrity was evaluated at followup using MRI. Seven patients in the mini-open group and six in the all-arthroscopic group experienced retears; the difference between the groups was not statistically significant.

In a prospective cohort study, Pearsall et al.¹⁴⁸ compared mini-open vs. arthroscopic repair among patients with medium and large full-thickness tears. Fifty-two (25 receiving mini-open repair, 27 receiving arthrscopic repair) of the 54 patients enrolled were evaluated using the UCLA, Simple Shoulder Test (SST), pain visual analogue scale, and range of motion. There was statistically significant improvement in all outcomes from baseline to a mean followup of 4.2 years, however no significant differences between the two groups for any outcome measure.

Sauerbrey et al.¹⁵⁴ conducted a retrospective cohort study in patients with medium, large, and massive full-thickness tears. Sixty-three patients were selected and 54 evaluated (26 received

mini-open repair with acromioplasty, 28 received all-arthroscopic repair with acromioplasty) at 2.1 years (range: 13 months to 4 years). At followup, both groups showed significant improvement in ASES score (p<0.05); however, the difference between postoperative scores was not statistically significant (p=0.33).

Severud et al.¹⁵⁷ conducted a retrospective cohort study with patients with small, medium, and large partial- and full-thickness tears. Sixty-four of 82 enrolled shoulders were evaluated (29 shoulders received mini-open repair with subacromial decompression, 35 received all-arthroscopic repair with subacromial decompression) at a minimum of 24 months. The mean followup time was 3.7 years (range: 2 to 6.8 years). Patient function was evaluated using the ASES and UCLA scores. At followup, there were no statistically significant differences between the groups for either ASES or UCLA scores.

Verma et al.¹⁶⁷ conducted a retrospective cohort study with patients with small and large full-thickness tears. One hundred twenty-seven patients were selected (58 received mini-open repair with acromioplasty, 69 received arthroscopic repair with acromioplasty), of which 71 were evaluated at a minimum of 2 years. The mean followup was 3.2 years (range: 2 to 8.1 years). Patient function was assessed using the ASES, Insalata, and SST. Pain on a visual analogue scale and range of motion were also assessed. Preoperative and postoperative measures were not compared for any outcome. At followup, there were no statistically significant differences between groups for any of the outcome measures. Cuff integrity was found in 17 (68 percent) and 20 (90.9 percent) patients in the mini-open and arthroscopic repair groups, respectively; the difference between the groups was not significant.

Warner et al.¹⁷¹ conducted a retrospective cohort study in patients with full-thickness tears. Twenty-one patients were selected (12 received mini-open repair with acromioplasty, nine received all-arthroscopic repair with acromioplasty). All patients were evaluated at a minimum of 2.3 years. The mean followup duration was 4.2 years. Patients were assessed using the SST, pain, range of motion (flexion and external rotation) and strength. Postoperative pain scores for both groups were significantly improved from preoperative measures (p<0.01). A statistically significant improvement in strength (p<0.01) was also observed in the arthroscopic group. Within and between group differences for all remaining outcome measures were not statistically significant.

Youm et al.¹⁷³ conducted a retrospective cohort study in patients with small, medium, and large tears. Ninety-five patients were selected and 84 evaluated (42 received mini-open repair with acromioplasty, 42 received all-arthroscopic repair with acromioplasty) at a mean of 3.0 years (range: 2 to 5.8 years). Patient function was assessed using the ASES and UCLA scores. At followup, the differences between groups for both scores were not statistically significant.

One CCT and nine cohort studies (two prospective and seven retrospective) provided data for meta-analysis of the effects of mini-open vs. arthroscopic repair on functional outcome measures (Figure 5). Data from the trial and cohort studies was analyzed separately. The following outcome measures were included in the meta-analysis: ASES,^{154,157,167,173} CMS,^{119,125} DASH,⁸⁵ SST¹⁷¹ and the UCLA.^{114,148} and The mean change between preoperative and postoperative scores was compared for four studies.^{85,114,119,125,154} The remaining studies provided no baseline data, therefore the endpoint scores are compared between groups.^{148,157,167,171,173} There were no significant differences between the mini-open and arthroscopic repair groups on functional outcome measures, either for the one CCT or the pooled estimate of nine cohort studies. The CCT favored mini-open repair (MD=0.32; 95% CI, -0.13 to

0.78). The combined estimate of functional outcomes from cohort studies slightly favored arthroscopic repair (SMD=-0.11, 95% CI, -0.28 to 0.06) There was no evidence of heterogeneity between the pooled studies (p=0.67; $I^2=0$ percent).

	Mini-	Open F	CR	Arthro	scopic l	RCR	5	Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI	
2.2.1 RCT/CCT										
Kim 2003	15	3.4	34	14	2.8	42	100.0%	0.32 [-0.13, 0.78]		
Subtotal (95% CI)			34			42	100.0%	0.32 [-0.13, 0.78]		
Heterogeneity: Not app	licable									
Test for overall effect: Z	. = 1.38	(P = 0.1	7)							
2.2.2 Cohort Studies										
Colegate-Stone 2009	54.09	33.8	31	62.92	33.8	92	17.7%	-0.26 [-0.67, 0.15]		
Kose 2008	33.96	13.64	25	37.36	11.45	25	9.5%	-0.27 [-0.82, 0.29]		
Liem 2007	30.2	33.84	19	30.1	33.72	19	7.3%	0.00 [-0.63, 0.64]		
Pearsall 2007	27	11.3	25	24	11.3	27	9.9%	0.26 [-0.29, 0.81]		-
Sauerbrey 2005	37	11.1	26	44	14.15	28	9.9%	-0.54 [-1.08, 0.00]		
Severud 2003	90	33.8	29	91.7	33.7	35	12.2%	-0.05 [-0.54, 0.44]		
Verma 2006	95.1	9.3	33	94.6	8.9	38	13.5%	0.05 [-0.41, 0.52]		
Warner 2005	12	0.92	12	12	2.36	9	3.9%	0.00 [-0.86, 0.86]		-
Youm 2005	90.2	14.8	42	91.1	15.4	42	16.1%	-0.06 [-0.49, 0.37]		
Subtotal (95% CI)			242			315	100.0%	-0.11 [-0.28, 0.06]		
Heterogeneity: Tau ² = 0				(P = 0.6	7); l ² = 0 ⁶	%				
Test for overall effect: Z	= 1.22	(P = 0.2	2)							
									-1 -0.5 0 0.5	1

Two cohort retrospective studies provided data for meta-analysis of the effects of miniopen vs. arthroscopic repair on cuff integrity (Figure 6). The pooled estimate of effect showed no significant difference between the surgical approaches on the proportion of patients with intact RCs, however there was a trend favoring arthroscopic RCR (relative risk=0.80; 95% CI, 0.62 to 1.02). There was no evidence of heterogeneity between the two studies (p=0.44, $I^2=0$ percent).

	Mini-Oper	n RCR	Arthroscopi	c RCR		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 9	5% CI
2.11.1 Cohort Studies								
iem 2007	12	19	13	19	29.8%	0.92 [0.58, 1.46]		
/erma 2006	17	25	20	22	70.2%	0.75 [0.55, 1.01]		
Subtotal (95% CI)		44		41	100.0%	0.80 [0.62, 1.02]		
Total events	29		33					
Heterogeneity: Tau ² = 0	.00; Chi² =	0.59, df	= 1 (P = 0.44);	l ² = 0%				
Test for overall effect: Z	= 1.78 (P =	= 0.08)						
							0.5 0.7 1	

rthropponio DCD f functional outo

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range)/Males, N (%) Other characteristics	Type of tear; Size of tear Duration of symptoms (mo), mean±SD (range)
Colegate-Stone T, ⁸⁵ 2009	G1: Mini-open RCR (31) G2: Arthroscopic RCR (92)	G1: 62 yr/Males: 16 (52) G2: 57 yr/Males: 44 (48)	NR; G1: >30 mm, G2: <30 mm
11/	Prospective cohort		
Kim SH, ¹¹⁴ 2003	G1: Mini-open RCR (NR) G2: Arthroscopic RCR (NR)	G1: 58±9 yr (42–68)/Males: 22 (65) G2: 55±10.5 yr (42–75)/Males: 27 (64)	FTT; Med, Lg
			NR
110	CCT		
Kose KC, ¹¹⁹ 2008	G1: Mini-open RCR (NR) G2: Arthroscopic RCR (NR)	G1: 62±10 yr (32–75)/Males: 4 (16) G2: 55±7.6 yr (34–72)/Males: 7 (28)	NR; Sm, Med, Lg
			NR
- 125	Retrospective cohort		
Liem, D, ¹²⁵ 2007	G1: Mini-open RCR (24) G2: Arthroscopic RCR (53)	G1: 62.9±6.7 yr/Males: 16 (67) G2: 61.9±6.6 yr/Males: 16 (30)	NR; Sm, Med, Lg
	Retrospective cohort		G1: 10.6±7.9 mo, G2: 9.6±5.2 mo
Pearsall AW, ¹⁴⁸ 2007	G1: Mini-open RCR (NR) G2: Arthroscopic RCR (NR)	G1: 58 yr (41–76)/Males: 10 (40) WCB: 0; Smokers: 8 (32)	FTT; Med, Lg
	Prospective cohort	G2: 55 yr (38–78)/Males: 11 (41) WCB: 0; Smokers: 3 (11)	NR
Sauerbrey AM, ¹⁵⁴ 2005	G1: Mini-open RCR (NR) G2: Arthroscopic RCR (NR)	G1: 57 yr (40–84)/Males: 16 (62) Athletes: 16 (62)	FTT; Med, Lg, Mass
		G2: 56 yr (38-86) / Males: 16 (57)	NR
Coverved EL ¹⁵⁷ 2002	Retrospective cohort	Athletes: 9 (32)	FTT/DTT: Ore Mad La
Severud EL, ¹⁵⁷ 2003	G1: Mini-open RCR (NR) G2: Arthroscopic RCR (NR)	G1: 63.3 yr/Males: 18 (62) WCB: 3 (10)	FTT/PTT; Sm, Med, Lg
	Retrospective cohort	G2: 58.7 yr/Males: 21 (60) WCB: 6 (17)	G1: 10.8 mo, G2: 15.7 mo
Verma NN, ¹⁶⁷ 2006	G1: Mini-open RCR (58) G2: Arthroscopic RCR (69)	G1: 60.7±10.4 yr/Males: 23 (40) G2: 59.5±8.6 yr/Males: 22 (32)	FTT; Sm, Med, Lg, Mass
			NR
Warner JJ, ¹⁷¹ 2005	Retrospective cohort G1: Mini-open RCR (12)	G1: 55±8 yr/Males: 8 (67)	FTT; NR
wanter JJ, 2000	G1: Mini-open RCR (12) G2: Arthroscopic RCR (9)	WCB: 1 (8)	FII, NK
	Retrospective cohort	G2: 53±10 yr/Males: 5 (56) WCB: 0 (0)	G1: 9±4 mo, G2: 12±4 mo
Youm T, ¹⁷³ 2005	G1: Mini-open RCR (NR)	G1: 60 yr/NR	NR; Sm, Med, Lg
100m 1, 2000	G2: Arthroscopic RCR (NR)	G2: 57.9 yr/NR	
	Retrospective cohort		NR

Table 8. Study and patient characteristics for studies assessing mini-open vs. arthroscopic RCR

CCT = controlled clinical trial; FTT = full-thickness tear; G = group; Lg = large; Mass = massive; Med = medium; N = number; NR = not reported; PTT = partial-thickness tear; RCR = rotator cuff repair; SD = standard deviation; Sm = small; WCB = workers' compensation board

34

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Colegate-Stone	G1: Mini-open RCR (NR)	CMS	33.7	44.8	p>0.05
Т, ⁸⁵ 2009	G2: Arthroscopic RCR	3 mo	46.1	52.2	p>0.05
	(NR)	6 mo	47.4	60.1	p>0.05
		12 mo	54.0	73.3	p≤0.05
	2 yr	24 mo	75.1,‡ p<0.05	97.6,‡ p<0.05	
		DASH	66.3	53.5	p>0.05
		3 mo	52.1	53.4	
		6 mo	50.4	35.3	
		12 mo	42.1	33.0	
		24 mo	34.5,‡ p<0.05	28.1,‡ p<0.05	
		OSS	42.4	37.1	p>0.05
		3 mo	41.3	32.5	
		6 mo	29.3	24.3	
		12 mo	28.8	25.6	
		24 mo	23.3,‡ p<0.05	14.2,‡ p<0.05	
Kim SH, ¹¹⁴ 2003	G1: Mini-open RCR (34)	ASES	59±12 (30-80)/95±7.3 (75-	61±16 (34-87)/95±7.2 (75-	p=0.67
	G2: Arthroscopic RCR (42)		100), p<0.001	100), p<0.001	•
		UCLA	18±2.6 (12-22)/33±3.4 (25-	19±4.3 (12–26)/33±2.8 (26–	p=0.65
	3.3 yr (2.0–5.3)		35), p<0.001	35), p<0.001	•
		Percent Function (VAS)	54±12 (30–80)/93±8.3 (70– 100), p<0.001	57±16 (20–80) / 93±8.8 (70– 100), p<0.001	p=0.99
		Pain (VAS)	3.2±1.6 (1–6)/1.0±1.5 (0–6), p<0.001	4.2±2.5 (1–8) / 0.7±1.1 (0–5), p<0.001	p=0.81
		ROM (degrees)	F: 30±26 (0-130)/4.0±6.9 (0-	F: 27±21 (0–110)/3.2±6.8 (0–	F: p=0.51
		(25), p<0.001	25), p<0.001	ER: p=0.50
			ER: 16±19 (0–35)/1.3±2.6 (0–	ER: 12±18 (0–35)/1.1±2.6 (0–	IR: p=0.31
			10), p<0.001	10), p<0.001	•
			IR: 4±2.6 (0–8)/0.6±1.2 (0–4),	IR: 4±3.2 (0–9)/0.4±0.9 (0–3),	
			p<0.001	p<0.001	
		Strength grade	gr 5: 9 (27)/25 (73), p<0.001	gr 5: 11 (26)/35 (83), p<0.001	p=0.33
		(gr), manual	gr 4: 17 (50)/6 (18)	gr 4: 24 (57)/4 (10)	-
		muscle	gr 3: 8 (23)/3 (9)	gr 3: 7 (18)/3 (7)	
		testing, n (%)	_ 、 , 、 ,	_ 、 , 、 ,	
Kose KC, ¹¹⁹ 2008	G1: Mini-open RCR (25) G2: Arthroscopic RCR (25)	CMS*	45.6±12.4/79.56±13.64, p<0.01	46.2±11.8/83.56±11.45, p<0.01	p=0.24
	2.2 yr (12 mo–6.8 yr)	UCLA*	10.6±4.5/28.8±3.42, p<0.01	11.2±5.6/29.76±4.5, p<0.01	p=0.63

Table 9. Outcome data for studies assessing mini-open vs. arthroscopic RCR

ABD = abduction; ASES = American Shoulder and Elbow Scale; CMS = Constant-Murley score; ER = external rotation; F = flexion; G = group; GH = glenohumeral elevation; gr = grade; IR = internal rotation; Insalata = Insalata Shoulder Rating Questionnaire; mo = month; MRI = magnetic resonance imaging; NR = not reported; OSS = Oxford Shoulder Score; pre-op = preoperative; post-op = postoperative; RCR = rotator cuff repair; ROM = range of motion; SD = standard deviation; SST = simple shoulder test; UCLA = University of California Los Angeles Scale; VAS = visual analogue scale; yr = year

*Subscores reported

†Calculated by UAEPC; ‡ Data extrapolated from graph

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	p	l vs. Group 2 -value
Liem D, ¹²⁵ 2007	G1: Mini-open RCR (19)	CMS*	53.5 / 83.7, p=0.0001	53.8/83.9, p=0.0001	NR	
	G2: Arthroscopic RCR (19)	ROM (degrees)	F: 154 / 175, p=0.01	F: 155/176, p=0.006	p>0.05	
			ABD: 148 / 164, p=0.22	ABD: 149/173, p=0.016		
	12 mo (minimum)		ER: 52 / 56, p=0.43	ER: 47/59, p=0.011		
		Cuff integrity n/N (%), MRI	12/19 (63.1)	13/19 (68.4)	p=1.0†	
Pearsall AW, ¹⁴⁸	G1: Mini-open RCR (25)	UCLA	NR / 27	NR/24	p=0.34	
2007	G2: Arthroscopic RCR (27)				G1+G2: pre p<0.0001	e-op vs. post-op: I
	4.2 yr (2.3–7)	SST	NR / 4.7	NR/5.1	p=0.66	
		improvement				e-op vs. post-op:
					p<0.0001	
		Pain	NR / 4.8	NR/3.9	p=0.29	
		improvement				e-op vs. post-op:
		(VAS)			p<0.0001	
		ROM				G1+G2: pre-
			F (active): NR / 18	F (active): NR/35	D 0 16	op vs. post-op p=0.01
		(degrees)	ABD (active): NR / 14	ABD (active): NR/21	p=0.16 p=0.18	p=0.01 p=0.07
			GH: NR / 7.0	GH: NR/8.3	p=0.18 p=0.7	p=0.07 p=0.01
			ER @ 0: NR / 12	ER @ 0: NR/11	p=0.7 p=0.7	p=0.03
			ER @ 90: NR / 16	ER @ 90: NR/19	p=0.7	p=0.001
			IR @ 90: NR / 11	IR @ 90: NR/8	p=0.7	p=0.14
Sauerbrey AM, ¹⁵⁴ 2005	G1: Mini-open RCR (26) G2: Arthroscopic RCR (28)	ASES*	52 (17–75) / 89 (56–100), p≤0.05	42 (9–47)/86 (43–100), p≤0.05	p=0.33	
	2.1 yr (13 mo–4 yr)					
Severud EL, ¹⁵⁷	G1: Mini-open RCR (29	ASES	NR / 90.0	NR/91.7	p>0.05	
2003	shoulders) G2: Arthroscopic RCR (35 shoulders)	UCLA	NR / 31.4	NR/32.6	p>0.05	
	3.7 yr (2–6.8)					
Verma NN, ¹⁶⁷	G1: Mini-open RCR (33)	ASES	NR / 95.1±9.3	NR/94.6±8.9	p>0.05	
2006	G2: Arthroscopic RCR (38)	Insalata	NR / 94.2±8.8	NR/92.7±9.0	p>0.05	
	3.2 yr (2–8.1)	SST	NR / 11.3±1.4	NR/11.4±0.9	p>0.05	
	3.2 yr(2-0.1)	Pain (VAS)	NR / 0.4±1.0	NR/0.7±1.2	p>0.05	
		ROM (degrees)	F: NR / 169.4± 6.9 ABD: NR / 168.9± 8.4 ER: NR / 70.2±14.4	F: NR/170.5±6.9 ABD: NR/169.6±7.5 ER: NR/68.2±16.7	p>0.05	
		Cuff integrity n/N (%)	IR: NR / 9.2±3.1 17/25 (68.0)	IR: NR/9.8±3.1 20/22 (90.9)	p=0.079†	

Table 9. Outcome data for studies assessing mini-open vs. arthroscopic RCR (continued)

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Warner JJ, ¹⁷¹	G1: Mini-open RCR (12)	SST	NR/12 (9–12)	NR/12 (5–12)	p=0.28
2005	G2: Arthroscopic RCR (9)	Pain (VAS)	7 (6–9)/0 (0–2), p<0.01	7 (5–8)/0 (0–2), p<0.01	p=0.92
	4.2±1.3 yr (2.3–7.1)	ROM (degrees)	F: 150 (30–160)/155 (110– 170), p>0.2 ER: 50 (30–50)/50 (25–60), p>0.2	F: 145 (120–160)/160 (130– 170), p>0.2 ER: 50 (40–60)/50 (30–60), p>0.2	F: p=0.25 ER: p=0.80
		Strength grade	4 (2–5)/4 (4–5), p=0.26	4 (3–5)/5 (4–5), p<0.01	p=0.08
Youm T, ¹⁷³	G1: Mini-open RCR (42)	ASES	NR/90.2±14.8	NR/91.1±15.4	p>0.05
2005	G2: Arthroscopic RCR (42)	UCLA	NR/32.3±3.3	NR/33.2±2.5	p>0.05
	3.0 yr (2.0–5.8)				

Table 9. Outcome	data for studies	assessing mini-o	pen vs. arthrosco	pic RCR ((continued)

Open RCR vs. arthroscopic RCR. Three cohort studies (one prospective¹¹² and two retrospective^{87,134}) compared open RCR against arthroscopic RCR. Patient and study characteristics and outcome data are presented in Table 11 and Table 12, respectively.

A retrospective cohort study was conducted by Costouros et al.⁸⁷ comparing open vs. arthroscopic repair in patients with full-thickeness tears. Thirty-seven patients were enrolled, of whom 19 received open repair and 18 received arthrosopic repair. Patients were evaluated using the CMS at an average of 21.1 months (range: 12 months to 4 years). Patients in both groups improved significantly from baseline to followup (p=0.02 and p<0.001 in the open and arthroscopic group, respectively), however no differences were seen between treatment groups.

Ide et al.¹¹² conducted a prospective cohort study in patients with small, medium, large, and massive full-thickness tears. One hundred patients were evaluated (50 received open repair with acromioplasty, 50 received all-arthroscopic repair with acromioplasty) at a mean of 4.1 years (range: 2.1 to 6.9 years). Patient function was assessed using UCLA and Japanese Orthopaedic Association (JOA) index scores. At followup, statistically significant differences were observed within both groups for both scores (p<0.0001); however, the differences between the two groups were not statistically significant (p>0.05).

Millar et al.¹³⁴ conducted a retrospective cohort study evaluating RCR in patients with full-thickness tears of all sizes. A total of 159 patients were enrolled, of which 49 received open repair, 53 received arthroscopic knotted repair, and 57 received arthroscopic knotless repair. Overall, 20, 29 and 38 patients were analyzed at 2 years followup, respectively. Reported outcomes included the ASES, Overall Shoulder Function score, Rotator Cuff Functional Index, pain at rest and at night, range of motion (abduction, flexion, external rotation), strength (supraspinatus, external rotation, liftoff) and cuff integrity. Patients in all three groups showed a significant improvement from baseline to followup. There were significant differences between the open RCR and combined arthroscopic RCR groups for the ASES (p<0.001) and external rotation (p<0.001). In addition, there was a significant difference between open repair and arthroscopic knotless repair for strength in supraspinatus (p<0.05) and external rotation strength (p<0.05). Differences between the two arthroscopic procedures are reported in the operative technique section. There were no significant between-group differences for any of the other outcomes.

Two retrospective^{87,134} and one prospective¹¹² provided data for meta-analysis of the effects of open vs. arthroscopic repair on functional outcome measures (Table 10). The following outcome measures were included in the meta-analysis: ASES,¹³⁴ CMS,⁸⁷ and UCLA.¹¹² The mean change between preoperative and postoperative scores was compared for all of the studies. There were no significant differences between the open and arthroscopic repair groups on functional outcome measures (SMD=-0.49; 95% CI, -1.12 to 0.13). There was significant heterogeneity between the studies (p=0.003; 1²=83 percent), where Ide¹¹² showed no difference between the repair approaches and the other two studies favoured arthroscopic RCR. There were no apparent differences between the three studies with regard to the patient age, type of tear, or tear size. Some differences that may have contributed to the varying effect estimates include the prospective direction of Ide et al, and that outcomes were assessed at a longer followup duration compared to the other studies (4.1 years vs. 2 years). It is possible that there may be an initial advantage of arthroscopic repair on functional outcomes, yet that this benefit is not sustained over longer durations of followup.

Table 10. Open vs. arthroscopic RCR on measures of functional outcome

	Op	Open RCR Arthroscopi				RCR	:	Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Cosouros	18	7.05	19	24	7.05	18	27.8%	-0.83 [-1.51, -0.16]	_	
lde 2005	16.1	3.176	50	15.9	2.042	50	35.5%	0.07 [-0.32, 0.47]		
Millar 2009	24	7	49	31.96	11.26	110	36.6%	-0.78 [-1.13, -0.43]		
Total (95% CI)			118			178	100.0%	-0.49 [-1.12, 0.13]		
Heterogeneity: Tau ² =	= 0.25; Cł	ni² = 11.	57, df =	2 (P = 0	.003); l ²	= 83%		-		
Test for overall effect	Z = 1.54	(P = 0.	12)					Favo	-1 -0.5 0 0.5 1 burs Arthroscopic RCR Favours Open RCR	

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range)/Males, N (%) Other characteristics	Type of tear; Size of tear Duration of symptoms (mo), mean±SD (range)
Costouros JG, ⁸⁷ 2006	G1: Open RCR (19)	G1: 57 yr (40–75)/Males: 14 (74)	FTT; NR
	G2: Arthroscopic RCR (18)	G2: 54 yr (34–65)/Males: 12 (67)	
			NR
	Retrospective cohort		
Ide J, ¹¹² 2005	G1: Open RCR (NR)	G1: 57.1 yr (24–72)/Males: 39 (78)	FTT; Sm, Med, Lg, Mass
	G2: Arthroscopic RCR (NR)	Athletes: 2 (4)	
		G2: 57 yr (25–78)/Males: 41 (82)	G1: 8 mo (2–24), G2: 6.4 mo
	Prospective cohort	Athletes: 3 (6)	(2–36)
Millar NL, ¹³⁴ 2009	G1: Open RCR (49)	G1: 58 yr (28–87)/Males: 21 (43)	FTT; Sm, Med, Lg, Mass
	G2: Arthroscopic knotted RCR (53)	G2: 64 yr (40–90)/Males: 24 (45)	
	G3: Arthroscopic knotless RCR (57)	G3: 69 yr (34–86)/Males: 28 (49)	G1: 15 mo (0.71–81), G2: 7.2
			mo (1–39), G3: 6.6 mo
	Retrospective cohort		(0.5–31)

Table 11. Study and patient characteristics for studies assessing open vs. arthroscopic RCR

FTT = full-thickness tear; G = group; Lg = large; Mass = massive; Med = medium; mo = month; NR = not reported; RCR = rotator cuff repair; SD = standard deviation; Sm = small; yr = year

Table 12. Outcome data for studies assessing open vs. arthroscopic RCR

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group p-value
Costouros JG, ⁸⁷ 2006	G1: Open RCR (NR) G2: Arthroscopic RCR (NR)	CMS	52/70, p=0.02	51/75, p<0.001	NS
	21.1 mo (12–48)				
lde J, ¹¹² 2005	G1: Open RCR (50) G2: Arthroscopic RCR (50)	UCLA	15.5 (7–26)/31.6 (26–35), p<0.0001	16.1 (8–24)/32.0 (21–35), p<0.0001	p>0.05
	4.1 yr (2.1–6.9)	JOA*	56.9 (27–68)/92.1 (67–100), p<0.0001	58.7 (32–64)/94.0 (60–100), p<0.0001	p>0.05
Millar NL, ¹³⁴	G1: Open RCR (20)	ASES†	43±1	47±1	G1 vs. G2: p<0.001
2009	G2: Arthroscopic knotted	6 mo	61±2	74±2	G1 vs. G3: p<0.001
	RCR (29)	2 yr	67±1, p<0.001	80±2, p<0.001	
	G3: Arthroscopic knotless	-	•••	G3 : 48±1	-
	RCR (38)			78±2	
				79±1, p<0.001	
	2 yr			· 1	

ABD = abduction; ASES = American Shoulder and Elbow Scale; CMS = Constant-Murley score; ER = eternal rotation; G = group; JOA = Japanese Orthopaedic Association scale; mo = month; N = number; NR = not reported; NS = not significant; OSF = Overall Shoulder Function; RCF Index = rotator cuff function index; RCR = rotator cuff repair; ROM = range of motion; SD = standard deviation; SS = supraspinatus; UCLA = University of California Los Angeles Scale; US = ultrasound; yr = year * Subscores reported

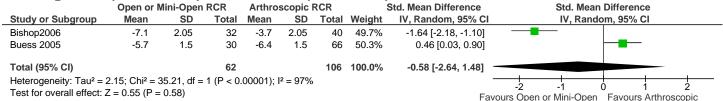
 \dagger Values are expressed as mean \pm standard error of the mean

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Millar NL, ¹³⁴		OSF† (1–5)	2.3±0.1	2.0±0.2	G1 vs. G2: NS
2009		6 mo	3.9±0.1	4.2±0.1	G1 vs. G3: NS
(continued)		2 yr	4.4±0.1, p<0.001	4.3±0.1, p<0.001	_
				G3 : 2.4±0.1	
				4.1±0.1	
				4.4±0.1, p<0.001	
		RCF Index†	-16±3	-25±3	G1 vs. G2: NS
		6 mo	-1±3	3±3	G1 vs. G3: NS
		2 yr	-8±4, p<0.001	-4±2, p<0.001	_
				G3 : -20±3	
				-1±2	
				-3±3, p<0.001	
		Pain at rest† (0–	2.4±0.2	2.2±0.1	G1 vs. G2: NS
		4)	1.0±0.1	1.0±0.1	G1 vs. G3: NS
		6 mo	0.5±0.1, p<0.001	0.6±0.1, p<0.001	_
		2 yr		G3 : 1.7±0.2	
				0.7±0.1	
				0.6±0.1, p<0.001	
		Night Pain† (0–4)	2.5±0.2	2.3±0.2	G1 vs. G2: NS
		6 mo	1.4±0.1	1.0±0.1	G1 vs. G3: NS
		2 yr	0.9±0.2, p<0.001	0.9±0.1, p<0.001	_
				G3: 2.2±0.1	
				0.8±0.1	
				0.9±0.1, p<0.001	
		ROM†(degrees)	ABD: 135±5	ABD: 112±6	ABD:
		6 mo	154±4	159±5	G1 vs. G2: NS
		2 yr	149±5, p<0.01	141±5, p<0.001	G1 vs. G3: NS
			F: 151±4	F: 123±7	
			163±4	163±4	F:
			164±4, p<0.01	165±4, p<0.001	G1 vs. G2: NS
			ER: 53±3	ER: 47±2	G1 vs. G3: NS
			53±2	66±3	
			52±2, NS	62±2, p<0.01	ER:
				G3 : ABD:133±5.5	G1 vs. G2: p<0.001
				163±3.3	G1 vs. G3: p<0.001
				152±4, p<0.01	
				F: 146±5	
				168±2.5	
				165±3, p<0.001	
				ER: 54±2.7	
				69±2.5	
				68±3, p<0.001	

Table 12. Outcome data for studies assessing open vs. arthroscopic RCR (continued)

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Millar NL, ¹³⁴		Strength†	SS: 29±3	SS: 23±2	SS:
2009		(newton)	50±3	52±3	G1 vs. G2: NS
(continued)		6 mo	48±3, p<0.001	50±2, p<0.001	G1 vs. G3: p<0.05
		2 yr	ER: 39±3	ER: 32±2	-
		•	62±4	60±3	ER:
			50±2, p<0.05	52±3, p<0.01	G1 vs. G2: NS
			Liftoff: 29±2	Liftoff: 20±2	G1 vs. G3: p<0.05
			45±4	38±3	
			57±2, p<0.01	49±4, p<0.001	Liftoff:
				G3 : SS: 37±3	G1 vs. G2: NS
				56±2.8	G1 vs. G3: NS
				57±2, p<0.001	
				ER: 46±2.7	
				61±2.7	
				62±3, p<0.001	
				Liftoff: 29±2.6	
				40±2.1	
				50±2, p<0.001	
		Cuff integrity†	12/20 (60)	19/29 (65)	G1 vs. G2: NS
		n/N (%), ÚS		G3 : 31/38 (82)	G1 vs. G3: NS

Table 12. Outcome data for studies assessing open vs. arthroscopic RCR (continued)


Open or mini-open RCR vs. arthroscopic RCR. Two prospective cohort studies^{72,77} compared open or mini-open RCR against arthroscopic RCR. These studies are presented as a separate category, since the study outcome data was not reported separately for patients who received open or mini-open repair. Pooled results are shown in Figure 7. Patient and study characteristics and outcome data are presented in Table 13 and Table 14, respectively.

Bishop et al.⁷² conducted a prospective cohort study in patients with small, large, and massive full-thickness tears. One hundred and two patients were selected and 72 evaluated (32 received open repair [24 patients] or mini-open repair [8 patients] and 40 received arthroscopic repair) at 1 year. Patient function was assessed using the ASES score, CMS, pain, and range of motion (forward elevation and external rotation). Within group differences for all measures were statistically significant. All between group differences were not significant with the exception of an improvement in external rotation, which was significantly greater for the open and mini-open group ($p \le 0.05$). Cuff integrity was evaluated using MRI at 12 months; 22 patients (69 percent) and 21 patients (52.5 percent) had intact cuffs in the open or mini-open vs. arthroscopic group, respectively. The difference between groups was not significant.

Buess et al.⁷⁷ conducted a prospective cohort study in patients with all tear sizes. Ninetysix patients (99 shoulders) were selected and 92 evaluated (29 received open or mini-open repair and 63 received arthroscopic repair) at a mean followup of 2 years (range: 15 months to 3.3 years). Patients were evaluated on the SST, a visual analogue scale for pain, and number of days until pain free. The arthroscopic group had significantly better pain relief on the visual analogue scale than the open / mini-open group at final followup (p=0.02). Postoperative SST scores were not statistically significant between the groups (p=0.33). Both groups showed similar duration in the mean number of days until pain free (95.6 for the open and mini-open group, 94.4 for the arthroscopic group).

A meta-analysis was conducted using visual analogue pain data from the two cohort studies (Figure 7).^{72,77} The mean preoperative to postoperative change scores for both treatment arms were compared. The studies both found a statistically significant difference between the groups; in Bishop et al.⁷² the open or mini-open group was favored, while in Buess et al.⁷⁷ the arthroscopic group was favored. The combined estimate of change in pain scores showed no difference between the interventions (SMD=-0.58; 95% CI, -2.64 to 1.48). There was significant heterogeneity between the studies (p<0.0001; I²=97 percent). The heterogeneity may be attributable, in part, to differences between the study populations. Buess et al.⁷⁷ included younger patients, of which a large proportion were manual laborers (nearly 50 percent), while the population in Bishop et al.⁷² was significantly older.

Figure 7. Open	or mini-open ve	s. arthroscopic	RCR for pain VAS

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range)/Males, N (%) Other characteristics	Type of tear; Size of tear Duration of symptoms (mo) mean±SD (range)
Bishop J, ⁷² 2006	G1: Open or mini-open RCR (47)	G1: 64 yr/NR	FTT; Sm, Lg, Mass
•	G2: Arthroscopic RCR (55)	G2: 64 yr/NR	
			NR
	Prospective cohort		
Buess E, ⁷⁷ 2005	G1: Open or mini-open RCR (32 shoulders)	G1: 48.3 yr (18–73)/Males: 21 (72)	NR; Sm, Med, Lg, Mass
	G2: Arthroscopic RCR (67 shoulders)	Manual laborers: 13 (45)	
		G2: 53.2 yr (20–77)/Males: 44 (70)	NR
	Prospective cohort	Manual laborers: 30 (48)	

Table 13. Study and patient characteristics for studies assessing open or mini-open vs. arthroscopic RCR

FTT = full-thickness tear; G = group; Lg = large; Mass = massive; Med = medium; N = number; NR = not reported; RCR = rotator cuff repair; SD = standard deviation; Sm = small; yr = year

Table 14. Outcome data for studies assessing open or mini-open vs. arthroscopic RCR

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Bishop J, ⁷² 2006	G1: Open or mini-open	ASES	40/85, p<0.0001	46/84, p<0.0001	p=0.73
	RCR (32)	CMS	53/80, p<0.0001	52/75, p<0.0001	p=0.13
	G2: Arthroscopic RCR (40)	Pain (VAS)	8.2/1.1, p<0.0001	5.2/1.5, p<0.0001	p=0.41
	12 mo	ROM (lb)	F: 6.2/12.8, p<0.005 ER: 10/18, p<0.01	F: 5.8/10.4, p<0.01 ER: 9.5/13.6, p<0.01	F: p=0.220 ER: p≤0.05
		Cuff integrity n/N (%), MRI	22/32 (69)	21/40 (53)	p=0.23*
Buess E, ⁷⁷ 2005	G1: Open or mini-open	SST	NR/8.7	NR / 9.7	p=0.33
	RCR (29)	Pain (VAS)	7.8 (4.5–10)/NR	8.0 (2.5–10) / NR	p=0.02
	G2: Arthroscopic RCR (63)	Days until pain free, mean	95.6 (7–360)	94.4 (2–375)	NR
	2 yr (15 mo–3.3 yr)	(range)			

ASES = American Shoulder and Elbow Scale; CMS = Constant-Murley score; ER = external rotation; F = flexion; G = group; lb = pound; mo = month; MRI = magnetic resonance imaging; N = number; NR = not reported; RCR = rotator cuff repair; ROM = range of motion; SD = standard deviation; SST = simple shoulder test; VAS = visual analogue scale; yr = year

* Calculated by UAEPC

Open RCR vs. open or arthroscopic debridement. Four studies (two CCTs, ^{137,143} and two cohort studies^{139,165}) compared open RCR vs. arthroscopic debridement. Pooled results are shown in Figure 8. Patient and study characteristics and outcome data are presented in Table 15 and Table 16, respectively.

Montgomery et al.¹³⁷ conducted a CCT comparing open RCR vs. arthroscopic debridement. All patients had full-thickness tears; tear size ranged from small to massive. One hundred and six patients (107 shoulders) were randomly assigned to the interventions (58 to open repair and acromioplasty, 49 to arthroscopic debridement and subacromial decompression) and 87 patients (88 shoulders) were included in final analysis. Followup evaluations were conducted 2 to 5 years postoperatively. The UCLA shoulder scale was used to evaluate patient function. There was improvement from the preoperative to postoperative scores in both groups. At final evaluation, there was a significant difference between two groups (p=0.0028), in favor of the open RCR group.

Motycka et al.¹³⁹ conducted a retrospective cohort study comparing open RCR vs. open or arthroscopic debridement in patients with large and massive tears. Overall, 76 patients were enrolled in the study; of these, 64 were included in the final analyses (33 received open repair with acromioplasty, 31 received open debridement with acromioplasty [15] or all-arthroscopic debridement and acromioplasty [16]). The mean length of followup was 5.7 years (range: 2.1 to 14.2). Patients were evaluated using the CMS. There was no statistically difference between the endpoint scores of the two groups (p=0.73).

Ogilvie-Harris et al.¹⁴³ conducted a CCT comparing open RCR vs. arthroscopic debridement in patients with RC tears 1 to 4 cm in size. Fifty patients were assigned to the interventions (25 patients received open repair with acromioplasty, 25 received all-arthroscopic debridement with acromioplasty); 45 were included in the final analyses. Followup duration ranged from 2 to 5 years. Patient function was evaluated using the UCLA scale. Both groups showed a significant improvement in UCLA subscores (pain, function, active forward flexion, and strength of forward flexion) from preoperative to postoperative measures. The difference between the postoperative scores of the two groups was statistically significant (p=0.017), favoring the open RCR group.

Vad et al.¹⁶⁵ conducted a retrospective cohort study comparing open RCR vs. arthroscopic debridement in patients with massive full-thickness tears. Sixty-eight patients were enrolled in the two operative arms (36 received open repair, 32 received all-arthroscopic debridement). All patients were followed up for at least 2 years; mean follow up duration was 3.2 years (range: 2 to 7). Patients were evaluated using the Insalata shoulder rating scale, range of motion (abduction), and time to maximal range of motion. For both groups, there were statistically significant improvement between the preoperative and postoperative scores for the Insalata rating and range of motion (p<0.05). The Insalata scores at final followup were significantly different between groups, favoring open repair. The time to maximal range of motion differed between the groups, with 6.8 months for the open RCR group and 3.2 months in the arthroscopic debridement group.

Two CCTs^{137,139} and two cohort studies^{143,165} provided data for meta-analysis of the effects of open repair vs. arthroscopic debridement on functional outcome measures (Figure 8). Data from the trials and cohort studies was analyzed separately. The following measures were included in the meta-analysis: CMS,¹³⁹ UCLA score,^{137,143} and the Insalata shoulder rating scale.¹⁶⁵ The preoperative to postoperative change score was compared between groups for Vad

et al.¹⁶⁵ and Montgomery et al;¹³⁷ the remaining studies did not report baseline data, therefore the postoperative scores were compared between groups. The combined estimate of changes in measures of functional outcomes indicated a significant improvement in favor of open RCR for both the trials (SMD=0.59; 95% CI, 0.15 to 1.03) and the cohort studies (SMD=1.00; 95% CI, 0.11 to 1.90). There was no evidence of heterogeneity for the trials (p=0.22; $I^2=32$ percent), however there was substantial heterogeneity for the cohort studies (p=0.03; $I^2=79$ percent).

	Ор	en RC	R	Deb	rideme	ent	:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
5.2.1 RCT/CCT									
Montgomery 1994	19.5	9.5	50	12.1	9.5	38	54.6%	0.77 [0.33, 1.21]	
Ogilvie-Harris 1993	29.1	6.72	23	26.9	6.88	22	45.4%	0.32 [-0.27, 0.91]	
Subtotal (95% CI)			73			60	100.0%	0.59 [0.15, 1.03]	
Test for overall effect:		(P = 0	0.008)	,	,,				
		(P = 0	0.008)	,	,,,				
5.2.2 Cohort Studies		·	33	65.06	20.1	16	47.8%	0.54 [-0.07, 1.14]	
Test for overall effect: 5.2.2 Cohort Studies Motycka 2004 Vad 2002	76.03	·	,	65.06 39.1	20.1 7.8	16 36	47.8% 52.2%	0.54 [-0.07, 1.14] 1.45 [0.91, 1.99]	
5.2.2 Cohort Studies Motycka 2004	76.03	20.2	33						
5.2.2 Cohort Studies Motycka 2004 Vad 2002	76.03 50.6	20.2 7.92	33 32 65	39.1	7.8	36 52	52.2% 1 00.0%	1.45 [0.91, 1.99]	
5.2.2 Cohort Studies Motycka 2004 Vad 2002 Subtotal (95% CI)	76.03 50.6 0.33; Ch	20.2 7.92 ni ² = 4.3	33 32 65 85, df =	39.1	7.8	36 52	52.2% 1 00.0%	1.45 [0.91, 1.99]	
5.2.2 Cohort Studies Motycka 2004 Vad 2002 Subtotal (95% CI) Heterogeneity: Tau ² =	76.03 50.6 0.33; Ch	20.2 7.92 ni ² = 4.3	33 32 65 85, df =	39.1	7.8	36 52	52.2% 1 00.0%	1.45 [0.91, 1.99]	

Favours debridement Favours open RCR

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range)/Males, N (%) Other characteristics	Type of tear; Size of tear Duration of symptoms (mo) mean±SD (range)
Montgomery TJ, ¹³⁷ 1994	G1: Open RCR (58 shoulders)	G1: 58±11.6 yr (32–79)/NR	FTT; Sm, Med, Lg, Mass
	G2: Arthroscopic debridement (49 shoulders)	G2: 60±12.2 yr (36–79)/NR	NR
	CCT		
Motycka T, ¹³⁹ 2004	G1: Open RCR (NR)	G1: NR/NR	NR; Lg, Mass
, ,	G2: Open or arthroscopic debridement (NR)	G2: NR/NR	
			NR
	Retrospective cohort		
Ogilvie-Harris DJ, ¹⁴³ 1993	G1: Open RCR (25)	G1: NR/NR	NR; Sm, Med, Lg
0	G2: Arthroscopic debridement (25)	G2: NR/NR	
	1 ()		NR
	CCT		
Vad VB, ¹⁶⁵ 2002	G3*: Open RCR (36)	G3: 59.4 yr/NR	FTT; Mass
	G4: Arthroscopic debridement (32)	G4: 62.9 yr/NR	
			6.3 mo (1–17)
	Retrospective cohort		

Table 15. Study and patient characteristics for studies assessing open RCR vs. arthroscopic debridement

47

deviation; Sm = small *Groups 1 and 2 are nonoperative interventions

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Montgomery TJ, ¹³⁷ 1994	G1: Open RCR (50 shoulders) G2: Arthroscopic debridement (38 shoulders)	UCLA*	11/30.5	13/25.1	p=0.0028
	2–5 yr				
Motycka T, ¹³⁹ 2004	G1: Open RCR (33) G2: Open or arthroscopic debridement (31)	CMS*	NR/76 (16–100)	NR/65.1 (10–98)	p=0.73
	5.7 yr (2.1–14.2)				
Ogilvie-Harris DJ, ¹⁴³ 1993	G1: Open RCR (23) G2: Arthroscopic debridement (22)	UCLA*	NR/29.1	NR/26.9	p=0.017
	2–5 yr				
Vad VB, ¹⁶⁵ 2002	G3†: Open RCR (36)	Insalata*	33±1.2/83.6±1.4, p≤0.05	42.3±1.4/81.4±1.3, p≤0.05	p≤0.01‡
	G4: Arthroscopic	ROM (degrees)	ABD: 72/116, p≤0.05	ABD: 74/110, p≤0.05	NR
	debridement (32)	Time to	6.8 mo (4–16)	3.2 mo (1–8)	NR
	3.2 yr (2–7)	maximal ROM, mean (range)			

Table 16. Outcome data for studies assessing open RCR vs. arthroscopic debridement

ABD = abduction; CMS = Constant-Murley score; G = group; Insalata = Insalata Shoulder Rating Questionnaire; NR = not reported; RCR = rotator cuff repair; ROM = range of motion; SD = standard deviation; UCLA = University of California Los Angeles Scale; yr = year*Subscores reported

†Groups 1 and 2 are nonoperative interventions ‡Calculated by UAEPC

Arthroscopic RCR vs. acromioplasty. Two RCTs^{102,133} compared arthroscopic RCR vs. arthroscopic RCR with acromioplasty, while one prospective cohort study compared arthrosopic RCR vs. acromioplasty alone.¹⁴⁰ Pooled results are shown in Figure 9. Patient and study characteristics and outcome data are presented in Table 17 and Table 18, respectively.

Gartsman et al.¹⁰² conducted a RCT in patients with full-thickness tears limited to the supraspinatus tendon. Ninety-three patients were randomized (47 received all-arthroscopic repair with acromioplasty, 46 received all-arthroscopic repair with no additional procedures). All patients were followed up for at least 1 year; the mean followup duration was 15.6 ± 3.3 months. In the group treated with arthroscopic RCR and acromioplasty, the mean tear size was 2.1 cm; in the group treated with arthroscopic RCR alone, the mean tear size was 2.3 cm. The ASES index was used to evaluate patient function. There was no statistical difference in the postoperative endpoint scores between the two groups (p=0.39).

Milano et al.¹³³ conducted a RCT in patients with full-thickness tears. Overall, 80 patients were randomly assigned to the interventions (40 received arthroscopic repair and acromioplasty, 40 received arthroscopic repair without acromioplasty); 71 were included in the final analyses. Followup duration was 2 years. Patients were evaluated using the CMS, the Disabilities of the Arm, Shoulder and Hand (DASH) score, and the Work-DASH score. Endpoint scores were comparable between the groups, with the arthroscopic group with acromioplasty scoring slightly higher on the postoperative CMS, and the group without acromioplasty scoring somewhat higher on the DASH and Work-DASH. Baseline and p-values for between and within-group differences were not reported.

Mullett et al.¹⁴⁰ compared arthroscopic RCR vs. acromioplasty without repair in a prospective cohort study. A total of 210 patients with small and medium sized tears were enrolled (114 received acromioplasty/subacromial decompression without repair, 96 received arthroscopic RCR). Patients were evaluated at 3 years followup using the CMS. The arthoscopic repair group had a higher postoperative score (86.4) compared with the acromioplasty group (69.8), however baseline values and the significance of the difference between groups were not reported.

Two RCTs^{102,133} provided data for meta-analysis of the effects of arthroscopic repair with acromioplasty vs. without acromioplasty on functional outcomes (Figure 9). Outcome measures used in the analysis include the ASES index¹⁰² and the CMS.¹³³ The difference between endpoint scores was analyzed in both studies.

Figure 9. Arthroscopic RCR with acromioplasty vs. RCR without acromioplasty for measures of functional outcome

	RCR with acromioplasty		RCR without acromioplasty			Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Gartsman 2004	91.5	10.3	47	89.2	15.1	46	57.1%	0.18 [-0.23, 0.58]	
Milano 2007	103.6	19.59	34	96.1	19.59	37	42.9%	0.38 [-0.09, 0.85]	
Total (95% CI)			81			83	100.0%	0.26 [-0.04, 0.57]	
Heterogeneity: Tau ² = 0.00; Chi ² = 0.40, df = 1 (P = 0.52); l ² = 0%								-0.5 -0.25 0 0.25 0.5	
Test for overall effect: $Z = 1.68$ (P = 0.09)									-0.5 -0.25 0 0.25 0.5 Favours no acromioplasty Favours acromioplasty

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; Size of tear Duration of symptoms (mo), mean±SD (range)
Gartsman GM, ¹⁰² 2004	G1: Arthroscopic RCR & acromioplasty (47) G2: Arthroscopic RCR (46)	G1: 59.3 yr (39–81)/Males: 27 (57) G2: 60 yr (37–79)/Males: 24 (52)	FTT; G1: 2.1 cm, G2: 2.3 cm NR
	RCT		
Milano G, ¹³³ 2007	G1: Arthroscopic RCR & acromioplasty (40) G2: Arthroscopic RCR (40)	G1: 61±7 yr/Males: 20 (50) G2: 59.7±9.7 yr/Males: 19 (48)	FTT; NR
	RCT		NR
Mullett H, ¹⁴⁰ 2006	G1: Arthroscopic acromioplasty (114) G2: Arthroscopic RCR (96)	G1: NR/Males: NR G2: NR/Males: NR	NR; Sm, Med
	Prospective cohort		NR

Table 17. Study and patient characteristics for studies assessing arthroscopic RCR vs. acromioplasty

cm = centimetre; FTT = full-thickness tear; G = group; Med = medium; mo = month; N = number; NR = not reported; RCR = rotator cuff repair; RCT = randomized controlled trial; SD = standard deviation; Sm = small; yr = year

Table 18. Outcome data for studies assessing arthroscopic RCR vs. acromioplasty

50

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Gartsman GM, ¹⁰² 2004	G1: Arthroscopic RCR & acromioplasty (47) G2: Arthroscopic RCR (46)	ASES	31.1 (20-46.7)/91.5±10.3	31 (18.3–41.7)/89.2±15.1	p=0.39
Milano G, ¹³³	15±3.3 mo (NR) G1: Arthroscopic RCR &	CMS	NR/103.6	NR/96.1	NR
2007	acromioplasty (37)				
		DASH	NR/18.2	NR/23.1	NR
	G2: Arthroscopic RCR (34)	Work-DASH	NR/23.7	NR/26.2	NR
	2 yr				
Mullett H, ¹⁴⁰ 2006	G1: Arthroscopic acromioplasty (NR) G2: Arthroscopic RCR (NR)	CMS	NR/69.8	NR/86.4	NR
	3 yr				

ASES = American Shoulder and Elbow Surgeon scale; CMS = Constant-Murley score; DASH = Disabilities of the Arm, Shoulder and Hand scale; G = group; mo = month; N = number; NR = not reported; RCR = rotator cuff repair; SD = standard deviation; yr = year

Other operative approaches. There were seven studies (two RCTs,^{96,97} one CCT,¹⁶³ and four retrospective cohort studies^{63,75,94,138)} that could not be classified into one of the above categories. The intervention comparisons examined in these studies included: biceps tenotomy vs. tenodesis,⁷⁵ RCR vs. palliative treatment (partial repair and biceps tenotomy),⁹⁴ arthroscopic repair with SLAP repair vs. arthroscopic repair with biceps tenotomy,⁹⁶ arthroscopic RCR plus tenodesis with proximal biceps detachment vs. without proximal biceps detachment,⁹⁷ arthroscopic debridement with biceps tenotomy vs. without biceps tenotomy,⁶³ complete RCR vs. partial RCR vs. debridement,¹³⁸ and classical vs. modified open acromioplasty.¹⁶³ None of the studies could be pooled in a meta-analysis, as each study examined a different treatment comparison. Patient and study characteristics and outcome data are presented in Table 19 and Table 20, respectively.

Boileau et al.⁷⁵ conducted a retrospective cohort study in patients with massive irreparable tears. Overall, 78 patients (82 shoulders) were enrolled in the study; of these, 68 patients (72 shoulders) were included in analyses (39 shoulders received biceps tenotomy, 33 shoulders received biceps tenodesis). The mean length of followup was 2.9 ± 0.6 years(range: 2 to 6.3 years). Patients were evaluated using the CMS and active and passive range of motion (flexion, external and internal rotation). Together, the groups showed significant improvement in the CMS and active flexion from preoperative to postoperative measures (p<0.001), however the mean change from baseline to endpoint was not reported separately by group. There was no statistically significant between-group differences at endpoint scores.

Favard et al.⁹⁴ conducted a retrospecitve cohort study comparing watertight anatomical repair vs. palliative treatment in a sample of patients younger than 65 years with a massive RC tear. A total of 192 patients were enrolled; 103 received RCR, while 89 received palliative treatment, including tenotomy of the long head of biceps (n=48) or partial repair (n=41). Patients were evaluated using the CMS at an average of 4.1 years and 6.2 years for the repair and palliative treatment groups, respectively. A significant difference was observed between baseline and endpoint scores in both groups. In addition, there was a significant difference between the groups (p<0.05), in favour of the anatomical repair group.

Franceschi et al.⁹⁶ conducted a RCT in patients with RC tears limited to supraspinatus and infraspinatus tendon; tear size ranged from small to large. Sixty-three patients were randomly assigned to the interventions (31 received arthroscopic repair with SLAP repair, 32 received arthroscopic repair with biceps tenotomy) and evaluated at a mean length of followup of 5.2 years (range: 2.9 to 7.8 years). Patients were assessed using the UCLA shoulder scale and range of motion (flexion, external and internal rotation). For both groups, there was significant improvement in total UCLA scores and range of motion from preoperative to postoperative scores (p<0.001). Moreover, there was a significant difference in total postoperative UCLA scores and range of motion between the two groups, in favour of the arthroscopic RCR with biceps tenotomy group (p≤0.05).

Franceschi et al.⁹⁷ conducted a RCT in patients with massive full-thickness tears. Twenty-two patients were randomly assigned to the interventions (11 to tenodesis without detachment, 11 to tenodesis with detachment) and followed for a mean of 3.9 years (range: 3 to 4.9 years). All patients were evaluated using the UCLA shoulder scale and range of motion (flexion, external and internal rotation). For both groups, there was significant improvement in total UCLA scores and range of motion from preoperative to postoperative scores ($p \le 0.05$). However, neither the difference between the groups in total postoperative UCLA scores nor in range of motion was statistically significant (p>0.05).

Klinger et al.⁶³ conducted a retrospective cohort study in patients with massive irreparable tears. Forty-one patients were enrolled in the study (24 received arthroscopic debridement and acromioplasty, 17 received arthroscopic debridement, acromioplasty and biceps tenotomy). All patients were followed up for at least 2 years; mean followup was 2.6 years (range: 2 to 4 years). All patients were assessed using the CMS. There was no statistically significantly difference between the groups in the endpoint score (p>0.05).

Moser et al.¹³⁸ conducted a retrospective cohort study in patients with massive fullthickness tears. Thirty-eight patients were enrolled in the study (21 received open repair, 11 received partial open repair, 6 received debridement). All patients were evaluated using the Shoulder Pain and Disability Index (SPADI) score, range of motion (protraction, external and internal rotation) and strength (protraction, external rotation), and for at least 2 years. There were no significant endpoint differences between the groups on any outcome, with the exception of external rotation range of motion (p=0.029), which favored complete RCR.

Torrens et al.¹⁶³ conducted a CCT in patients with small to massive tears. Forty-two patients were enrolled in the study (20 received open repair with classic open acromioplasty, 22 received open repair with modified acromioplasty). All patients were followed up for at least 1 year; the mean followup was 18 months. The CMS was used to evaluate patient function. For both groups, the CMS improved from baseline to endpoint.

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range)/Males, N (%) Other characteristics	Type of tear; Size of tear Duration of symptoms (mo), mean±SD (range)
Boileau P, ⁷⁵ 2007	G1: Biceps tenotomy (NR) G2: Biceps tenodesis (NR)	Total: 68 yr (52–85)/Males: 26 (38)	FTT; Mass
	Retrospective cohort		NR
Favard L, ⁹⁴ 2009	G1: Watertight anatomical RCR (103) G2: Palliative treatment (89)	G1: 55.2±6.2 yr/Males: NR G2: 57.1±5.5 yr/Males: NR	FTT; Mass
	Retrospective cohort	-	NR
Franceschi F, ⁹⁶ 2008	G1: Arthroscopic RCR & SLAP repair (31) G2: Arthroscopic RCR & biceps tenotomy	G1: 61.8 yr (51–79)/Males: 18 (58) G2: 64.7 yr (53–81)/Males: 15 (47)	NR; Sm, Med, Lg
	(32) RCT		21 mo
Franceschi F, ⁹⁷ 2007	G1: Tenodesis without detachment (11) G2: Tenodesis with detachment (tenotomy)	G1: 60.3±12.4 yr (41–79)/Males: 6 (55) Manual laborers: 3 (27)	FTT; Mass
	(11) RCT	G2: 58.1±14.5 yr (40–81)/Males: 5 (46) Manual laborers: 3 (27)	NR
Klinger HM, ⁶³ 2005	G1: Arthroscopic debridement (24) G2: Arthroscopic debridement & biceps	G1: 66 yr (61–79)/Males: 15 (63) G2: 68 (63–82)/Males: 10 (59)	FTT; Mass
	tenotomy (17)		G1: 11 mo (6–23), G2: 10 mo (6–18)
	Retrospective cohort		х <i>У</i>
Moser M, ¹³⁸ 2007	G1: Complete RCR (21) G2: Partial RCR (11)	Total: 62.5 yr (33–81)/Males: 28 (74)	NR; Mass
	G3: Debridement (6)		NR
	Retrospective cohort		
Torrens C, ¹⁶³ 2003	G1: Classical open acromioplasty (20) G2: Modified open acromioplasty (22)	G1: 55.9 yr/Males: 4 (20) G2: 63.8 yr/Males: 4 (18)	NR; Sm, Med, Lg, Mass
	ССТ		NR

Table 19. Study and patient characteristics for studies assessing other operative approach
--

CCT = controlled clinical trial; FTT = full-thickness tear; G = group; Lg = large; Med = medium; Mass = massive; NR = not reported; RCR = rotator cuff repair; RCT = randomized controlled trial; SD = standard deviation; Sm = small; yr = year

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Boileau P, ⁷⁵	G1: Biceps tenotomy (39	CMS	NR/61.2±18	NR/72.8±12	p>0.05
2007	shoulders) G2: Biceps tenodesis (33 shoulders) 2.9±0.6 yr (2–6.3)	ROM	F (active): NR/146.2±34.8 F (passive): NR/166.4±21.3 ER (active): NR/32.2±22.0 ER (passive): NR/51.3±16.8 IR: NR/L3	F (active): NR/164.2±27.6 F (passive): NR/173±10.5 ER (active): NR/40.5±20.9 ER (passive): NR/52.3±16.9 IR: NR/L3	p>0.05
Favard L, ⁹⁴ 2009	G1: Watertight anatomical repair (NR) G2: Palliative (NR)	CMS	37.7±17.1/70±15.2, p<0.01	40.6±13.3/64±16.6, p<0.01	p<0.05
	G1: 50.1±27 G2: 74.4±36.6				
Franceschi F, ⁹⁶ 2008	G1: Arthroscopic RCR + SLAP repair (31)	UCLA*	10.4 (6–14)/27.9 (24–35), p<0.001	10.1 (5–14)/32.1 (30–35), p<0.001	p≤0.05
	G2: Arthroscopic RCR + biceps tenotomy (32)	ROM (degrees)	F: 107 (30–140)/139 (120– 170), p<0.001	F: 99 (30–140)/166 (140–170), p<0.001	p≤0.05
	5.2 yr (2.9–7.8)		ER: 81.7 (65–95)/121.4 (90– 140), p<0.001	ER: 76.6 (60–90)/134.3 (90– 140), p<0.001	
			IR: 26.0 (20–33)/34.4 (26–40), p<0.001	IR: 29.1 (21–35)/40.0 (30–45), p<0.001	
Franceschi F, ⁹⁷ 2007	G1: Tenodesis without detachment (11)	UCLA	10.5 (5–15)/33 (29–35), p≤0.05	11.1/32.9, p≤0.05	p>0.05
	G2: Tenodesis with detachment (tenotomy) (11)	ROM (degrees)	F: 102 (30–140)/161 (150– 170), p≤0.05	F: 110 (30–150)/159 (140– 170), p≤0.05	p>0.05
	3.9 yr (3–4.9)		ER: 37 (30–60)/59 (45–70), p≤0.05	ER: 41 (30–60)/60 (45–90), p≤0.05	
			IR†: L5 - T10/T11 - T5	IR†: L5 - T12/T12 - T5	
Klinger HM, ⁶³ 2005	 G1: Arthroscopic debridement (24) G2: Arthroscopic debridement + biceps tenotomy (17) 	CMS	39 (19–54)/67 (41–87)	41 (16–60)/69 (49–87)	p>0.05
	2.6 yr (2–4)				

Table 20. Outcome data for studies assessing other approaches

ASES = American Shoulder and Elbow Scale; CMS = Constant-Murley score; DASH = Disabilities of the Arm, Shoulder and Hand; ER = external rotation; F = flexion; IR = internal rotation; ft-lbs = foot pounds; G = group; Nm = nanometer; NR = not reported; RCR = rotator cuff repair; ROM = range of motion; SD = standard deviation; SLAP = superior labral tear from anterior to posterior; SPADI = Shoulder Pain and Disability Index; UCLA = University of California Los Angeles Scale; yr = year *Subscores reported †vertebral level

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Moser M, ¹³⁸	G1: Complete RCR (NR)	SPADI*	NR/17.9	NR/29.5	p=0.235
2007	G2: Partial repair (NR)			G3: NR/38.4	
G3: Debridement (NR)	G3: Debridement (NR)	ROM (degrees)	Protraction: NR/124.5	Protraction: NR/120	Protraction: p=0.78
	2 yr (minimum)		ER: NR/45.6	ER: NR/27	ER: p=0.029
			IR: NR/T9	IR: NR/T11 G3:	IR: p=0.08
				Protraction: NR/110.8	
				ER: NR/41.6	
				IR: NR/T5	
		Strength	Protraction: NR/16.1 Nm, 11.9	Protraction: NR/16.8 Nm, 12.4	Protraction: p=0.48
			(ft-lbs)	(ft-lbs)	ER: p=0.08
			ER: NR/19.3 Nm, 14.2 (ft-lbs)	ER: NR/16.9 Nm, 12.5 (ft-lbs) G3:	
				Protraction: NR/12.9 Nm, 9.5	
				(ft-lbs)	
				ER: NR/10.03 Nm, 7.4 (ft-lbs)	
Forrens C, ¹⁶³ 2003	G1: Classical open anterior acromioplasty (20)	CMS	46.7/74	53.3/80	NR
	G2: Modified open anterior acromioplasty (22)				
	18 mo (NR)				

Table 20. Outcome data for studies assessing other approaches (continued)

Technique	Number of studies; subjects (analyzed)*	Outcome			Strength o evidence			
			Risk of bias	Consistency	Directness	Precision	Confounding	
Open RCR vs. mini-	1; 73 (60)	HRQL	RCT	Unknown	n/a	Imprecise	Absent	Low
open RCR	3; 187 (174)	Function	RCT, cohorts Medium	Consistent	Direct	Precise	Present	Moderate
	2; 114	Cuff integrity	Cohorts Medium	Consistent	Direct	Precise	Present	Moderate
	2; 114	Time to return to work	Cohorts Medium	Consistent	Direct	Precise	Present	Moderate
Mini-open RCR vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
arthroscopic RCR	10; 768 (683)	Function	CCT, Cohorts Medium	Consistent	Direct	Precise	Present	Moderate
2;	2; 204 (109)	Cuff integrity	Cohorts Medium	Consistent	Direct	Precise	Absent	Moderate
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Open RCR vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
arthroscopic RCR	3; 296 (224)	Function	Cohorts Medium	Inconsistent	Direct	Imprecise	Absent	Low
	1; 159 (87)	Cuff integrity	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Open or mini-open	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
RCR vs. arthroscopic RCR	2; 198 (194)	Function	Cohorts Medium	Consistent	Direct	Imprecise	Absent	Moderate
	1; 102	Cuff integrity	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Open RCR vs. open	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
or arthroscopic debridement	4	Function	RCT, CCT, Cohorts Medium	Consistent	Direct	Precise	Present	Moderate
	0	Cuff integrity	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Arthroscopic RCR	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
vs. RCR plus acromioplasty	2; 173 (164)	Function	RCTs, Cohort Medium	Consistent	Direct	Precise	Absent	Moderate
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

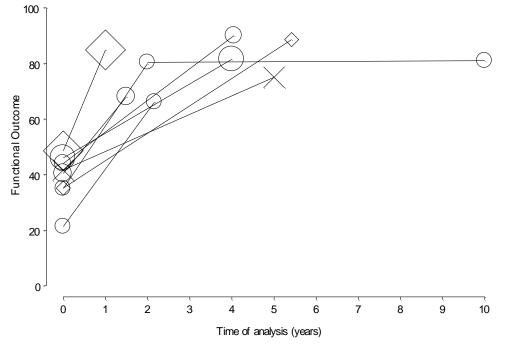
Table 21. Strength of evidence for operative approaches

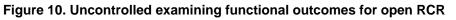
CCT = controlled clinical trial; HRQL = health-related quality of life; n/a = not applicable; RCR = rotator cuff repair; RCT = randomized controlled trial; SLAP = superior labral tear from anterior to posterior * number analyzed if different from number studied

Technique	Number of studies; subjects (analyzed)*	Outcome		Strengt	h of evidence d	omains		Strength o evidence
	(41141)204)		Risk of bias	Consistency	Directness	Precision	Confounding	
Arthroscopic RCR	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
vs. acromioplasty alone	1; 210	Function	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Biceps tenotomy vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
tenodesis	1; 78 (68)	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
RCR vs. palliative	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
treatment	1; 192	Function	Cohort Medium	Unknown	Direct	Unknown	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Arthroscopic RCR	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
with SLAP repair vs. arthroscopic	1; 63	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
RCR with biceps	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
tenotomy	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Arthoscopic RCR	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
plus tenodesis with detachment	1; 22	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
vs. without	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
detachment	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Arthroscopic	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
debridement with vs. without biceps	1; 41	Function	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
tenotomy	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Complete open RCR	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
vs. partial open RCR vs.	1; 38	Function	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
debridement	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Open RCR with	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
classic open vs. modified open	1; 42	Function	CCT Medium	Unknown	Direct	Imprecise	Present	Low
acromioplasty	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

Table 21. Strength of evidence for operative approaches (continued)

Operative Approach—Uncontrolled Studies


Fifty-eight uncontrolled studies (43 BA, $^{60,65,69,70,74,76,79,80,82-84,89-91,95,100,101,103,104,108,110,111,115,116,120-124,127,130,131,142,145,151,153,156,158,160,161,166,168,169 9 prospective cohorts with BA data, <math>^{62,86,92,93,107,126,141,144,146}$ 5 retrospective cohorts with BA data 128,135,149,150,162 and one case-control study with BA data 164) assessed the effectiveness of operative approaches in the RC tear population. The studies were published from 1993 to 2009 (median=2005; IQR: 2002 to 2007).


Open RCR. Fourteen uncontrolled studies (10 BA,^{60,79,83,103,108,115,131,145,151,153} one prospective cohorts with BA data,⁸⁶ two retrospective cohorts with BA data,^{128,135} and one case-control study with BA data¹⁶⁴) evaluated the effectiveness of open RCR. The studies were published from 1993 to 2007, with 2001 the median year of publication (IQR: 1995 to 2005).

The number of participants enrolled in the studies ranged from 25 to 224 (median=57; IQR: 43 to 97). The median followup duration was 2.2 years (IQR: 18 months to 4 years). The mean age of the participants ranged from 41 to 65 years. Of the 10 studies that reported type of tear, eight studies included only patients with full-thickness tears (80 percent) and two studies^{108,164} examined patients with partial- or full-thickness tears (20 percent). All tear sizes were included in six studies,^{79,83,115,135,145,151} small to large tears were included in two studies,^{60,86} medium to massive¹⁶⁴ and large to massive¹⁵³ in one study each. The tear size was not clearly described in four studies.^{103,108,128,131} Recreational athletes were included in three studies,^{60,83,135} and smokers in one study.¹²⁸ One study reported the proportion of patients in jobs with strenuous manual labour¹³⁵ and three studies included patients with a workers' compensation board (WCB) claim.^{60,135,164}

Health-related quality of life was reported in one study,¹³¹ while 10 studies used a functional outcome measure.^{60,79,86,103,108,128,131,135,151,153} Three studies reported either the time until patients returned to work,⁶⁰ or the proportion of patients that returned to work.^{83,135} Cuff integrity was reported in one study.¹⁰³

The figures below present the preoperative and postoperative functional scores over time for the BA studies (Figure 10), cohort studies (Figure 11), and trials (Figure 12) that examine open RCR. For one uncontrolled study, data from a 10-year followup publication⁶¹ was incorporated into the initial publication.⁶⁰ The shape of the markers indicates the outcome scale used in the study, while the size is proportionate to the square root of the study sample size. Regardless of the outcome measure used and the study design (trial, cohort or uncontrolled study), the studies all indicate improvement in functional score from baseline to final followup.

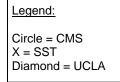
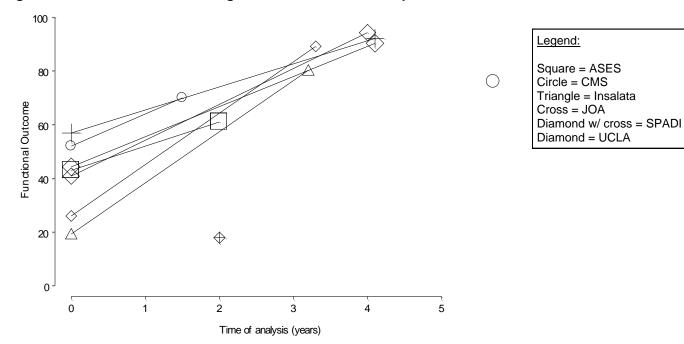
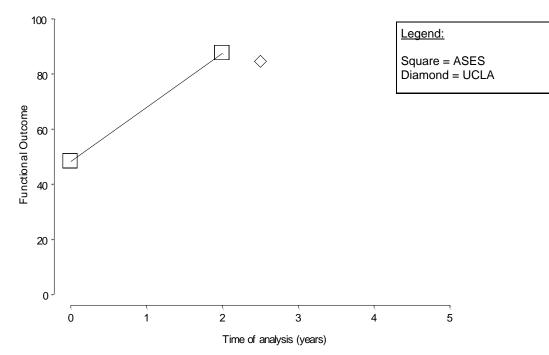




Figure 11. Cohort studies examining functional outcomes for open RCR

Mini-open RCR. Two BA studies^{69,76} examined the effectiveness of mini-open RCR. The studies were published in 2004⁷⁶ and 2005.⁶⁹ The number of enrolled participants was 84 in both studies. The mean followup was 12 mo.⁶⁹ and 35 mo.⁷⁶ The mean ages were 53⁶⁹ and 54 years.⁷⁶ One study⁶⁹ included full-thickness tears of all sizes and participants with WCB claims (n=20, 24 percent), while tear characteristics were not reported in the other study.⁷⁶

The reported outcomes included functional outcome scales,^{69,76} and return to work.⁶⁹ The figures below present the preoperative and postoperative functional scores over time for the uncontrolled studies (Figure 13), cohort studies (Figure 14), and trials (Figure 15) that examine mini-open RCR. The shape of the markers indicates the outcome scale used in the study, while the size is proportionate to the square root of the study sample size. The studies all indicate improvement in functional score from baseline to final followup, regardless of the outcome measure used and the study design (trial, cohort or uncontrolled study).

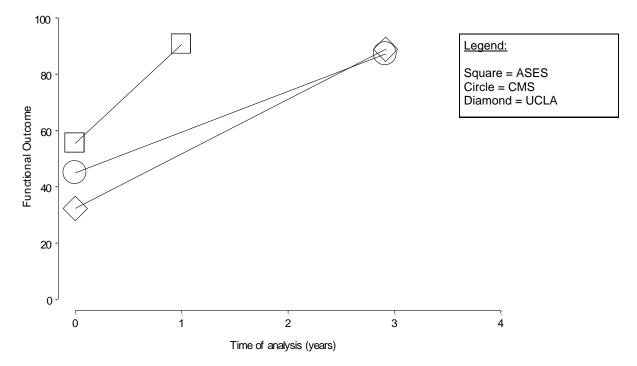
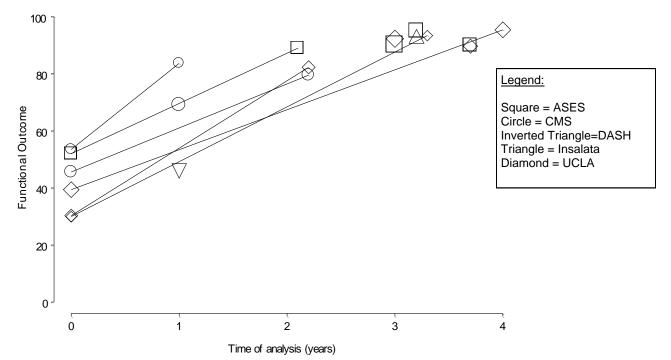
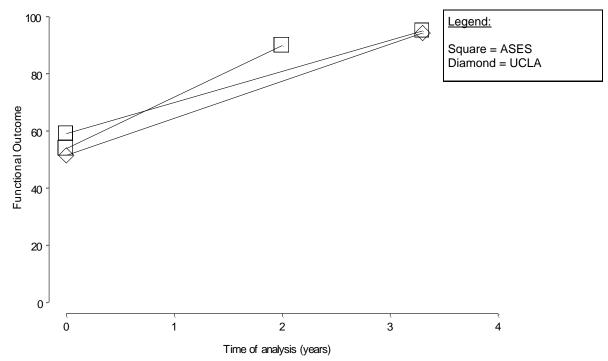




Figure 13. Uncontrolled studies examining functional outcomes for mini-open RCR

Arthroscopic RCR. Twenty-seven uncontrolled studies (19 BA, ^{70,74,80,84,90,91,100,110,111,120-124,130,142,158,161,169} five prospective cohorts with BA data, ^{62,92,93,141,146} three retrospective cohorts with BA data^{149,150,162}) examined the effectiveness of arthroscopic repair in patients with RC tears. The studies were published from 1993 to 2009 (median=2006; IQR: 2004 to 2007).

The total number of participants enrolled in the studies ranged from 16 to 193 (median=48 [IQR: 34 to 77]). The median duration of followup was 2.7 years (IQR: 2.2 to 3). The mean age of participants ranged from 42 to 70 years. The majority of the studies included on patients with full-thickness RC tears (n=15 studies, 56 percent), while the remaining studies included only partial-thickness tears, ^{91,111,169} both tear types^{90,120,122,146,149,150} or did not report type of tear. ^{123,142,161} Of the studies that reported tear size categories, eight included all tear sizes, ^{84,93,121,123,130,141,142,158} two included small to large tears, ^{74,122} three included small or medium tears only, ^{70,90,110} and one study included only massive tears. ⁶² One study reported including a small proportion of patients who were recreational athletes, ⁹¹ while two studies includies including smokers. ^{90,142} Manual labour jobs were reported in one study. ⁸⁰ Six studies reported including patients with a WCB claim^{74,80,84,91,130,149} and four studies reported excluding WCB patients. ^{90,110,111,141}

Health-related quality of life was reported in four studies,^{84,90,100,130} and all of the studies reported at least one functional outcome measure. Two studies reported return to work¹²³ or physical activity.⁹⁰ Cuff integrity was examined in 12 studies.^{74,80,84,90,92,110,121-124,142,158}

The figures below present the preoperative and postoperative functional scores over time for the uncontrolled studies (Figure 16), cohort studies (Figure 17), and trials (Figure 18) that examine arthroscopic RCR. The shape of the markers indicates the outcome scale used in the study, while the size is proportionate to the square root of the study sample size. Regardless of the outcome measure used and the study design (trial, cohort or uncontrolled study), the studies

all indicate improvement in functional score from baseline to final followup. Figure 19 plots the proportion of patients with and intact cuff after arthroscopic RCR over the followup period. The results were variable across the studies and showed no pattern with respect to study design.

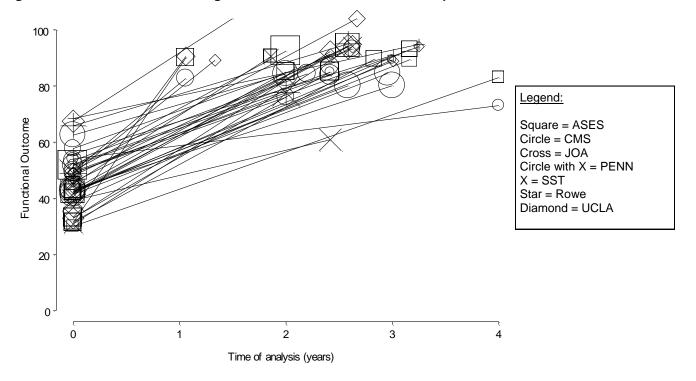
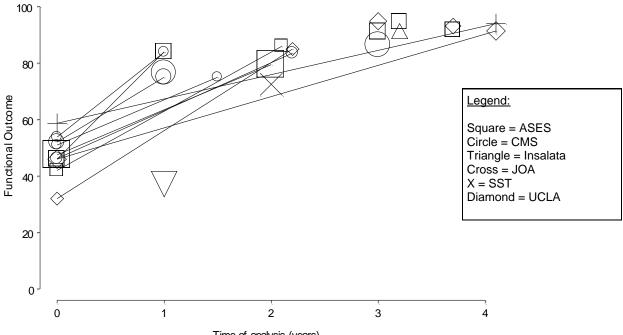
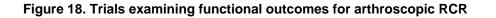




Figure 16. Uncontrolled examining functional outcomes for arthroscopic RCR

Figure 17. Cohort studies examining functional outcomes for arthroscopic RCR

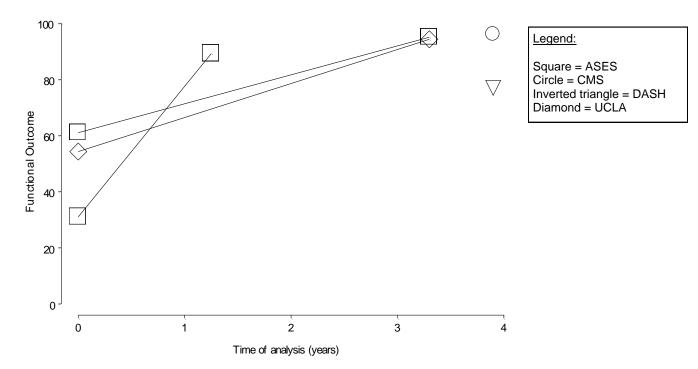
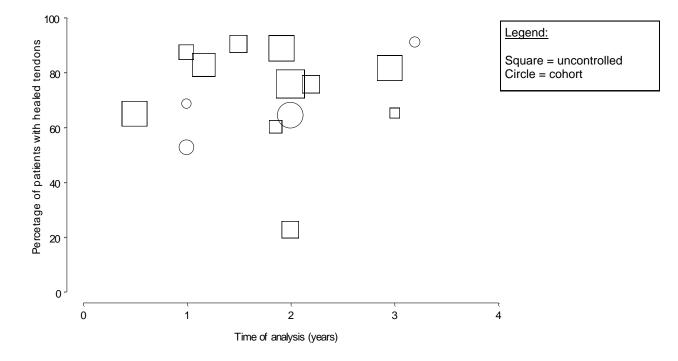
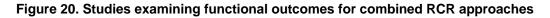
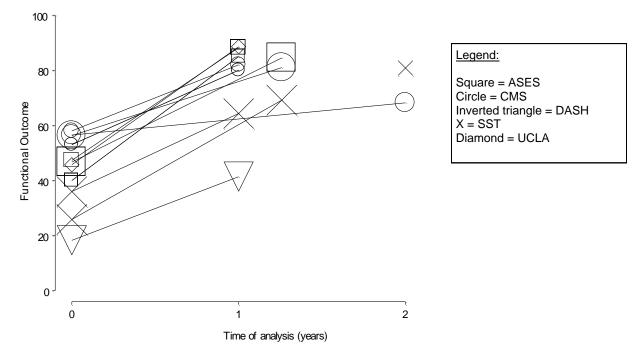



Figure 19. Studies examining cuff integrity for arthroscopic RCR

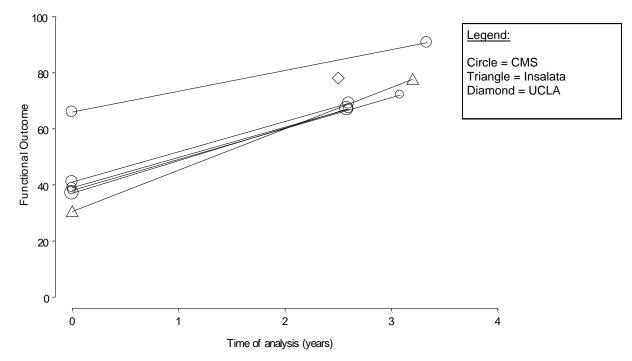



RCR combination approaches. Seven uncontrolled studies (five BA^{89,104,116,160,168} and two prospective cohorts with BA data^{107,144}) examined the effectiveness of RCR using a combination of approaches. Two studies used either an open or mini-open approach,^{116,168} two used either an

open or arthroscopic approach,^{89,144} and three used one of open, mini-open or arthroscopic approaches when performing RCRs on the study participants.^{104,107,160} The studies were published between 2000 and 2008 (median=2007; IQR: 2005 to 2008).

The number of participants enrolled in the studies ranged from 38 to 125 (median=87 [IQR: 55 to 125]). The median duration of the followup period was 12 months (IQR: 12 to 14). Mean ages in the studies ranged from 56 to 64 years. Six studies included only patients with full-thickness tears, while the remaining study did not specify type of tear.¹⁶⁸ All of the three studies reporting tear size included patients with a range of tear sizes.^{116,144,160} One study¹⁰⁷ included patients with manual labour jobs, those with WCB claims and smokers.

Reported outcomes included health-related quality of life, ^{107,160,168} functional measures, ^{89,104,107,116,144,160} and cuff integrity. ^{104,116,144} None of the studies reported time to return to work. Figure 20 presents the preoperative and postoperative functional scores over time for the all studies that examine a combination of RCR approaches. The shape of the markers indicates the outcome scale used in the study, while the size is proportionate to the square root of the study sample size. The studies all indicate improvement in score from baseline to followup, with the exception of one study in which CMS remained relatively stable over the 2 year followup period.



Arthroscopic debridement. Three BA studies, ^{65,156,166} assessed the effectiveness of the arthroscopic debridement in the RC tear population. The studies were published from 2000 to 2005 (median=2004; IQR: 2002 to 2005). The number of participants enrolled in the studies ranged from 14 to 33 (median=22 [IQR: 18 to 28]). The median followup duration was 3.1 years (IQR: 2.8 to 3.2). The mean age of participants was 69 years in two studies^{65,156} and not reported for one study.¹⁶⁶ Two studies included only full-thickness tears^{65,156} and one study¹⁶⁶ examined

patients with partial- or full-thickness tears. For the two studies that reported tear size, one⁶⁵ included only large RC tears and one¹⁵⁶ included only massive RC tears.

All studies assessed function,^{65,156,166} while one study also assessed time to return to work.¹⁶⁶ Health-related quality of life and cuff integrity were not examined in any of the studies. The preoperative and postoperative scores for all studies examining arthroscopic debridement are plotted in Figure 21. The shape of the markers indicates the outcome scale used in the study, while the size is proportionate to the square root of the study sample size. Similar to the other operative approaches, the scores consistently show marked improvement over time, regardless of the study design and outcome measure used.

Other approaches. Five BA studies^{82,95,101,126,127} assessed various other operative approaches in RC tear population. The studies were published from 1997 to 2007 (median=2005; IQR: 2002 to 2005). The number of participants enrolled in the studies ranged from 15 to 33 (median=21 [IQR: 19 to 23]). The median followup duration was 2.3 years (IQR: 2 to 2.7). For the four studies^{82,95,101,127} that reported age of participants, the mean age ranged from 51 to 63 years. Of the four studies that reported type of tear, three studies^{82,101,126} included only full-thickness RC tears and one study⁹⁵ included partial- or full-thickness tears. Two studies^{95,101} included only massive RC tears, while tear characteristics were not reported in the other studies.^{82,126,127} Recreational athletes were included in one study.⁸² One study reported the proportion of patients manual labor jobs⁹⁵ and two studies included patients with a workers' compensation board (WCB) claim.^{95,101}

Four studies^{95,101,126,127} used a functional outcome measure. Since the interventions varied widely, the preoperative and postoperative outcomes were not plotted on a graph.

Operative Technique—Comparative Studies

Summary. The variety of operative techniques compared across the included studies precludes conclusions and recommendations regarding most techniques. For all patient groups, regardless of technique, there were significant improvements in the postoperative functional, pain and range of motion outcome measures compared to preoperative scores. However, few of the techniques demonstrated clinically important differences between their respective groups on any of the postoperative measures. Overall the methodological quality of the studies was modest. There were six RCTs,^{71,73,78,81,98,105} one CCT¹¹⁷ and eight cohort studies.^{64,88,118,129,132,147,159,172}

The most frequently studied techniques were single-row vs. double-row suture anchor fixation, which were compared in six studies.^{78,81,98,105,147,159} There was moderate evidence in favour of double-row repair for function based on a meta-analysis of all six studies. While the meta-analysis showed statistically significant results, the absolute differences in the change scores were small, rarely exceeding 5 points on an 100-point scale¹⁵⁹ which puts into question the clinical importance of this finding. One study¹⁴⁷ showed "clinically" and statistically significant difference in function favouring the double-row technique among the subgroup of patients with large or massive tears. There was also moderate evidence for cuff integrity: four of the studies^{78,81,98,159} examined this outcome, two of which reported a significant difference favouring double-row fixation.^{81,159} There was a low level of evidence for return to work: only one study⁸¹ examined return to work and found no significant difference between the two techniques.

A variety of other techniques were studied across the remaining nine studies. Two studies^{117,118} comparing mattress stitch vs. single stitch fixation. Each of the other seven studies examined a different comparison of techniques. Overall the level of evidence was low for these techniques. The outcome most often assessed was function. Only three studies found a significant difference between the groups examined: metal suture anchors vs. headed bioabsorbable corkscrews,⁸⁸ bioabsorbable tacs vs. suture tying,⁶⁴ and side-to-side vs. tendon-to-bone fixation⁷¹ showed a 15, 14 and 12 point differences on 100-point scales, respectively. Cuff integrity was assessed in five studies: a statistically significant difference was reported for mattress stitch vs. simple stitch in two studies,^{117,118} while no significant difference was found for non-absorbable vs. absorbable suture.⁷³ No comparison was possible for transosseus vs. mattress suture,¹²⁹ and staple fixation vs. side-to-side suture and anchor repair¹⁷² due to incomplete data reporting.

In summary, there is some evidence that double-row fixation may perform better than single-row in terms of cuff integrity but results suggest little difference for function. There are insufficient or low levels of evidence for the remaining operative techniques.

Results by individual study. Fifteen studies^{64,71,73,78,81,88,98,105,117,118,129,132,147,159,172} examined the effectiveness of different operative techniques for the repair of RC tears. The median sample size was 78 patients (IRQ: 55 to 100). The following operative techniques were assessed: single-row vs. double-row suture anchor repairs,^{78,81,98,105,147,159} bioabsorbable tacs vs. suture tying,⁶⁴ side-to-side repair vs. tendon-to-bone fixation,⁷¹ nonabsorbable suture with Mason-Allen technique vs. absorbable sutures with Kessler technique,⁷³ headed bio-corkscrews vs. metal anchor suture,⁸⁸ mattress vs. simple stitch,^{117,118} mattress vs. single transosseous suture,¹²⁹ ultrasonic suture welding vs. hand-tied knots,¹³² and staple fixation vs. side-to-side suture and anchor repair.¹⁷² With the exception of studies comparing single-row vs. double-row suture anchor repairs, the

studies could not be pooled because the operative techniques were different. Patient and study characteristics, as well as study outcome data, are presented in Table 22 and Table 23, respectively. A grading of the body of evidence for operative technique studies is available in Table 24.

Single-row vs. double-row suture anchor repairs. Six studies (four RCTs^{78,81,98,105} and two cohort studies^{147,159}) compared single-row vs. double-row suture anchor repairs. Pooled results are shown in Figure 22 and Figure 23.

Burks et al.⁷⁸conducted a RCT comparing single-row vs. double-row fixation in patients with full-thickness tears. Twenty patients were randomly assigned to each intervention and followed for 12 months. The average tear size was 18 mm and 19 mm in the double-row and single-row groups, respectively. All patients were followed for 12 months and evaluated using the WORC, ASES, CMS, Single Assessment Numeric Evaluation tool, UCLA, strength and cuff integrity. There were significant preoperative to postoperative differences across all outcomes in both treatment arms, however no significant different were found between the groups. Eighteen of 20 patients in each group were found to have an intact rotator cuff based on MRI evaluation.

Charousset et al.⁸¹ conducted a RCT comparing single-row vs. double-row suture anchor repairs in patients who underwent arthroscopic RCR. Sixty-six patients were randomly assigned to the interventions (31 to double-row RCR, 35 to single-row RCR). All patients were followed for at least 2 years; mean followup was 2.3 years (range: 2 to 3.3). Patient function was evaluated using the CMS. At the date of last followup, the CMS had improved for both groups, but there was no statistically significant difference between the groups in the postoperative scores. Overall, more than 85 percent of patients who were employed prior to surgery returned to work. For the single-row group, the mean time to return to work was 5.3 months (range: 1 to 20); for the double-row group, it was 4.2 months (range: 1 to 12). The difference was not statistically significant (p=0.28). Cuff integrity was assessed using CT arthrography at 6 months following surgery. Anatomic healing was obtained in 14 (40.0 percent) cases in the single-row group compared with 19 (61.3 percent) in the double-row group. The difference was statistically significant (p=0.03), in favor of the double-row group.

Franceschi et al.⁹⁸ conducted a RCT comparing single-row vs. double-row fixation in patients with large and massive full-thickness RC tears. All patients underwent arthroscopic RCR. Sixty patients were randomly assigned to the interventions (30 to each group); 52 (86.7 percent) were included in the final analyses. The mean length of followup was 22.5 months (range: 18 months to 2.1 years). Patients were evaluated using the UCLA shoulder scale and range of motion (flexion, external and internal rotation). For both groups, there was significant improvement in total UCLA scores and range of motion from preoperative assessment to the final postoperative evaluation. However, the differences between the groups in the postoperative scores for all measures were not statistically significant. Cuff integrity was assessed using MRI arthrography at 2 years following surgery. Intact tendons were shown in 14 (53.8 percent) patients in the single-row group compared with 18 (69.2 percent) in the double-row group. The difference between groups was not statistically significant.

Grasso et al.¹⁰⁵ and colleagues conducted a RCT comparing single-row vs. double-row repair in 80 patients with large and massive full-thickness tears (40 patients per group). A total of 37 and 35 patients were evaluated at two year followup in the double-row and single-row fixation groups, respectively. Patients were assessed using the CMS, DASH, DASH-Work scales and strength. Substantial improvement was observed from preoperative to postoperative scores,

however the statistical significance of these improvements were not reported. There were no significant between-group differences on any of the outcome measures.

Park et al.¹⁴⁷ conducted a prospective cohort study comparing single-row vs. double-row fixation in patients undergoing arthroscopic RCR. Eighty-five patients were enrolled in the study (42 received double-row RCR, 43 received single-row RCR); 78 (91.7 percent) were included in the final analyses. All patients had full-thickness tears; tear size ranged from small or medium (n=46) to large or massive (n=32). The mean length of followup was 2.1 years (range: 22 months to 2.5 years). Patients were evaluated using the ASES index, the CMS and the Shoulder Strength Index (SSI; abduction, internal rotation and external rotation). For all patients, the mean postoperative ASES index and CMS improved significantly from the preoperative levels. The differences between the two groups on their postoperative scores for either measure were not statistically significant. Similarly, both groups had significant improvement in SSI after surgery, but the difference between the two groups was not statistically significant. The authors conducted a subgroup analysis of patients with tears less than 3 cm and those whose tears were greater than 3 cm. For patients with large or massive tears (>3 cm), the double-row fixture group showed clinically and statistically significant improvements in the ASES index, CMS, and SSI (abductor) than the single-row repair groups.

Sugaya et al.¹⁵⁹ conducted a retrospective cohort study comparing single-row vs. doublerow fixation in patients undergoing arthroscopic RCR. All patients had full-thickness tears; tear size ranged from small to massive. The mean length of followup was 2.9 years (range: 2 to 5). Patients were evaluated using the ASES index and the UCLA shoulder scale. Overall, 104 patients (106 shoulders) were enrolled in the study (55 received double-row RCR, 51 received single-row RCR). Of these, 80 (76.9 percent) were included in the final analyses. For all patients, the mean postoperative ASES and UCLA scores improved significantly from the preoperative levels. However, the differences between the two groups on their postoperative scores were not statistically significant. Postoperative MRI examination revealed 18 (46.2 percent) and 30 (73.2 percent) intact cuffs in the single-row vs. double-row anchorage groups, respectively. The difference between the groups was statistically significant (p<0.01).

The four RCTs^{78,81,98,105} and two cohort studies^{147,159} provided data for meta-analysis of the effects of single-row vs. double-row suture anchor fixation on functional outcome measures. Data from the trials and cohort studies was analyzed separately. The following measures were included in the meta-analysis: ASES,⁷⁸ CMS,⁸¹ DASH,¹⁰⁵ UCLA score,⁹⁸ and the ASES index.^{147,159} For all of the studies, the average change between preoperative and postoperative scores were compared between groups. The pooled estimate of change in function indicates a significant improvement in favor of double-row fixation (SMD=0.55; 95% CI, 0.02 to 1.07 for trials; SMD=0.78; 95% CI, 0.46 to 1.11 for cohort studies). There was heterogeneity between the trials (p=0.008; I²=75 percent); however, no evidence of heterogeneity between the two cohort studies (p=0.41; I²=0 percent).

	Doι	uble ro	w	Sin	gle ro	w	:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
16.1.1 RCT/CCT									
Burks 2009	47.9	20	20	44.9	14	20	23.0%	0.17 [-0.45, 0.79]	_
Charousset 2007	29.1	8.78	31	24.1	7.83	35	26.0%	0.60 [0.10, 1.09]	
Franceschi 2007a	23.2	1.22	30	21.4	1.47	30	24.4%	1.32 [0.75, 1.88]	
Grasso 2009 Subtotal (95% CI)	25.1	10.1	35 116	23.5	15.6	37 122	26.7% 1 00.0%	0.12 [-0.34, 0.58] 0.55 [0.02, 1.07]	
Heterogeneity: Tau ² = Test for overall effect:				- (- / /			
16.1.2 Cohort Studie	S								
Park 2008	52.15	2.27	38	48.81	4.48	40	48.1%	0.92 [0.46, 1.39]	│ — ∎ —
Sugaya 2005 Subtotal (95% CI)	54.2	9.3	41 79	47.1	12.1	39 79	51.9% 100.0%	0.65 [0.20, 1.10] 0.78 [0.46, 1.11]	
Heterogeneity: Tau ² =	: 0.00; Cł	$hi^2 = 0.$	66, df =	= 1 (P =	0.41);	$l^2 = 0\%$)		
Test for overall effect:	Z = 4.73	8 (P < 0	0.00001)	,,				
									-2 -1 0 1
									Favours single row Favours double ro

Figure 22. Single-row vs. double-row fixation on measures of functional outcome

Three RCTs^{78,81,98} and one retrospective cohort study¹⁵⁹ provided data for a meta-analysis of the effects of single-row vs. double-row fixation on cuff integrity (Figure 23). Data from the trials and cohort study is presented separately. The pooled risk ratio from the trials shows no significant difference between double-row fixation over single-row fixation (RR=1.20; 95% CI, 0.86 to 1.68). There was evidence of heterogeneity between the three RCTs (p=0.08; I^2 =60 percent), although this was not significant. The heterogeneity appears to be attributable to the addition of Burks et al;⁷⁸ however, no differences between the patient characteristics across studies were apparent, with the exception of tear size. Burks⁷⁸ included patients with medium tears, while patients in Franceschi⁹⁸ had large or massive tears (tear size was not reported in Chraousset et al). Therefore, it is possible that double-row fixation may be result in greater probability of cuff integrity for patients with larger tears. The one cohort study showed a statistically significant difference in the proportion of patients whose cuff was found to be intact, in favor of the double-row group.

	Double	row	Single	row		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
16.11.1 RCT/CCT							
Burks 2009	18	20	18	20	46.0%	1.00 [0.81, 1.23]	—
Charousset 2007	19	31	14	35	25.4%	1.53 [0.94, 2.51]	
Franceschi 2007a Subtotal (95% CI)	18	26 77	14	26 81	28.6% 1 00.0%	1.29 [0.83, 1.99] 1.20 [0.86, 1.68]	
Total events	55		46				
16.11.2 Cohort Studi	es						
Sugaya 2005 Subtotal (95% CI)	30	41 41	17	39 39	100.0% 1 00.0%	1.68 [1.12, 2.51] 1.68 [1.12, 2.51]	
Total events	30		17				
Heterogeneity: Not ap	•		、				
	•	P = 0.01)				

Figure 23. Single-row vs. double-row fixation on cuff integrity

Bioabsorbable tacs vs. suture tying. Bennett et al.⁶⁴ conducted a prospective cohort study comparing repair of the subscapularis tendon using 8 mm bioabsorbable tacs (Suretac; Accufex, Mansfield MA) with suture tying techniques using No. 2 Tevdeks and 5 mm metal screws (Metal Corkscrew; Arthrex, Naples FL). All patients had full-thickness tears and underwent arthroscopic repair and debridement. Thirty-one patients were enrolled in the study; 19 were included in the analysis (nine in the bioabsorbable tacs group, 10 in the suture tying group). Patients were allocated to the interventions based on tear patterns. Patients were followed for a minimum of 2 years (range: 2 to 4). Patient function was assessed using the ASES index, the CMS and a single question of percent function compared with the contralateral shoulder. A visual analogue scale was used to evaluate pain. Both groups showed significant improvement at endpoint compared to their baseline score (p<0.05) across all outcomes. The ASES score at final followup was significantly different between groups, favoring the bioabsorbable tacs group. All other outcomes showed no significant differences between groups.

Side-to-side vs. tendon-to-bone fixation. Bigoni and colleagues⁷¹ conducted a RCT comparing side-to-side repair vs. tendon-to-bone fixation in 50 patients with small, medium and large full-thickness tears. Twenty-five patients were randomized to each group. Patients were followed for 12 months and evaluated using the CMS and external and internal rotation strength. Significant improvement was shown in each of the study arms across all three outcomes. Further, there was a statistically significant difference between groups for the CMS and strength outcomes, favouring tendon-to-bone fixation.

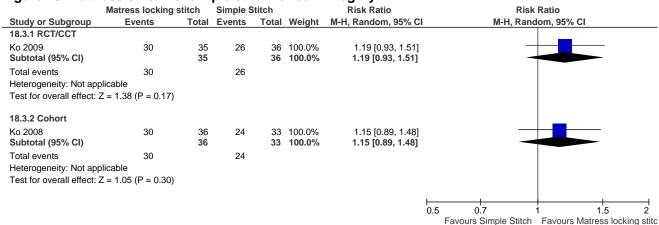
Nonabsorbable vs. absorbable sutures. Boehm et al.⁷³ conducted a RCT comparing transosseous repair using a modified Mason-Allen technique with nonabsorbable sutures (No. 3 Ethibond) vs. a modified Kessler technique with absorbable sutures (1.0 mm polydioxanone cord). All patients had full-thickness tears and underwent open RCR with acromioplasty. One hundred patients were randomly assigned to the interventions (50 to each group). All patients were followed for at least 2 years; mean followup was 2.3 years (range: 2 to 2.5) in the Mason-Allen group and 2.2 years (range: 2 to 2.4) in the Kessler group. Patients were assessed using the CMS and a visual

analogue scale for pain. At the date of last followup, the CMS had improved for both groups, but there was no statistically significant difference between the groups in the postoperative scores. Similarly, there was no difference between the groups in terms of pain. Ultrasound was used to evaluate cuff integrity. There was no significant difference between the proportion of intact cuffs in the Mason-Allan group (77.5 percent) compared with the Kessler group (81.8 percent).

Headed bioabsorbable corkscrew vs. metal suture anchor. Cummins et al.⁸⁸ conducted a prospective cohort study comparing Mitek RC metal suture anchors (Norwood, MA) vs. Headed Bio-Corkscrews (Arthrex, Naples, FL), a knotless device made of L-polylactic acid. All patients were treated with open RCR and acromioplasty. Twenty-seven patients were enrolled in the study (18 received metal suture anchors, 9 received corkscrews) and all were included in the analysis. In the group treated with suture anchors (n=18), the mean tear size was 1.9 ± 1.0 cm² (p=0.03); in the group treated with bioabsorbable screws (n=9), the mean tear size was 1.1 ± 0.9 cm². The CMS scoring system was used to assess shoulder function at 12 months following surgery. Based on the CMS, the suture anchors group demonstrated significantly higher function than the bioabsorbable screws group (88±9 vs. 73 ± 17 , p=0.016). Abduction improved for both groups, however there was a statistically significant difference at the 12 month followup favoring the metal suture anchor group (p<0.01). From 6 weeks to 12 months following surgery, the suture anchors group graded their "overall" shoulder rating higher than the corkscrew group (p<0.1); however, for both groups the overall rating was "fair."

Mattress vs. simple stitch. Two studies compared the effectiveness of mattress stitch vs. simple stitch. Ko et al.¹¹⁸ conducted a prospective cohort study comparing a modified mattress locking stitch (MMLS), a simple modification of the Mason-Allen stitch, vs. a simple stitch in patients with a tear size ranging from 1.5 to 3.0 cm. The mean length of followup was 2.6 years (range: 2 to 3.1). Patients were evaluated using the ASES index, the UCLA shoulder scale and a visual analogue scale (VAS) for pain. Overall, 78 patients were enrolled in the study (39 per group). For all patients, the mean postoperative ASES index, UCLA score and VAS improved significantly from the preoperative levels. The differences between the two groups on their postoperative scores for all measures were not statistically significant. At 6 months to 3 years following surgery, MRIs were performed on 69 patients to examine cuff integrity. Repaired cuffs remained intact in 30 of 36 (83.3 percent) cases in the MMLS group compared with 24 of 33 (72.7 percent) in the simple stitch group (p=0.03).

In a second study, Ko and colleagues¹¹⁷ conducted a controlled clinical trial comparing a massive cuff stitch (mattress) repair with a simple stitch in patients with a tear size ranging from 0.5 to 1.5 cm. the mean followup was 2.8 years (range 2 to 3.4 years). A total of 38 and 39 patients were enrolled, and 35 and 36 patients were analyzed in the mattress stitch and simple stitch groups, respectively. There was significant improvement from preoperative to postoperative assessment for the ASES activities of daily living subscore, the UCLA and pain VAS. However, the only outcome that was significantly different between groups was cuff integrity, where 83 percent (30 of 36) of patients had an intact cuff in the the mattress stitch group, compared with 73 percent (24 of 33) of patients in the simple stitch group.


Figure 24 and Figure 25 below display the functional outcomes and cuff integrity of these two studies. Pooled estimates were not calculated, since the study designs differed (CCT vs. prospective cohort). Mattress stitch was favoured over simple stitch for functional outcomes in one study, while the second study showed no difference. Both studies found superior rates of

cuff integrity in the mattress stitch group, however the differences between groups were not statistically significant.

Figure 24. Mattress stitch vs. simple stitch for measures of functional outcome

	Matress	locking s	titch	Simp	ole Stit	ch	:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
18.1.1 RCT/CCT									
Ko 2009	20	2.04	35	17.8	2.38	36	100.0%	0.98 [0.49, 1.47]	
Subtotal (95% CI)			35			36	1 00.0 %	0.98 [0.49, 1.47]	
Heterogeneity: Not app	licable								
Test for overall effect: 2	Z = 3.89 (P -	< 0.0001)							
18.1.2 Cohort									
Ko 2008	19.3	55.5	39	18.2	48.9	39	100.0%	0.02 [-0.42, 0.46]	
Subtotal (95% CI)			39			39	100.0%	0.02 [-0.42, 0.46]	\bullet
Heterogeneity: Not app	licable								
Test for overall effect: 2	Z = 0.09 (P =	= 0.93)							
									-1 -0.5 0 0.5 1
									Favours simple stitch Favours matress locki

Mattress vs. single transosseous suture. A prospective cohort study was conducted by Matis et al.¹²⁹ to compare single transosseous suture vs. transosseous mattress suture in patients who underwent arthroscopic RCR and acromioplasty. Patients with full- and partial-thickness tears were included; tear size ranged from small to medium. Seventy-five patients were treated with transosseous sutures; the mean followup period was 2.2 years (range: 5 months to 4.9 years). Twenty-four patients were treated with mattress sutures; mean length of followup was 14.4 months (range: 4.8 months to 2.8 years). Patients were evaluated using the CMS. At the date of last followup, the CMS had improved for both groups. Cuff integrity was assessed by ultrasonography for the transosseus suture group. Intact tendons were shown in 66 cases (88 percent).

Ultrasonic suture welding vs. hand-tied knots. McIntyre et al.¹³² conducted a retrospective cohort study comparing ultrasonic suture welding using No. 2 polypropylene to fix the tendon vs. hand tied knots using No. 2 braided polyester suture. All patients were treated with a mini-open RCR and acromioplasty. The mean tear size was 3.4 cm (range: 1 to 6 cm) and 3.0 cm (range: 1 to 6 cm) in the suture welding and hand tied knot groups, respectively. The type of tear was not

reported. Patients were evaluated using the UCLA shoulder scale. The mean length of followup for the suture weld group was 2.3 years (range: 18 months to 3.3 years). For patients treated with hand tied knots, 40/55 (72.7 percent) were available for followup compared to 47/50 (94.0 percent) for the suture weld group. For both groups, the mean postoperative UCLA score improved significantly from the preoperative levels. However, the difference between the two groups on their postoperative scores was not statistically significant.

Staple fixation vs. side-to-side suture. Wilson et al.¹⁷² conducted a retrospective cohort study comparing staple fixation (Instrument Makar, Okemos, MI) vs. side-to-side suture and anchor repair (G-4 or Stealth, Mitek, Westwood MA) in patients undergoing arthroscopic RCR. All patients had small to large sized full-thickness tears. One hundred patients were enrolled and included in the analysis (35 received staple fixation, 65 received side-to-side suture and anchor). The mean length of followup for the staple group was 7.9 years (3 to 14); for the suture anchors group it was 4 years (2 to 7). Patients were evaluated using the UCLA shoulder scale. For all patients, the mean postoperative UCLA score significantly improved from the preoperative levels. However, the difference between the two groups on their postoperative scores was not statistically significant. Cuff integrity was assessed in the staple fixation group. Of the 33 patients evaluated, the tendon was completely healed in 22 (66.7 percent).

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; size of tear Duration of symptoms (mo), mean±SD (range)
Bennett WF, ⁶⁴ 2003	G1: Bioabsorbable tacs (NR) G2: Suture tying (NR)	G1: 58 yr / Males: 5 (56) G2: 64 yr / Males: 7 (70)	FTT; NR
	Prospective cohort		NR
Bigoni M, ⁷¹ 2009	G1: Side-to-side repair (25) G2: Tendon-to-bone fixation (25)	G1: NR / Males: 10 (40) WCB: 0	FTT; Sm, Med, Lg
	RCT	G2: NR / Males: 14 (56) WCB: 0	NR
Boehm TD, ⁷³ 2005	G1: Nonabsorbable sutures (Mason-Allen technique) (50)	G1: 56 yr (38–69) / Males: 36 (72) WCB: 5 (10)	FTT; Sm, Med, Lg
	G2: Absorbable sutures (Kessler technique) (50)	G2: 57 yr (41–71) / Males: 32 (64) WCB: 4 (8)	NR
70	RCT		
Burks RT, ⁷⁸ 2009	G1: Double-row anchor RCR (20) G2: Single-row anchor RCR (20)	G1: 57 (41–81) / Males: NR Smokers: 0	FTT; G1: 18 mm, G2: 19 mm
	RCT	G2: 56 (43–74) / Males: NR Smokers: 0	NR
Charousset C, ⁸¹ 2007	G1: Double-row anchor RCR (31) G2: Single-row anchor RCR (35)	G1: 60 yr (37–62) / Males: 16 (52) Athletes: competitive 2 (6.5), recreational 2 (7)	NR; NR
	RCT	Manual Labourers: 6 (19) WCB: 2 (7) G2: 58 yr (32–74) / Males: 15 (43) Athletes: competitive 1 (3), recreational 5 (14) Manual Labourers: 10 (29) WCB: 4 (11)	G1: 14.7 (1–73), G2: 11.9 (1– 52)
Cummins CA, ⁸⁸ 2003	G1: Metal suture anchors (18) G2: Headed bio-corkscrews (9)	G1: 63±8 yr / Males: 12 (67) G2: 58±10 yr / Males: 7 (78)	NR; G1: 1.9 cm ² , G2: 1.1 cm ²
	Prospective cohort		NR
Franceschi F, ⁹⁸ 2007	G1: Double-row anchor RCR (30) G2: Single-row anchor RCR (30)	G1: 59.6 yr (45–80) / Males: 16 (53) G2: 63.5 yr (43–76) / Males: 12 (40)	FTT; Lg, Mass
	RCT		≥ 3 mo
Grasso A, ¹⁰⁵ 2009	G1: Double-row anchor RCR (40) G2: Single-row anchor RCR (40)	G1: 55.2±6.5 / Males: 18 (45) G2: 58.3±10.3 / Males: 16 (40)	FTT; NR
	RCT		NR

Table 22. Study and patient characteristics for studies assessing operative techniques

cm = centimeter; FTT = full-thickness tear; G = group; Lg = large; Mass = massive; Med = medium; NR = not reported; PTT = partial-thickness tear; RCR = rotator cuff repair; RCT = randomized controlled trial; SD = standard deviation; Sm = small; WCB = workers' compensation board

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; size of tear Duration of symptoms (mo), mean±SD (range)
Ko SH, ¹¹⁷ 2009	G1: Massive cuff stitch (38) G2: Simple stitch (39)	G1: 53.6 (40–68) / Males: 18 (47) G2: 52.4 (15–68) / Males: 17 (44)	FTT; 0.5–1.5 cm
	ССТ		NR
Ko SH, ¹¹⁸ 2008	G1: Modified mattress locking stitch (39) G2: Simple stitch (39)	Total: 53.4 yr (39–68)	FTT; 1.5–3 cm
	Prospective cohort		NR
Matis N, ¹²⁹ 2006	G1: Transosseous single suture (75) G2: Transosseous mattress suture (24)	G1: 58.2 yr (35–75) / Males: 51 (68) G2: 58.0 yr (35–75) / Males: 16 (67)	FTT / PTT; Sm, Med
	Prospective cohort		
McIntyre LF, ¹³² 2006	G1: Suture welding (50) G2: Hand-tied knots (55)	G1: 55.7 yr (37–78) / Males: 29 (58) G2: 54.7 yr (17–78) / Males: 38 (69)	NR; G1: 3.4 cm (1–6), G2: 3.0 cm (1–6)
	Retrospective cohort		G1: 9.9 mo (1–36), G2: 10.4 mo (1–36)
Park JY, ¹⁴⁷ 2008	G1: Double-row anchor RCR (42) G2: Single-row anchor RCR (43)	G1 : 54.4 yr (28–76) / Males : 22 (52) G2 : 57 yr (39–78) / Males : 20 (47)	FTT; Sm, Med, Lg, Mass
	Prospective cohort		NR
Sugaya H, ¹⁵⁹ 2005	G1: Double-row anchor RCR (55 shoulders) G2: Single-row anchor RCR (51 shoulders)	G1 : 58.1 yr (36–73) / Males : 28 (51) G2 : 57.7 yr (34–72) / Males : 28 (55)	FTT; Sm, Med, Lg, Mass
	Retrospective cohort		NR
Wilson F, ¹⁷² 2002	G1: Staple fixation (35) G2: Side-to-side suture & anchor (65)	G1 : 49 yr (20–69) / Males : 27 (77) G2 : 52 yr (32–70) / Males : 38 (59)	FTT; Sm, Med, Lg
	Retrospective cohort		G1: 48 wk (1–312), G2: 46 wk (2–312)

Table 22. Study and patient characteristics for studies assessing operative techniques (continued)

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Bennett WF, ⁶⁴ 2004	G1: Bioabsorbable tacs (9) G2: Suture tying (10)	ASES	33±15 / 88±12, p=0.001	31±23 / 72±11, p=0.002	p=0.003‡
	NR (2–4 yr)	CMS*	50±10 / 77±12, p=0.001	55±16 / 77±8, p=0.001	p=1.0‡
		percent function	36±16 / 86±17, p=0.001	47±16 / 83±12, p=0.002	p=0.66‡
		VAS pain	7±2 / 1±1, p=0.001	7±3 / 2±2, p=0.002	p=0.16‡
Bigoni M, ⁷¹	G1: Side-to-side repair	CMS	32 (22–40)	30 (22–38)	p<0.05
2009	(NR)	3 mo	41 (32–52)	46 (38–53)	
	G2: Tendon-to-bone	6 mo	70 (58–80)	73 (58–83)	
-	fixation (NR)	12 mo	78 (71–87), p<0.05	88 (81–94), p<0.05	
	12 mo	ER Strength (% peak torque)	39 (32–56)	37 (31–42)	p<0.05
	12 1110	3 mo	34 (38–47)	32 (26–44)	
		6 mo	28 (22–38)	24 (16–33)	
		12 mo	21 (12–30), p<0.05	12 (-22–26), p<0.05	
		IR Strength (%	34 (25–40) /	32 (27–37) /	p<0.05
		peak torque)			p <0.00
		3 mo	30 (26–55)	25 (10–32)	
		6 mo	25 (18–35)	14 (5–20)	
		12 mo	17 (11–25),p<0.05	9 (-8–20), p<0.05	
Boehm TD, ⁷³	G1: Nonabsorbable	CMS	NR / 78	NR / 76	p=0.33
2005	sutures (Mason-Allen	Pain (VAS–15	NR / 13.1	NR / 12.9	p=0.65
	technique) (49)	point)		111(7) 12.3	p=0.00
	G2: Absorbable sutures	Cuff integrity	38/49 (77.5)	36/44 (81.8)	p=0.37
	(Kessler technique) (44)	n/N (%), US			
	2.2 yr (2–2.5)				
Burks RT, ⁷⁸	G1: Double-row anchor	WORC	31.8±19.4 / 87.9±20.0, p<0.0001	30.3±17.7 / 84.8±18.4, p<0.0001	p=0.236
2009	RCR (20)	ASES	37.6±19.3 / 85.5±20.0, p<0.0001	41.0±21.5 / 85.9±14.0, p<0.0001	p=0.673
	G2: Single-row anchor	CMS	45.6±20.3 / 74.4±18.4, p<0.0001	44.1±18.8 / 77.8±9.0, p<0.0001	p=0.980
	RCR (20)	SANE	40.8 ±21.6 / 89.9±20.0,p<0.0001	40.8±23.3 / 90.9±11.0, p<0.0001	p=0.527
	12 mo	UCLA	13.6±4.6 / 29.5±5.6, p<0.0001	12.1±3.9 / 28.6±3.6, p<0.0001	p=0.165

Table 23. Outcome data for studies assessing operative techniques

ABD = abduction; ADL = activities of daily living; ASES = American Shoulder and Elbow Surgeons score; CMS = Constant-Murley score; CTA = computed tomography arthrogram; ER = external rotation; F = flexion; G = group; IR = internal rotation; MRI = magnetic resonance imaging; N = number; NR = not reported; NS = not significant; OSR = Overall Shoulder Rating; RCR = rotator cuff repair; ROM = range of motion; SANE = Single Assessment Numeric Evaluation; SD = standard deviation; SSI = shoulder strength index; UCLA = University of California Los Angeles; US = ultrasonography; VAS = visual analogue scale

*Subscales reported

†Data extrapolated from graph

‡Calculated by UAEPC

§ adjusted for baseline scores only

|| adjusted for baseline score, age, and gender

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Burks RT, ⁷⁸ 2009 (continued)		Strength (Nm)	ER: 9.6±6.0 / 16.7±7.5, p<0.000 IR: 18.1±11.6 / 28.8±14.4, p<0.0001	ER: 8.7±4.6/ 17.2±7.7,p<0.0001 IR: 15.8±7.9 / 28.1±13.8, p<0.0001	p=0.862 p=0.687
(oonindod)		Cuff integrity n/N (%), MRI	18/20 (90)	18/20 (90)	NS
Charousset C, ⁸¹ 2007	G1: Double-row anchor RCR (28) G2: Single-row anchor	CMS*	53.6 (17–75) / 82.7 (58–94), p<0.001	56.6 (33–77) / 80.7 (62–95), p<0.001	p=0.4
	RCR (33)	Return to work, mean (range)	4.2 (1–12); 12	5.3 (1–20); 14	p=0.28
	2.3 yr (2–3.3)	mo; Number of patients			
		Cuff integrity n/N (%), CTA 6 mo	19/31 (61.3)	14/35 (40.0)	p=0.03
Cummins CA, ⁸⁸	G1: Metal suture anchors	CMS	NR / 88±9	NR / 73±17	p=0.016
2003	(18)	ABD (degrees)	113.6±8.1	116.7±18.7	p<0.01
	G2: Headed bio-	6 wk	112.8±7.3	80.5±11.0	1
	corkscrews (9)	3 mo	120.8±8.0	99.9±11.7	
		6 mo	144.8±4.6	126.31±7.1	
	12 mo	12 mo	164.4†	141.1±9.9†	
		OSR	1.4±0.6	1.1±1.3	p<0.1 (significant)
		6 wk	3.1±0.2	2.3±0.3	
		3 mo	3.3±0.2	2.5±0.2	
		6 mo	3.4±0.2	2.5±0.4	
		12 mo	3.6±0.1	3.1±0.3	
Franceschi F, ⁹⁸ 2007	G1: Double-row anchor RCR (26)	UCLA	10.1 (5–14) / 33.3 (30–35), p<0.05	11.5 (6–14) / 32.9 (29–35), p<0.05	p>0.05
	G2: Single-row anchor RCR (26)	ROM (degrees)	F: 100 (30–150) / 156 (140– 170), p <0.05	F: 110 (30–140) / 159 (150–170), p<0.05	p>0.05
	22.5 mo (18 mo–2.1 yr)		ER: 79.6 (62–93) / 131.3 (85– 137), p <0.05	ER: 83.2 (65–95) / 132.4 (90–140), p<0.05	
			IR: 28.6 (22–35) / 40.3 (26– 43), p <0.05	IR: 27.3 (20–33) / 37.3 (27–42), p<0.05	
		Cuff integrity n/N (%), MRI 2 years	18/26 (69.2)	14/26 (53.8)	p>0.05

Table 23. Outcome data for studies assessing	ng operative techniques (continued)
--	-------------------------------------

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Grasso A, ¹⁰⁵	G1: Double-row anchor	CMS§	73.2±19 / 100.5±17.8	77.5±14.7 / 104.9±21.8	p=0.378
2009	RCR (37)	DASH	37.8±18.2 / 12.7±10.1	38.9±15.8 / 15.4±15.6	p=0.482
	G2: Single-row anchor	DASH-Work	44.3±24.2 / 16.0±22.0	38.8±24.4 / 9.6±13.3	p=0.212
	RCR (35)	Strength (lb)	8.5±4.3 / 12.7±5.7	9.9±5.7 / 12.9±7.0	p=0.382
	24.8±1.4 mo				
Ko SH, ¹¹⁷ 2009	G1: Massive cuff stitch	ASES ADL	10.1 / 26.8, p<0.05	10.7 / 26.6, p<0.05	p>0.05
	(35)	UCLA	12.7 / 32.7, p<0.05	14.1 / 31.9, p<0.05	p>0.05
	G2: Simple stitch (36)	Pain VAS	7.0 / 1.1, p<0.05	7.0 / 1.1, p<0.05	p>0.05
		ROM (degrees)	F: NR / 165.9	F: NR / 165.8	p>0.05
	2.8 yr (2–3.4)	Cuff integrity n/N (%), US	30 / 35 (86)	26 / 36 (72)	p<0.05
Ko SH, ¹¹⁸ 2008	G1: Modified mattress locking stitch (NR)	ASES (ADL score only)	11 / 27, p<0.05	10.6 / 27.1, p<0.05	p=0.99
	G2: Simple stitch (NR)	UCLA	13.4 / 32.7, p<0.05	13.7 / 31.9, p<0.05	p>0.99
		Pain (VAS)	6.5 / 0.9, p<0.05	7 / 1.1, p<0.05	p=0.08
	2.6 yr (2–3.1)	Cuff integrity n/N (%), MRI (6-37 mo post- op)	30/36 (83)	24/33 (73)	p=0.03
Matis N, ¹²⁹ 2006	G1: Transosseous single suture (75)	CMS*	55.8 (29–78) / 80.4 (59–105), p=NR	59 (32–75) / 83 (65–100), p=NR	NR
	G2: Transosseous mattress suture (21)	Cuff integrity n/N (%), US	66/75 (88)	NR	NR
	23.8 mo (5 mo–4.9 yr)				
McIntyre LF, ¹³² 2006	G1: Suture welding (47) G2: Hand-tied knots (40)	UCLA	12.5 / 29.6, p<0.05	13.2 / 31.5, p<0.05	p=0.297
147	2.3 yr (18 mo–3.3 yr)				
Park JY, ¹⁴⁷ 2008	G1: Double-row anchor RCR (38)	ASES	40.82±16.8 / 92.97±2.27, p<0.01	42.79 ±19.23 / 91.6±4.48, p<0.01	p=0.09
	G2: Single-row anchor RCR (40)	CMS	44.16±6.96 / 79.66±4.52, p<0.01	41.63±9.84 / 76.68±8.56, p<0.01	p=0.06
	2.1 yr (22 mo–2.5 yr)	SSI	ABD: 0.53±0.22 / 0.79±0.11, p<0.01	ABD: 0.52±0.25 / 0.74±0.14, p<0.01	p=0.81
			ER: 0.66±0.18 / 0.77±0.15, p<0.01	ER: 0.64±0.23 / 0.79±0.14, p<0.01	p=0.57
			IR: 0.71±0.16 / 0.81±0.11, p<0.01	IR: 0.69±0.20 / 0.78±0.15, p=0.39	p=0.78

Table 23. Outcome data for studies assessing operative techniques (continued)

79

Author, year	Intervention (N analysed) Followup, mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value	
Sugaya H, ¹⁵⁹ 2005	G1: Double-row anchor RCR (41)	ASES*	40.4±12.3 (10–65) / 94.6±9.3 (60–100), p <0.01	45.8±19.4 (5–70) / 92.9±12.1 (45–100), p <0.01	p=0.49	
	G2: Single-row anchor RCR (39)	UCLA*	14.4±4.5 (5–21) / 33.1±3.4 (19–35), p<0.01	14.8±5.8 (3–22) / 32.4±4.7 (16– 35), p <0.01	p=0.44	
	2.9 yr (2–5)	Cuff integrity n/N (%), MRI	30/41 (73.2) [mean 14.4 mo]	18/39 (46.2) [mean 13.6 mo]	p<0.01	
Wilson F, ¹⁷² 2002	G1: Staple fixation (35) G2: Side-to-side suture &	UCLA*	18.6 / 31.5 (14–35), p=NR	21.1 / 32.5 (16–35), p=NR	p>0.05	
	anchor (65)	Cuff integrity	22/33 (66.7)	NR	NR	
	5 yr (2–14)	n/N (%), Arthroscopy				

 Table 23. Outcome data for studies assessing operative techniques (continued)

Technique	Number of studies; subjects (analyzed)*	Outcome		Strengt	n of evidence de			Strength o evidence
			Risk of bias	Consistency	Directness	Precision	Confounding	
Single-row vs. double-row fixation	1; 40	HRQL	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	6; 435 (388)	Function	RCTs, cohorts Medium	Inconsistent	Direct	Precise	Absent	Moderate
	4; 270 (238)	Cuff integrity	RCTs, cohort Medium	Inconsistent	Direct	Precise	Absent	Moderate
	1; 66	Time to return to work	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
Bioabsorbable tacs	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
vs. suture tying	1; 31 (19)	Function	Cohort Low	Unknown	Direct	Imprecise	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Side-to-side vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
tendon-to-bone fixation	1	Function	RCT Moderate	Unknown	Direct	Imprecise	Absent	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Nonabsorbable vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
absorbable sutures	1; 100	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	1; 100	Cuff integrity	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Bio-corkscrews vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
metal suture	1; 27	Function	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Mattress stitch vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
simple stitch	2; 155 (149)	Function	CCT, cohort Medium	Inconsistent	Direct	Imprecise	Present	Low
	2; 155 (140)	Cuff integrity	CCT, cohort Medium	Consistent	Direct	Imprecise	Present	Moderate
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

Table 24. Strength of evidence for operative techniques

CCT = controlled clinical trial; HRQL = health-related quality of life; n/a = not applicable; RCR = rotator cuff repair; RCT = randomized controlled trial * Number analyzed if different from number studied

Technique	Number of studies; subjects (analyzed)*	Outcome Strength of evidence domains						Strength of evidence
			Risk of bias	Consistency	Directness	Precision	Confounding	
Transosseous	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
mattress vs. single suture	1; 99	Function	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Ultrasonic welding	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
vs. hand-tied knots	1; 105	Function	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Staple fixation vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
side-to-side suture	1; 100	Function	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	1; 100 (35)	Cuff integrity	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

Table 24. Strength of evidence for operative techniques (continued)

Operative Augmentation—Comparative Studies

Summary. Three small comparative studies (32, 31, and 28 participants) were identified that assessed biologic augmentation of a RCR. One RCT¹⁰⁹ and one retrospective cohort study¹⁷⁰ comparing porcine small intestine submucosa xenograft vs. no augmentation found no statistically significant differences in functional scores or cuff integrity. In addition, the retrospective cohort study found a slower rate of resolution of pain during activities in the augmentation group and an almost global loss of strength, except for strength in external rotation, compared to the no augmentation group. The trial was at high risk of bias due to lack of blinding and baseline imbalances between groups, while the cohort study was limited by its retrospective design. One retrospective cohort study¹¹³ compared patch graft vs. no augmentation and found no statistically significant difference in function. The study evaluated range of motion for three movements and found a statistically significant difference favoring the patch for abduction (absolute difference between groups of 40 degrees), but no differences for flexion and external rotation. The study suffered from several methodological limitations including retrospective design, no control for confounding, and 25 percent loss to followup. Overall, the level of evidence is low for operative augmentations, which precludes any definitive conclusions in this area.

Results by individual study. Three studies (one RCT¹⁰⁹ and two retrospective cohort studies^{113,170}) compared the use of an operative biologic augmentation of RCR vs. no augmentation. The studies could not be pooled because operative augmentation devices or study designs were different. Patient and study characteristics, as well as study outcome data, are presented in Table 25 and Table 26, respectively. Grading of the body of evidence is presented in Table 27.

Porcine small intestine submucosa vs. no augmentation. Two studies compared augmention with porcine small intestine submucosa with no augmentation. Iannotti et al.¹⁰⁹ conducted a RCT comparing porcine small intestine submucosa augmentation (Restore Orthobiologic Implant, DuPuy Orthopaedics, USA) vs. no augmentation in patients who underwent open RCR. All patients had large or massive full-thickness tears of the supraspinatus and infraspinatus tendons (two-tendon tears). Thirty-two patients were randomly assigned to the interventions (16 to each group); 30 were included in the final analyses. The mean length of followup was 14 months (12 mo to 2.2 yr). Patients were evaluated using the University of Pennsylvania Shoulder Score (PENN), which showed no significant difference between the groups at followup (p=0.07). Cuff integrity was assessed using MRI at 12 months following surgery. Anatomic healing was obtained in 4 (26.7 percent) cases in the porcine small intestine submucosa augmentation group compared with 9 (60 percent) in the group without augmentation. The difference was not statistically significant (p=0.11). The study authors suggest that the lack of statistically significant difference between the groups is attributable to the small sample size; this study was aborted early since it appeared that augmentation would not improve the rates of cuff integrity, the primary study outcome.

Walton et al.¹⁷⁰ conducted a retrospective cohort study comparing porcine small intestine submucosa augmentation (Restore Orthobiologic Implant, DuPuy Orthopaedics, USA) vs. no augmentation using patients from an aborted RCT. Fifteen subjects (16 shlds) repaired with the xenograft were retrospectively matched to a group of 16 (16 shlds) subjects repaired by

conventional RCR with no augmentation performed by the same surgeon and usually in the same time period. With matching, the control group was similar to the augmentation group with respect to the number of subjects, mean age, mean tear size and gender. All patients had poor tendon quality or large to massive tears with an intact subscapularis tendon. Patients were evaluated for pain during activity, strength, and cuff integrity during the 2 year followup period. No statistical difference in pain during activity was found, except at 3 months where patients with augmentation had significantly more pain with activity (p<0.01). In addition, patients with augmentation had significantly less participation in sports at the end of followup (p<0.05). Patients with xenograft had significantly less strength in liftoff, internal rotation and adduction (p<0.05) than patients with no augmentation. However, no significant differences in supraspinatus strength (p=0.08) and external rotation strength (p=0.105) were found between the groups. Cuff integrity was assessed using MRI at 2 years after surgery and the difference was not statistically significant. Anatomic healing was obtained in 4 (40.0 percent) cases in the xenograft group compared with 5 (41.6 percent) controls in the no augmentation group from participants available for imaging. Based on these findings, the authors do not recommend the use of the **RESTORE** Orthobiologic Implant.

Patch graft vs. no augmentation. Ito et al.¹¹³ conducted a retrospective cohort study comparing use of patch grafts, consisting of a double layer of freeze-dried fascia lata (Biodynamics, Germany), vs. no augmentation in patients with large or massive full-thickness RC tears. All patients underwent open RCR with acromioplasty. A total of 28 patients were enrolled in the study; 21 were included in the final analyses (9 in the patch graft group, 12 in the no augmentation group). The mean length of followup was 3 years (2 to 8.4). Patients were evaluated using the JOA score and range of motion (flexion, abduction, external rotation). For both groups, there was a significant difference in the JOA score, flexion and abduction from baseline to followup. A significant between-group difference was found for abduction range of motion, in favor of the patch graft group; for all other outcome measures, there were no significant differences between the patch groups.

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; size of tear Duration of symptoms (mo), mean±SD (range)
Iannotti JP, ¹⁰⁹ 2006	G1: Porcine small intestine submucosa augmentation (16)	G1: 58 yr / Males: 11 (73) WCB : 3 (20)	FTT; Lg, Mass
	G2: No augmentation (16)	G2: 57 yr / Males: 6 (40) WCB: 0 (0)	≥ 3 mo
	RCT		
Ito J, ¹¹³ 2003	G1: Patch graft (NR)	G1: 62.8±6.9 (49–70) yr / Males: 6 (67)	FTT; Lg, Mass
	G2: No augmentation (NR)	G2: 52.3±8.6 (36–66) yr / Males: 10 (83)	-
			G1: 4.1±2.9 mo, G2: 5.8±4.7
	Retrospective cohort		mo
Walton JR, ¹⁷⁰ 2007	G1: Porcine small intestine submucosa	G1: 60.2±3.5 yr / Males: 10 (67)	FTT; Lg, Mass
	augmentation (15)	G2: 59.6±3.1 yr / Males: 11 (69)	
	G2: No augmentation (16)		NR
	Retrospective cohort		

Table 25. Study and patient characteristics for studies assessing operative augmentations

FTT = full-thickness tear; G = group; Lg = large; mass = massive; NR = not reported; RCT = randomized controlled trial; SD = standard deviation; WCB = workers' compensation board

Table 26. Outcome data for studies assessing operative augmentations

Author, year	Intervention (N analysed) Followup mean (range)	Outcome	Group 1 Pre-op mean±SD (range)/ Post-op mean±SD (range)	Group 2 Pre-op mean±SD (range)/ Post-op mean±SD (range)	Group 1 vs. Group 2 Post-op p-value
lannotti JP, ¹⁰⁹ 2006	G1: Porcine small intestine submucosa	PENN*	42 / 83 (IQR: 70–92)	34 / 91 (IQR: 81–99)	p=0.07
	augmentation (15) G2: No augmentation (15)	Cuff integrity n/N (%), MRI at 12 mo	4/15 (26.7)	9/15 (60.0)	p=0.11
	14 mo (12 mo–2.2 yr)				
Ito J, ¹¹³ 2003	G1: Patch graft (9)	JOA*	47.9±13.3 / 91.7±7.0, p=0.0077	54.2±9.7 / 92±7.6, p=0.0022	p=0.19†
	G2: No augmentation (12)	ROM (degrees)	F: 84.4±32.4 / 159.6±14.8, p=0.0005 ABD: 62.2±31.1 / 163.3±28.7, p=0.0007	F: 94.6±43.9 / 145.8±27.1, p=0.0032 ABD: 85.0±43.9 / 146.4±27.1, p=0.0019	F: p=0.10† ABD: p=0.008† ER: p=0.93†
	3 yr (2–8.4)		ER: 43.9±16.9 / 41.7±24.7, p>0.05	ER: 36.3±44.6 / 35.4±37.8, p>0.05	Ert. p=0.001

ABD = abduction; ADD = adduction; ER = external rotation; F = flexion; G = group; IR = internal rotation; IQR = interquartile range; JOA = Japanese Orthopaedic Association scale; lb = pound; mo = month; MRI = magnetic resonance imaging; N = number; NR = not reported; NS = not significant; PENN = University of Pennsylvania Shoulder Score; pre-op = preoperative; post-op = postoperative; ROM = range of motion; SD = standard deviation; SE = standard error; SS = supraspinatus; yr = year *Subscales reported

†Calculated by UAEPC

[‡]Data extrapolated from a graph

§Results expressed as the mean and standard error

Author, year	Intervention (N analysed) Followup mean (range)	Outcome	Group 1 Pre-op mean±SD (range)/ Post-op mean±SD (range)	Group 2 Pre-op mean±SD (range)/ Post-op mean±SD (range)	Group 1 vs. Group 2 Post-op p-value	
Walton JR, ¹⁷⁰ 2007	G1: Porcine small intestine submucosa	Pain during activities§	11.0±1.4‡	10.1±1.4‡	NS	
	augmentation (15)	3 mo	9.9±1.6	4.0±1.3	p<0.01	
	G2: No augmentation	6 mo‡	4.0±1.6	4.3±2	NS	
	(16)	12 mo‡	3.1	3.7±1.3	NS	
		2 yr‡	1.7	3.1±1.2	NS	
	2 yr	Strength§	ER: NR / 47±5	ER: NR / 67±11	p=0.105	
		(newton)	IR: NR / 63±6	IR: NR / 99±11	p<0.01	
		. ,	ADD: NR / 70±7	ADD: NR / 100±12	p<0.05	
			Lift-off: NR / 28±4	Lift-off: NR / 61±11	p<0.01	
			SS: NR / 37±7	SS: NR / 58±9	p=0.08	
		Participation in sports	2/15 (13.3)	11/16 (68.8)	p<0.01	
		Cuff integrity n/N (%), MRI	4/10 (40.0)	5/12 (41.6)	NS	

Table 26. Outcome data for studies assessing operative augmentations (continued)

Technique	Number of studies; subjects (analyzed)*	Outcome	Strength of evidence domains					
			Risk of bias	Consistency	Directness	Precision	Confounding	
Porcine small	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
intestine submucosa vs. no augmentation	1; 32 (30)	Function	RCTs Medium	Unknown	Direct	Imprecise	Absent	Low
	2; 63 (52)	Cuff integrity	RCT, cohort Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Patch graft vs. no	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
augmentation	1; 28 (21)	Function	Cohort Low	Unknown	Direct	Imprecise	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

Table 27. Strength of evidence for operative augmentation

HRQL = health-related quality of life; n/a = not applicable; RCT = randomized controlled trial *number analyzed if different from number studied

Operative Augmentation—Uncontrolled Studies

Five BA studies^{67,99,152,155,174} evaluated the effectiveness of the operative augmentation in RC repair. Four studies^{67,99,155,174} assessed augmentation with open RCR, and one study¹⁵² assessed arthroscopic RCR with platelet-rich plasma augmentation. The studies were published from 2006 to 2008 (median=2007; IQR: 2006 to 2008).

The number of participants enrolled in the study ranged from 13 to 39 (median=23 [IQR: 20 to 32]). The median followup duration was 3.2 years (IQR: 2 to 3.6). The mean age of participants ranged from 54 to 67 years. All these studies included only patients with full-thickness tears. Medium to massive tears were included in one study,¹⁵⁵ only massive RC tears in one study,¹⁷⁴ and only large RC tears in one study.⁶⁷ Tear size was not reported in two studies^{99,152}. One study included smokers.¹⁵⁵

All studies assessed function, while four assessed cuff integrity.^{67,99,155,174} Health-related quality of life and time to return to work were not reported for any of the studies. Figure 26 presents the preoperative and postoperative functional scores over time for all studies that examine operative augmentation with repair. The shape of the markers indicates the outcome scale used in the study, while the size is proportionate to the square root of the study sample size. Although the studies evaluated different types of augmentations, measured outcomes using different scales, had various followup durations and different study designs, they all indicate improvement in functional score from baseline to final followup. Figure 27 shows the proportion of patients with an intact rotator cuff at followup. While the BA studies showed a consistent trend of moderate to high cuff integrity, the one trial¹⁰⁹ showed a poor outcome.

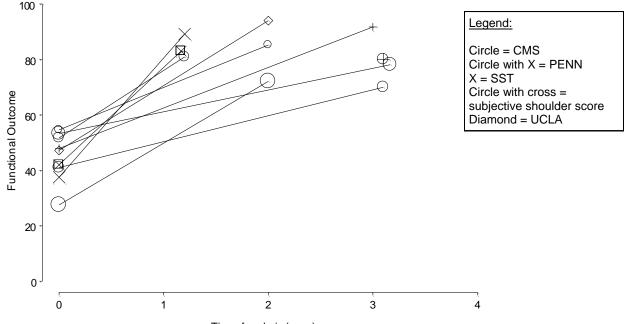


Figure 26. Studies examining functional outcomes for operative augmentation with repair

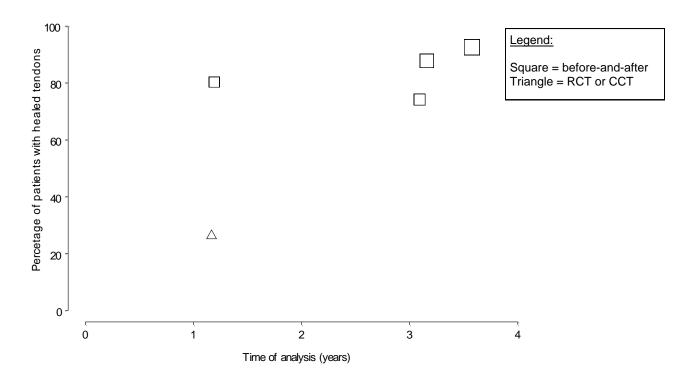


Figure 27. Studies examining cuff integrity for operative augmentation with repair

Postoperative Rehabilitation—Comparative Studies

Summary. Ten comparative studies evaluated postoperative rehabilitation. While most studies included some physical therapy component, the comparisons varied across studies.

- Three RCTs^{180,182,184} studied the addition of continuous passive motion to physical therapy. Overall, there was moderate evidence showing no difference in function or pain. One study¹⁸² showed a difference favouring continuous passive motion for time to 90 degrees abduction and time to return to work (absolute difference of 12 and 21 days, respectively). This suggests that continuous passive motion may affect the course of recovery over the short-term but not result in functional differences over the long-term. The trials were all at high risk of bias due to lack of blinding and inadequate allocation concealment.
- One CCT¹⁷⁶ evaluated aquatic therapy in addition to a land-based program and found no differences in function or range of motion at the end of the study (12 weeks); however, there were significant differences between groups in flexion at the 3 and 6-week timepoints (absolute differences 46.6 and 28.6 degrees, respectively). The study involved only 18 patients and had substantial methodological flaws.
- A prospective cohort study¹⁷⁷ compared inpatients with day patients, all of whom underwent a structured rehabilitation regime. There were no significant differences in pain or range of motion over the 60-day followup.
- One RCT¹⁷⁸ evaluated individualized physical therapy in addition to home exercise vs. home exercise alone and found no significant differences for function, range of motion, or strength over the 24 week followup.

- One RCT^{179} comparing a rehabilitation program with progressive loading to one with traditional loading found greater improvement in pain during activity and at rest (p<0.05), favouring the progressive loading group. No differences were found in function, range of motion or strength.
- One retrospective cohort study¹⁸¹ compared outcomes between inpatients in a rehabilitation center vs. outpatients attending rehabilitation at a private practice specializing in Concept Global d'Epaule. The Concept Global d'Epaule group had significantly less pain, yet no differences were found between groups for the CMS and strength scores.
- A retrospective cohort study¹⁸³ comparing standardized vs. non-standardized physical therapy found that patients receiving standardized treatment had significantly greater improvement in function.
- One RCT¹⁸⁵ compared videotape-based vs. physical therapy-based home exercise instruction and found no differences in function over the 54 week followup.

The evidence does not clearly identify treatments or treatment variations that alter the postoperative course of patients following RCRs; the overall level of evidence was low with few studies comparing any single therapeutic approach. There were significant differences over the course of postoperative followup for all patients but few significant differences between study groups. This may suggest a "ceiling effect:" patients may achieve their final functional outcome regardless of the type or intensity of the specific intervention. One issue that was consistently problematic across the studies was the poor reporting of physical therapy, both in terms of intervention components and delivery (frequency, intensity, dosage, etc.). The studies in this area also suffer from a number of methodological flaws. Though there was a large proportion of RCTs, representing the highest level of evidence for therapeutic interventions, these were all at high risk of bias due to lack of blinding, missing outcome data, and/or inadequate concealment of allocation. Moreover, the studies tended to measure intermediate or surrogate outcomes (e.g., range of motion) rather than outcomes that may be most important to the patients, healthcare practitioners, and decisionmakers (e.g., health-related quality of life, time to return to work).

Results by individual study. Ten studies (six RCTs,^{178-180,182,184,185} one CCT¹⁷⁶ and three cohort studies^{177,181,183}) evaluated the effectiveness of various postoperative rehabilitation treatments. The median sample size was 61 patients (IQR: 36 to 80). The following postoperative rehabilitation techniques were assessed: continuous passive motion with physical therapy vs. physical therapy alone,^{180,182,184} aquatic and land-based therapy vs. land-based therapy alone,¹⁷⁶ inpatient vs. day patient rehabilitation,¹⁷⁷ home exercise with vs. without the addition of an individualized physical therapy program,¹⁷⁸ progressive loading vs. traditional loading,¹⁷⁹ inpatient rehabilitation vs. rehabilitation in a private practice specializing in Concept Global d'Epaule,¹⁸¹ standardized vs. non-standardized physical therapy program¹⁸³ and videotape vs. physical therapy home exercise instruction.¹⁸⁵ The outcomes of three studies evaluating the addition of continuous passive motion to physical therapy could be pooled in a meta-analysis, shown in Figure 28 and Figure 29. Patient and study characteristics, as well as study outcome data, are presented in Table 28 and Table 29, respectively. The grading of the body of evidence for postoperative rehabilitations studies is found in Table 30.

Continuous passive motion with physical therapy vs. physical therapy. Three studies assessed use of continuous passive motion, however the protocols and followup durations varied across the studies. Lastayo et al.¹⁸⁰ conducted a RCT comparing the addition of continuous passive motion

using a mechanical device (Thera-kinetics, Mount Laurel, New Jersey) vs. no continuous passive motion in patients who received manual range of motion and strengthening exercises. The former group received continuous passive motion for flexion and external rotation for four hours per day (three or four periods, each lasting 1–1.5 hours). All patients had undergone open RCR. Tear sizes ranged from small to large and were balanced between the two groups. Thirty-one patients (32 shoulders) were randomly assigned to the interventions (17 to continuous passive motion, 15 to no continuous passive motion). The mean length of followup was 22 ± 9.8 months (6 months to 3.8 years). Patients were evaluated using the pain VAS score, passive and active range of motion, and isometric strength. There were no significant between-group differences in any of the outcome measures at any time points (p>0.05).

Michael et al.¹⁸² conducted a RCT comparing continuous passive motion using a mechanical device (five times per day at 20 minutes per session) plus a physical therapy program vs. physical therapy alone in patients who underwent open or mini-open RCR. The same physical therapy program was provided for both group and consisted of passive and active range of motion and strengthening exercise. All patients had partial- or full-thickness tears limited to the supraspinatus tendon. Sixty-one patients were randomly assigned to the interventions (40 to the continuous passive motion plus physical therapy group, 21 to the physical therapy group); 55 were included in the final analyses. The followup period was 56 days. Patients were evaluated using the CMS, the pain VAS score, time until 90 degree abduction was achieved, and time to return to work. There were no significant between-group differences for the CMS and pain scores. However, there was a significant difference between the groups in the postoperative duration needed until 90 degree abduction was achieved (p=0.03), in favour of the continuous passive motion group (31 vs. 43 days). The time to return to work was 21 days sooner in continuous passive motion group.

Rabb et al.¹⁸⁴ conducted a RCT comparing continuous passive motion (8 hours per day) using a mechanical device (Thera-kinetics, Mount Laurel, New Jersey) plus a physical therapy program vs. physical therapy alone in patients who had RCR for a partial- or full-thickness tear. Tear size ranged from small to massive. The continuous passive motion plus physical therapy group had a much greater proportion of patients with large or massive tears (57 percent) compared to the physical therapy alone group (25 percent). Forty-one patients were randomly assigned to the interventions; 26 were included in the final analyses (14 in the continuous passive motion plus physical therapy group, 12 in the physical therapy group). Patients were evaluated at 3 months following surgery using a 100-point shoulder score. For both groups, there was no significant difference between the groups in the endpoint (p>0.05). Similarly, there

Two RCTs^{182,184} provided data for meta-analysis of the effects of continuous passive motion vs. no continuous passive motion on functional outcome measures (Figure 28). The CMS of Michael et al.¹⁸² and the shoulder score of Rabb¹⁸⁴ were used in the analysis. The baseline to endpoint change scores were compared between groups. The pooled estimate showed no difference between the studies (SMD=0.08; 95% CI, -0.37 to 0.52). There was no evidence of heterogeneity between the studies (p=0.63; $I^{2=0}$ percent).

	Passive Motion			PT program alone		Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I IV, Random, 95% CI
Michael 2005	30	15.71	34	30	18.26	21	66.9%	0.00 [-0.54, 0.54]	
Raab 1996	15	20.65	14	10	20.65	12	33.1%	0.23 [-0.54, 1.01]	
Total (95% CI)			48			33	100.0%	0.08 [-0.37, 0.52]	
Heterogeneity: Tau ² = Test for overall effect:				(P = 0.6	63); l² = ()%			-1 -0.5 0 0.5 1 Favours PT program alone Favours Passive Motion

Figure 28. Continuous passive motion with physical therapy vs. physical therapy alone for measures of functional outcome

A meta-analysis was conducted comparing continuous passive motion vs. no continuous passive motion for pain using two RCTs (Figure 29). The pain VAS in Michael et al.¹⁸² was compared with the pain subscore of the shoulder score index in Raab et al.¹⁸⁴ using change scores. No differences was found between the interventions for pain (SMD=-0.12; 95% CI, -1.08 to 0.83) There was substantial heterogeneity between the two studies (p=0.05; $I^{2=}75$ percent). The heterogeneity may be partly attributable to a difference in the timing of outcome assessment; Michael et al.¹⁸² followed patients for 2 months, compared to Rabb et al.¹⁸⁴ assessed patient outcomes at 3 months postoperatively.

Figure 29. Forest plot comparing pain in continuous passive motion vs. no continuous passive motion groups

_	Passive Motion			PT program alone		Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Michael 2005	-21	41	34	-33	29	21	54.5%	0.32 [-0.23, 0.87]	
Raab 1996	-36	20.65	14	-22	20.65	12	45.5%	-0.66 [-1.45, 0.14]	
Total (95% CI)			48			33	100.0%	-0.12 [-1.08, 0.83]	
Heterogeneity: Tau ² = Test for overall effect:				l (P = 0.0	05); l ² = 7	75%			-1 -0.5 0 0.5 1 Favours Passive Motion Favours PT program alone

Aquatic therapy with land-based therapy vs. land-based therapy. Brady et al.¹⁷⁶ conducted a CCT comparing a combination aquatic and land-based program vs. a land-based program alone in patients who underwent RCR. Tear size ranged from small to massive and were balanced between groups. Eighteen patients were enrolled in the study (12 received aquatic and land-based treatment, 6 received only land-based treatment). All patients were evaluated at 3, 6, and 12 weeks postoperatively. The WORC Index and range of motion (flexion and external rotation) were used to assess patients. For both groups, there were significant differences in the WORC Index and range of motion from baseline to endpoint scores (p<0.0001). There were no significant differences between the groups at endpoint in the WORC Index or external rotation at any measurement point. At 3 and 6 weeks postoperatively, there were significant differences in flexion between the groups (p=0.005 and p=0.01, respectively), but not at 12 weeks (p>0.05).

Inpatients vs. day patient rehabilitation. Delbrouck et al.¹⁷⁷ conducted a prospective cohort study comparing inpatient vs. day patient rehabilitation in patients who had undergone RCR. Patients had partial- or full-thickness tears; tears sizes ranged from small to massive and were similar between groups. Seventy-nine patients (84 shoulders) were enrolled in the study; 71 (76 shoulders) were included in the final analyses (53 in the inpatient group, 23 in the day patient group). Pain and range of motion were used to evaluate patients at various points over the 60-day followup period. Only one statistically significant difference was observed: pain at day 15 was less among the inpatient group, yet no difference was found at 30 days. Inpatients were more frequently prescribed NSAIDs and calcitonin for pain management compared with outpatients (11 and 4 patients, respectively). No other differences in pain or range of motion were observed.

Individualized physical therapy program with home exercise vs. home exercise. Haves et al.¹⁷⁸ conducted a RCT comparing individualized physical therapy with home exercise program vs. a home exercise program alone in patients who underwent open RCR. All patients received the same standardized home exercise regime, which was issued by the treating surgeon. Patients in the home exercise group received no other rehabilitation. For patients in the individualized physical therapy group, treatment content, rate of rehabilitation progression and total number of sessions were determined by the treating physical therapist. The treatment regime in this group may have consisted of any combination of exercises, manual therapy techniques, physical modalities of ice and moist heat, and rehabilitation and home exercise advice. Patients with fulland partial-thickness tears were included; the mean tear size was 5 cm^2 in the individualized physical therapy with home exercise program group and 6 cm^2 in the home exercise program group. Fifty-eight patients were randomly assigned to the interventions (26 to physical therapy and home exercise, 32 to the home exercise alone); 42 were included in the final analyses. Patients were revaluated at 6, 12, and 24 weeks postoperatively. The Shoulder Service Questionnaire (SSQ), passive range of motion (flexion, abduction, and external rotation), and manual muscle test for strength were used to assess patients. There were no differences between groups in any of the outcomes or measurement time points (p>0.05).

Progressive loading vs. traditional loading. A RCT was conducted by Klintberg and colleagues¹⁷⁹ to compare the effectiveness of two physical therapy rehabilitation protocols, progressive vs. traditional loading, following RC surgery. In the progressive group, dynamic and specific muscle activation of the RC and passive range of motion was initiated the day after surgery. Loading of the shoulder progressively increased following 4 weeks of immobilization. In contrast, the traditional group was protected from RC loading and no specific exercises were introduced during the 6-weeks immobilization period. Eighteen patients were enrolled (nine per group) and 14 were assessed at 2-year followup. Patients were evaluated using the CMS, Functional Index of the Shoulder, pain VAS, active range of motion (abduction, flexion, internal rotation, external rotation, and extension) and strength (internal rotation, external rotation, and flexion). Significant preoperative to postoperative improvement was reported on the CMS for the progressive group, on abduction range of motion for the traditional group, and for the Functional Index of the Shoulder and pain scores in both groups. The only significant differences between the progressive and traditional groups were in pain during activity and at rest (p<0.05), favouring the progressive loading group.

Inpatient rehabilitation vs. outpatient rehabilitation focusing on Concept Global d'Epaule. A retrospective cohort study conducted by Marc et al.¹⁸¹ compared inpatient rehabilitation vs. rehabilitation in an outpatient center specializing in Concept Global d'Epaule (CGE) following RCR. A third study arm initially received inpatient rehabilitation and subsequently underwent outpatient care due to insufficiently improvement. CGE is a rehabilitation protocol based on three principles: (1) movements are done with pressure on humeral head to increase the subacromial space, (2) gradual progression from passive to active movement at patients tolerance, and (3) an attempt to restore dynamic equilibrium between muscles responsible for elevating the humeral head and the rotator cuff muscles. A total of 80 patients were enrolled, including 26, 38 and 16 in the inpatient, outpatient and combination groups, respectively. Patients were followed for a minimum of 2 years. Outcomes of interest included the CMS, pain and strength. The significance of baseline to endpoint scores was not reported. There was a significant difference between groups for pain, favouring the outpatient CGE group and the

group with both inpatient rehabilitation and outpatient CGE treatment. No differences were found between groups for the CMS and strength scores.

Standardized vs. non-standardized physical therapy program. Milroy et al.¹⁸³ conducted a retrospective cohort study comparing a standardized vs. non-standardized physical therapy program in patients who had had RCR. The treatment components of the physical therapy programs were not described. Sixty-seven patients were enrolled in the study (28 received standardized physical therapy, 39 received non-standardized physical therapy). Patients were evaluated using the DASH score and a numeric pain rating scale. There was significantly greater improvement on the DASH in the standardized physical therapy group (p \leq 0.05). However, there were no differences between the groups in pain scores (p>0.05).

Videotape vs. physical therapy home exercise instruction. Roddey et al.¹⁸⁵ conducted a RCT comparing videotape-based vs. physical therapy instruction home exercise programs in patients who had undergone arthroscopic repair. Patients in the first group received exercise instruction solely through a videotape given them by a physical therapist during their hospital stay. The second group received four one-on-one instruction sessions with a physical therapist throughout the course of the study. All patients had full-thickness RC tears. The mean tear size was 2.5 cm (1 to 5 cm) for the videotape-based instruction group and 2.6 cm (1.5 to 4.0) in the physical therapy instruction group. Overall, 129 patients were randomly assigned to the interventions, of which 108 were included in the final analyses (54 in each group). Patients were evaluated at 12, 24, and 54 weeks following surgery. The SPADI and the PENN shoulder scores were used to assess patients. There were no differences between the groups at any measurement time point for both the SPADI and the PENN indices (p>0.05).

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; size of tear Duration of symptoms (mo), mean±SD (range)
Brady B, ¹⁷⁶ 2008	G1: Land-based & aquatic therapy program (12)	G1: 56.3±9 yr (41–67) / Males: 8 (67) G2: 53.5±16 yr (26–69) / Males: 3 (50)	NR; Sm, Med, Lg, Mass
	G2: Land-based program (6)		NR
	CCT		
Delbrouck C, ¹⁷⁷ 2003	G1: Inpatient rehabilitation (NR) G2: Day patient rehabilitation (NR)	G1: 52.7±8 yr / Males: 25 (47) G2: 55±5 yr / Males: 16 (70)	PTT; Sm, Med, Lg, Mass
	Prospective cohort		NR
Hayes K, ¹⁷⁸ 2004	G1: Individualized PT & standard home exercise regime (26)	G1: 58±10 yr (41–81) / Males: 20 (77) WCB: 4	PTT, FTT; G1: 5.0 cm ² , G2: 6.0 cm ²
	G2: Standardized home exercise regime (32)	G2: 62±11 yr (42–83) / Males: 20 (63) WCB: 6	G1: 12±16 mo (0–48 mo), G2: 19±27 mo (1–96 mo)
	RCT		
Klintberg IH, ¹⁷⁹ 2009	G1: Progressive loading (9) G2: Traditional loading (9)	G1: NR / Males: NR G2: NR / Males: NR	FTT; Med, Lg, Mass
	RCT		NR
LaStayo PC, ¹⁸⁰ 1998	G1: CPM (17 shoulders) G2: Manual passive ROM exercises (15	G1: 62.8 yr (30–80) / Males: 8 (47) G2: 63.7 yr (45–75) / Males: 6 (40)	NR; Sm, Med, Lg
	shoulders)		NR
	RCT		
Marc T, ¹⁸¹ 2009	G1: Inpatient in rehab centre (26) G2: Private practice in CGE (38)	Total: 61 (36–80) / Males: 49 (61)	FTT; NR
	G3: Inpatient and outpatient in CGE (16)		NR
	Retrospective cohort		
Michael J, ¹⁸² 2005	G1: CPM & PT program (40) G2: PT program (21)	G1: 58 yr (35–70) / Males: 25 (63) Manual Labourers (light, moderate, heavy,	PTT, FTT; NR
	RCT	overhead):12, 12, 6, 4 G2: 58 yr (43–71) / Males: 12 (57) Manual Labourers (light, moderate, heavy, overhead): 8, 6, 6, 1	NR
Milroy DR, ¹⁸³ 2008	G1: Standardized PT (28) G2: Non-standardized PT (39)	G1: 57±10.9 yr / Males: 16 (57) G2: 57.8±9.81 yr / Males: 27 (69)	NR; NR
	Retrospective cohort	· · · · · ·	NR

Table 28. Study and patient characteristics for studies assessing postoperative rehabilitations

CCT = controlled clinical trial; CPM = continuous passive motion; FTT = full-thickness tear; G = group; Mass = massive; Med = medium; Lg = large; NR = not reported; PT = physical therapy; PTT = partial-thickness tear; RCT = randomized controlled trial; ROM = range of motion; SD = standard deviation; Sm = small; WCB = workers' compensation board

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; size of tear Duration of symptoms (mo), mean±SD (range)
Raab MG, ¹⁸⁴ 1996	G1: CPM & PT (NR)	G1: 54 yr / Males: 9 (64)	PTT, FTT; Sm, Med, Lg, Mass
	G2: PT only (NR)	G2: 58 yr / Males: 9 (75)	
		• · · · · ·	NR
	RCT		
Roddey TS, ¹⁸⁵ 2002	G1: Videotape instruction (NR)	G1: 58.7±10.6 yr (34.6–78.0) / Males: 36 (67)	FTT; G1: 2.5 cm (1–5 cm),
	G2: PT instruction (NR)	G2: 57.2±9.1 yr (40.0–75.8) / Males: 33 (61)	G2: 2.6 cm (1.5–4.0 cm)
	RCT		NR

Table 28. Study and patient characteristics for studies assessing postoperative rehabilations (continued)

Author, year	Intervention (N analysed) Followup mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Brady B, ¹⁷⁶ 2008	G1: Land-based & aquatic therapy program (NR) G2: Land-based program (NR) 12 wk	WORC (95% CI) 3 wk 6 wk 12 wk ROM (degrees) (95% CI)	1163 (925–1402) 1468±490† 1267±289† 635±260†, p<0.0001 F: 135 (125–145) ER: 31 (22–40)	1003 (482–1525) 1502±226† 1335±500† 728±421†, p<0.0001 F: 141 (120–161) ER: 30 (14–46)	p>0.05
		3 wk	F: 59.8±26.6† ER: 18.7±8.0†	F: 106.4±17.2† ER: 22.1±14.7†	F/3 wks: p=0.005 ER/p>0.05
		6 wk	F: 94.3±26.6† ER: 28.9±15.1†	F: 122.9±16.8† ER: 30.9±17.6†	F/6 wks: p=0.01 ER/p>0.05
		12 wk	F: 148.7±16.8†, p<0.0001 ER: 67.5±17.4†, p<0.0001	F: 160.1±9.8†, p<0.0001 ER: 57.7±12.3†, p<0.0001	p>0.05
Delbrouck C, ¹⁷⁷ 2003	G1: Inpatient rehabilitation (53 shoulders) G2: Day patient rehabilitation (23	Pain (VAS) day 15 day 30 day 45 day 60	NR 1.1 1.3 1.2 0.7	NR 2.3 2.0 2.2 1.2	day 15: p=0.012 day 30, 45, 60: p>0.05
	shoulders) 60 days	ROM (degrees)	ABD: 146 / 118 F: 141 / 122 ER: 55 / 30	ABD: 153 / 128 F: 153 / 130 ER: 61 / 31	p>0.05
		day 30	ABD: 102 F: 109 ER: 18	ABD: 91 F: 104 ER: 22	
		day 45	ABD: 100 F: 107 ER: 20	ABD: 125 F: 119 ER: 23	
Hayes K, ¹⁷⁸ 2004	 G1: Individualized PT & standard home exercise regime (20) G2: Standardized home exercise regime (22) 	SSQ (95% CI) 6 wk 12 wk 24 wk	65 (57–73) 35 (28–42) 24 (15–33) 14 (7–21)	75 (67–83) 35 (28–42) 30 (20–40) 32 (21–43)	p>0.05 p>0.05 p>0.05
	24 w/k				

Table 29. Outcome data for studies assessing	ng postoperative rehabilitation
--	---------------------------------

24 wk

ABD = abduction; ADD = adduction; CI = confidence interval; CMS = Constant-Murley score; CGE = Concept Global d'Epaule; CPM = continuous passive motion; DASH = Disabilities of the Arm, Shoulder and Hand; ER = external rotation; EX = extension; FIS = Functional Index of the Shoulder; G = group; IR = internal rotation; F = flexion; NR = not reported; NS = not significant; PT = physical therapy; pts = patients; ROM = range of motion; SD = standard deviation; SE = standard error; SSQ = Shoulder Service Questionnaire; SPADI = Shoulder Pain and Disability Index; UCLA = University of California Los Angeles Scale; PENN = University of Pennsylvania Shoulder Score; VAS = visual analogue scale; wk = week; WORC = Western Ontario Rotator Cuff Index; yr = year

* Subscales reported

† Data extrapolated from graph

‡ Values are presented as medians (range)

	Intervention (N		Group 1	Group 2	Group 1 vs. Group 2	
Author, year	analysed)	Outcome	Baseline mean±SD (range)/	Baseline mean±SD (range)/	p-value	
170	Followup mean (range)		Endpoint mean±SD (range)	Endpoint mean±SD (range)	p talao	
Hayes K, ¹⁷⁸		ROM (passive,	F: 148 (139–157)	F: 134 (122–146)		
2004		degrees) (95% CI)	ABD: 133 (122–144)	ABD: 120 (108–132)		
(continued)			ER: 55 (49–61)	ER: 47 (40–54)		
		6 wk	F: 130 (118–142)	F: 111 (99–123)	p>0.05	
			ABD: 108 (93–123)	ABD: 95 (85–105)		
			ER: 34 (26–36)	ER: 31 (26–36)		
		12 wk	F: 141 (129–153)	F: 136 (125–147)	p>0.05	
			ABD: 125 (110–140)	ABD: 119 (106–132)		
			ER: 42 (34–50)	ER: 41 (34–48)		
		24 wk	F: 150 (142–158)	F: 144 (132–156)	p>0.05	
			ABD: 142 (130–154)	ABD: 130 (117–143)		
			ER: 51 (46–56)	ER: 43 (36–50)		
		Strength	IR: 5 (5–5)	IR: 5 (5–5)		
		manual muscle test	ER: 5 (4.5–5)	ER: 5 (4.5–5)		
		grades (median, 95% CI)	F: 4.5 (4.5–5)	F: 4.5 (4–4.5)		
		6 wk	IR: 5 (5–5)	IR: 5 (5–5)	p>0.05	
			ER: 5 (4.5–5)	ER: 5 (4.5–5)		
			F: 4.5 (4–5)	F: 4.5 (4–4.5)		
		12 wk	IR: 5 (5–5)	IR: 5 (5–5)	p>0.05	
			ER: 5 (5–5)	ER: 5 (4.5–5)	·	
			F: 4.5 (4–5)	F: 4.5 (4–5)		
		24 wk	IR: 5 (5–5)	IR: 5 (5–5)	p>0.05	
			ER: 5 (5–5)	ER: 5 (5–5)		
			F: 5 (4.5–5)	F: 5 (4.5–5)		
Klintberg IH, ¹⁷⁹	G1: Progressive loading	CMS‡ (100-point)	NR	NR	NR	
2009	(7)	6 mo	60 (50–84)	76 (21–86)		
	G2: Traditional loading	12 mo	80 (67–97)	78 (48–93)		
	(7)	2 yr	82 (72–93), NR	77 (54–95), NR		
	_	CMS‡ (75-point)	35 (20–55)	45 (24–75)	NR	
	2 yr	6 mo	51 (43–70)	67 (21–74)		
		12 mo	69 (57–75)	71 (45–75)		
		2 yr	71 (64–75), p<0.05	73 (51–75), NR		
		FIS‡	54 (42–85)	44 (6–77)	NR	
		6 mo	34 (22–74)	25 (5–64)		
		12 mo	19 (4–37)	10 (0–50)		
		2 yr	1 (0–48), p<0.05	18 (0–36), p<0.05		

Table 29. Outcome data for studies assessing postoperative rehabilitation (continued)

	Intervention (N		Group 1	Group 2	Group 1 vs. Group 2
Author, year	analysed)	Outcome	Baseline mean±SD (range)/	Baseline mean±SD (range)/	p-value
	Followup mean (range)		Endpoint mean±SD (range)	Endpoint mean±SD (range)	p-value
Klintberg IH, ¹⁷⁹		Pain‡ during activity	73 (54–98)	60 (0–77)	12 mo: NS†
2009		6 mo	28 (8–52)	7 (0–50)	24 mo: p<0.05
(continued)		12 mo	10 (5–50)	7 (0–76)	
		24 mo	2 (0–7), p<0.05	0 (0–40), p<0.05	
		Pain‡ at rest	27 (12–64)	4 (0–97)	12 mo: p<0.05
		6 mo	1 (0–27)	0 (0–15)	24 mo: p<0.05
		12 mo	0 (0–0)	0 (0–38)	
		24 mo	0 (0–3), p<0.05	0 (0–12), NR	
		Active ROM ⁺	ABD: 140 (35–180)	ABD: 110 (40–180)	NR
		(degrees)	F: 150 (90–170)	F: 150 (40–170)	
			IR: 40 (35–65)	IR: 43 (40–90)	
			ER (in ADD): 50 (30–60)	ER (ADD): 40 (10–50)	
			ER (in ABD): 50 (5–90)	ER (ABD): 70 (40–110)	
			EX: 40 (10–60)	EX: 45 (25–50)	
			ABD: 163 (130–175)	ABD: 170 (150–180)	
		6 mo	F: 140 (110–165)	F: 140 (60–165)	
			IR: 48 (25–75)	IR: 40 (30–55)	
			ER (in ADD): 43 (30–60)	ER (in ADD): 30 (20–60)	
			ER (in ABD): 65 (25–100)	ER (in ABD): 70 (40–100)	
			EX: 40 (25–45)	EX: 40 (30–50)	
			ABD: 170 (140–180)	ABD: 175 (100–180)	
		12 mo	F: 150 (135–165)	F: 150 (110–175)	
			IR: 50 (35–70)	IR: 45 (40–70)	
			ER (in ADD): 40 (30–55)	ER (in ADD): 45 (20–60)	
			ER (in ABD): 70 (15–90)	ER (in ABD): 90 (40–100)	
			EX: 50 (30–60)	EX: 50 (30–60)	
		2 yr	NR	NR, p<0.05	
		Strength‡	IR (J): 19 (12–32)	IR (J): 28 (5–63)	NR
			ER (J): 20 (9–33)	ER (J): 21 (1–37)	
			F (Nm): 107 (50–139)	F (Nm): 94 (0–214)	
		6 mo	IR (J): 24 (16–50)	IR (J): 28 (11–41)	
			ER (Ĵ): 15 (10–28)	ER (J): 25 (5–29)	
			F (Nm): 108 (56–165)	F (Nm): 112 (0–197)	
		12 mo	IR (J): 28 (14–42)	IR (J): 37 (14–56)	
			ER (J): 16 (10–32)	ER (J): 30 (7–36)	
			F (Nm): 110 (62–186)	F (Nm): 124 (0–209)	
		2 yr	NR	NR	

Table 29. Outcome data for studies assessing postoperative rehabilitation (continued)

Author, year	Intervention (N analysed) Followup mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Marc T, ¹⁸¹ 2009	G1: Inpatient in rehab	CMS	45 / 80, NR	50 / 85, NR	p=NS
	centre (26)			G3: 43 / 80, NR	
	G2: Private practice in	Pain improvement	5.3, NR	7.0, NR	G1 vs. G2: p<0.05
	CGE (38) G3: Inpatient and			G3: 7.3, NR	G1 vs. G3: p<0.05
	outpatient in CGE (16)	Strength (kg)	3.5 / 6.5, NR	4.5 / 7.5, NR	p=NS
	2 yr (minimum)			G3: 3.5 / 6.5, NR	-
Lastayo PC, ¹⁸⁰	G1: CPM (NR)	Pain VAS	NR	NR	p>0.05
1998	G2: Manual passive	1 wk	4.9	8.0	L
	ROM exercises (NR)	2 wk	3.8	5.9	
		4 wk	1.7†	1.6†	
	22±9.8 mo (6 mo–3.8 yr)	Passive ROM (deg)	ER: NR	ER: NR	p>0.05
	· · · · · ·	12 wk	48.4	56.3	r
		6 mo	63.3	76.2	
		12 mo	80.5	99.4	
		2 yr	102.5†	129.8†	
			F: NR	F: NR	
			128.2	128.2	
			141.8	146.3	
			155.7	164.7	
			170.7†	185.1†	
		Active ROM (deg)	ER: NR	ER: NR	
		12 wk	58.1	55.0	
		6 mo	62.4	61.6	
		12 mo	66.7	66.7	
		2 yr	71.6†	71.6†	
			F: NR	F: NR	
			114.1	102.0	
			128.1	113.3	
			142.5	124.6	
			158.4†	137.2†	
		Strength kg (SE)	ER: NR	ER: NR	p>0.05
		6 mo	9.9 (9.3–10.5)	9.0 (8.4–9.9)	
		12 mo	11.1 (10.4–11.9) †	9.6 (8.8–10.4) †	
			F: NR	F: NR	
			9.4 (8.9–9.9)	8.0 (7.4–8.5)	
			10.3 (9.4–11.3) †	9.6 (8.5–10.5) †	

Table 29. Outcome data for studies assessing postoperative rehabilitation (continued)

Author, year	Intervention (N analysed) Followup mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value
Michael J, ¹⁸²	G1: CPM & PT program	CMS	39 (7–74) / 69 (28–94)	36 (13–57) / 66 (27–96)	NR
2005	(34)	Pain VAS	62 / 41	62 / 29	NR
	G2: PT program (21)	Time until 90° ABD (days)	31 days	43 days	p=0.03
	56 days	Return to work (mean days)	(21 days sooner than G2)	NR	NR
Milroy DR, ¹⁸³ 2008	G1: Standardized PT (NR) G2: Non-standardized PT (NR)	Mean difference on DASH (pts, 95% CI)	12.4 (-1.60, -23.2)		p≤0.05
	NR	Improvement in pain scores	NR	NR	p>0.05
Rabb MG, ¹⁸⁴ 1996	G1: CPM & PT (14) G2: PT only (12)	Shoulder Score*	68 / 83, p>0.05	63 / 73, p>0.05	p>0.05
	3 mo				
Roddey TS, ¹⁸⁵	G1: Videotape instruction	SPADI	60.4±22.1	52.3±21.6	
2002	(54)	12 wk	32.0±19.7	26.7±18.8	p=0.17
	G2: PT instruction (54)	24 wk	18.1±16.1	15.3±15.2	p=0.40
		52 wk	12.3±14.3	12.4±14.4	p=0.99
	52 wk (NR)	PENN	37.9±15.7	40.9±16.3	
		12 wk	62.6±17.7	66.2±17.5	p=0.32
		24 wk	79.4±15.5	79.6±17.3	p=0.95
		52 wk	85.6±13.8	85.9±16.7	p=0.94

Table 29. Outcome data for studies assessing postoperative rehabilitation (continued)

Technique	Number of studies; subjects (analyzed)*	Outcome		Strength of evidence				
	(unaryzou)		Risk of bias	Consistency	Directness	Precision	Confounding	
Continuous passive	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
motion with PT treatment vs. PT	3; 133 (122)	Function	RCTs	Consistent	Direct	Precise	Absent	Moderate
treatment	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	1; 61 (55)	Time to return to work	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
Aquatic therapy with	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
land-based therapy vs. land-	1; 18	Function	CCT Medium	Unknown	Direct	Imprecise	Absent	Low
based therapy	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
npatient vs. day	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
patient rehabilitation	0	Function	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
ndividualized PT	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
program with home exercise vs.	1; 58 (42)	Function	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
home exercise	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Progressive vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
traditional loading	1; 18 (14)	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
npatient rehab vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
outpatient CGE	1; 80	Function	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Standardized vs.	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
non-standardized PT program	1; 67	Function	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Videotape vs. PT	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
home exercise instruction	1; 129 (108)	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

Table 30. Strength of evidence for postoperative rehabilitation

CGE = Concept Global d'Epaule; HRQL = health-related quality of life; n/a = not applicable; PT = physical therapy; RCT = randomized controlled trial; *Number analyzed if different from number sudied

Postoperative Rehabilitation—Uncontrolled Studies

Only one BA study evaluated a postoperative rehabilitation program consisting of passive and active stretching and strengthening exercises.¹⁷⁵ The study was published in 2007 and enrolled 118 patients with a mean age of 67 years. The type and size of patient RC tears was not reported. There were 14 (12 percent) smokers among the included patients. The only outcome measure used to assess patients was the DASH scale. Since only one uncontrolled study evaluated postoperative rehabilitation, a visual display of the preoperative and postoperative scores is not presented.

Question 3. Comparative Effectiveness of Nonoperative Treatments

The comparative effectiveness of nonoperative interventions was examined in a total of 10 studies (three comparative and seven uncontrolled studies). Various types of interventions were examined across the individual studies, including stretching and strengthening, steroid injections, oral medications.

Nonoperative—Comparative Studies

Summary. Only three comparative studies were identified that assessed nonoperative interventions. Pooling of data was not possible as the interventions compared in each study varied. One RCT¹⁹⁴ compared sodium hyaluraonate vs. dexamethasone in terms of function and range of motion. The authors reported results comparing patients who were and were not satisfied with their degree of improvement within each group, therefore the data available did not allow for a head-to-head comparison regarding the relative efficacy of the two interventions under study. The trial was at high risk of bias due to a number of methodological weaknesses; in particular, the patient self-selection of treatment at 4 weeks based on satisfaction is an important source of bias. One retrospective cohort study¹⁹¹ compared rehabilitation focusing on protecting the cuff through reliance on other muscles (deltoid, pectoralis major and latissimus dorsi) vs. no rehabilitation and found statistically significant and clinically important differences favoring the rehabilitation group in terms of function (absolute difference between groups of 26.9 points on a 100-point scale). The study had several methodological limitations, most importantly a loss to followup of 46 percent. Differential loss to followup across the groups may yield exaggerated estimates of treatment effects. While rehabilitation may appear to be a promising intervention based on statistically and clinically important differences when compared to no rehabilitation, there is no evidence regarding how rehabilitation would compare to other interventions, such as steroid injections. Finally, a retrospective cohort study¹⁶⁵ compared steroid injection vs. no steroid injection among participants undergoing physical therapy (not specified) and receiving oral medications (not specified). The results showed a significant difference in terms of function (absolute difference of 11 on an 83-point scale) and time to maximum range of motion (absolute difference of 4 months). The study had several methodological limitations which may bias the effects observed including retrospective timing and self-reporting of outcomes; further, the authors studied a select group which may affect generalizability of results beyond the population studied.

Overall, the level of evidence is low for nonoperative interventions due the variety of interventions examined across the body of evidence and methodological limitations of the individual studies. Treatment components were poorly described across the studies, both in term

of content (e.g., components included in "physical therapy" treatment) and delivery (e.g., frequency, intensity), limiting the usefulness of the studies to clinicians attempting to determine the most effective ways to manage patients nonoperatively. In addition, outcomes such as range of motion were insufficiently described, as it was unclear whether active, active-assisted or passive motion was being assessed.

Results by individual study. Three studies (one RCT¹⁹⁴ and two retrospective cohort studies^{165,191}) compared the effectiveness of nonoperative treatments in patients with RC tears. The studies could not be pooled because different nonoperative interventions were compared in each study. Patient and study characteristics, as well as study outcome data, are presented in Table 31 and Table 32, respectively. Grading of the body of evidence is presented in Table 33.

Sodium hyaluraonate vs. dexamethasone. Shibata et al.¹⁹⁴ conducted a RCT comparing glenohumeral injection with sodium hyaluraonate or dexamethasone steroid in patients with fullthickness RC tears. The size of tears was not reported. Seventy-eight patients were randomly assigned to each intervention (38 to sodium hyaluraonate, 40 to dexamethasone). In addition, patient in both groups received Loxoprofen (180 mg/day) and physical therapy including heat and cuff strengthening exercise. All patients were evaluated at 4 weeks, at which point patients who were unsatisfied with their degree of improvement could elect to have surgical RCR. Only satisfied patients, who continued the nonoperative treatment to which they had been allocated, were assessed at 24 weeks using the UCLA shoulder score and range of motion (abduction, external and internal rotation). Compared to satisfied patients, those who were unsatisfied and opted for surgery at 4 weeks were more likely to have a manual labour job (p<0.01). At 4 weeks, there were significant differences between the satisfied and unsatisfied patients in the endpoint UCLA score and abduction, regardless of the type of nonoperative intervention to which they had been assigned. Satisfied patients showed significant improvement in UCLA score, abduction, and external rotation, but not internal rotation at 24 weeks compared with baseline measures. Head-to-head comparison of the two nonoperative interventions was not made.

Rehabilitation vs. no rehabilitation. Leroux et al.¹⁹¹ conducted a retrospective cohort study comparing rehabilitation with no rehabilitation in patients with full-thickness tears. The rehabilitation program focused on protecting the cuff through reliance on other muscles (deltoid, pectoralis major and latissimus dorsi). Overall, 112 patients were enrolled in the study; of these, 60 were included in the final analyses (42 in the rehabilitation group, 18 in the no rehabilitation group). The mean length of followup was 3.8 months (range: 5 days to 2 years). Patients were evaluated using the Scapular functional index, a 100-point functional scale with five components (pain, motility, function, power and stability). The difference in Scapular functional score from baseline to endpoint score was significant in the rehabilitation group. There was a statistically significantly difference between the groups in the endpoint postoperative Scapular function score (p<0.001), in favour of the rehabilitation group.

Steroid vs. no steroid injection. Vad et al.¹⁶⁵ conducted a retrospective cohort study comparing physical therapy with oral medication vs. physical therapy with oral medication and steroid injection. The study did not specify the components of the physical therapy treatment protocol, the type of oral medication or steroid, or specific site of steroid injection. All patients had

massive full-thickness RC tears. Forty patients were enrolled in the study (12 received the steroid injection, 28 received no steroid). All patients were followed for at least 2 years; the mean followup duration was 3.2 years (range: 2 to 7). Patients were evaluated using the Insalata shoulder rating scale, range of motion (abduction), and time to maximum range of motion. For both groups, there were significant differences in the Insalata scores and range of motion from preoperative to postoperative scores ($p \le 0.05$). Moreover, there were significant and clinically important differences between the group endpoint Insalata scores and time to maximum range of motion ($p \le 0.05$), in favour of physical therapy with oral medication and steroid injection group.

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; size of tear Duration of symptoms (mo), mean±SD (range)
Shibata Y, ¹⁹⁴ 2001	G1: Sodium hyaluraonate (38) G2: Dexamethasone (40)	G1: 59.5±9.1 yr / Males: 27 (71) Manual Labourers: 10 (26)	FTT; NR
	RCT	G2: 62.4±8.6 yr / Males: 28 (74) Manual Labourers: 11 (28)	G1: 5.8±5.4 mo, G2: 4.7±5.7 mo
Leroux JL, ¹⁹¹ 1993	G1: No rehabilitation (NR) G2: Rehabilitation (NR)	G1 and G2: 61.5 yr (36-85) / Males: (61)	FTT; NR
	Retrospective cohort		7.5±0.5 mo
Vad VB, ¹⁶⁵ 2002	G1: PT & oral medication (28) G2: PT & oral medication & steroid injections	G1 and G2: 63.2 yr / Males: NR	FTT; Mass
	(12)		6.3 mo (1–17)
	Retrospective cohort		

Table 31. Study and patient characteristics for studies assessing nonoperative interventions

FTT = full-thickness tears; G = group; Mass = massive; NR = not reported; PT = physical therapy; RCT = randomized controlled trial; SD = standard deviation

Author, year	Intervention (N) Followup mean (range)	Outcome	Grou Baseline mear Endpoint mea	±SD (range)/	Grouן Baseline mean Endpoint mean	Group 1 vs. Group 2 p-value	
Shibata Y, 2001 ¹⁹⁴ G1: Sodium hyaluraonate (38) G2: Dexamethasone	UCLA*	Satisfied patients (n=16)	Unsatisfied patients (n=22)	Satisfied patients (n=15)	Unsatisfied patients (n=25)	Satisfies vs. unsatisfied at 4wks:	
	(40)	Preoperative	13.6±2.6	12.8±3.5	11.9±3.6	12.6±3.9	0 1
	24 wk	4 wk 24 wk	27.6±3.1,p<0.0001 26.2±3.1,p<0.0001	14.9±4.4 NR	26.5±2.0, p<0.0001 25.3±2.5, p<0.0001	15.0±4.0 NR	Group1: p<0.0001 Group2: p<0.0001
		ROM (deg) 4 wk 24 wk	ABD:122.8±32.1 151.6±10.6,p<0.01 147.7±9.9, p≤0.05	ABD:124.3±44.2 130.7±36.8 NR	ABD:111.0±37.6 143.7±47.3, p<0.01 139.6±13.8, p≤0.05	ABD:117±47.3 112.4±38.2 NR	Satisfies vs. unsatisfied at 4wks:
			ER: 43.8±12.7 52.2±10.6, p<0.001 49.6±9.0, p≤0.05	ER: 54.1±22.8 55.5±19.7 NR	ER: 37.3±15.1 45.3±7.2, p≤0.05 46.5±8.5, p≤0.05	ER: 46.8±20.0 39.0±18.3 NR	Group1: ABD: p≤0.05 ER: p>0.05 IR: p>0.05
			IR †: T12.3±1.8 T11.3±2.0, p≤0.05 T11.8±2.6, p>0.05	IR † : T12.2±3.0 T10.6±3.1 NR	IR †: L1.1±4.0 T12.3±2.8, p>0.05 NR, p>0.05	IR †: L1.2±2.9 T12.6±3.1 NR	Group2: ABD: p≤0.01 ER: p>0.05 IR: p>0.05
Leroux JL, 1993 ¹⁹¹	G1: No rehabilitation (18) G2: Rehabilitation (42)	SFI, baseline to endpoint change	-6.6±5.2, p>0.05		+20.3±2.5, p≤0.05		p<0.001
	3.8 mo (5 days–2 yr)						
Vad VB,	G1: PT & oral	Insalata*	44.4±1.7 / 63.6, p≤0.		44.4±1.7 / 74.5, p≤0.0	05	p≤0.05
2002 ¹⁶⁵	medication (28) G2: PT & oral	ROM (degrees)	ABD: 68 / 108, p<0.0)5			NR
	medication & steroid injections (12) 3.2 yr (2–7)	Time to maximum ROM (mo)	9.3 (3–18)		5.3 (1–11)		p≤0.05

Table 32. Outcome data for studies assessing nonoperative interventions

ABD = abduction; deg = degree; ER = external rotation; G = group; Insalata = Insalata Shoulder Rating Questionnaire; IR = internal rotation; NR = not reported; PT = physical therapy; RCR = rotator cuff repair; ROM = range of motion; SD = standard deviation; SFI = Scapular Functional Index; UCLA = University of California Los Angeles Scale; wk = week; yr = year

* Subscales reported

† vertebral level (active ROM)

Technique	Number of studies; subjects (analyzed)*	Outcome		Strengtl	n of evidence d	omains		Strength of evidence
			Risk of bias	Consistency	Directness	Precision	Confounding	
Sodium hyaluraonate	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
vs dexamethasone	1; 78	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Rehabilitation vs. no	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
rehabilitation	1; 112 (60)	Function	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
PT, oral medications	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
and steroid injection vs. PT,	1; 40	Function	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
oral medications	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
and no steroid injection	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

Table 33. Strength of evidence for nonoperative interventions

HRQL = health-related quality of life; n/a = not applicable; PT = physical therapy; RCT = randomized controlled trial *Number analyzed if different from number studied

Nonoperative Treatments—Uncontrolled Studies

Seven uncontrolled studies, including six BA^{186,197,189,190,192,193} and one prospective cohort with BA data,¹⁸⁸ examined the effectiveness of nonoperative treatment for RC tears. Interventions evaluated in the studies included exercise protocols,^{187,188} programs consisting of analgesic, NSAID, steroid injection and reeducation interventions,^{186,190} pulsed radiofrequency ablation,¹⁸⁹ anterior deltoid rehabilitation program,¹⁹² and early functional physical therapy and active shoulder support.¹⁹³ The studies were published from 1991 to 2008, with 2006 the median year of publication (IQR: 2000 to 2008).

The number of participants enrolled in the studies ranged from 12 to 59 (median=29 [IQR: 21 to 42]). The median followup duration ranged from 25 days to 7 years (median=6 months). The mean age of participants ranged from 59 to 80 years. Full-thickness tears were included in three studies, ^{187,190,192} both partial- and full-thickness tears were included in two studies, ^{186,188} and two did not report type of tear. ^{189,193} Only two studies reported tear size; one included all sizes ¹⁸⁷ and one included only massive tears. ¹⁹² Recreational athletes and smokers were not reported in any of the studies. WCB patients were included in one study ¹⁸⁷ and manual labourers in another. ¹⁸⁶

Functional outcome measures were reported in all but one study.¹⁹³ Only one study reported health-related quality of life¹⁸⁶ and three reported proportion of patients who returned to work.^{186,187,190} Function was reported in six studies.^{186-190,192} Tendon healing were not reported in any of the nonoperative studies. Figure 30 presents the preoperative and postoperative functional scores over time for all studies that examine nonoperative treatments. The shape of the markers indicates the outcome scale used in the study, while the size is proportionate to the square root of the study sample size. Followup durations and the degree of improvement in outcome scores varied considerably across studies.

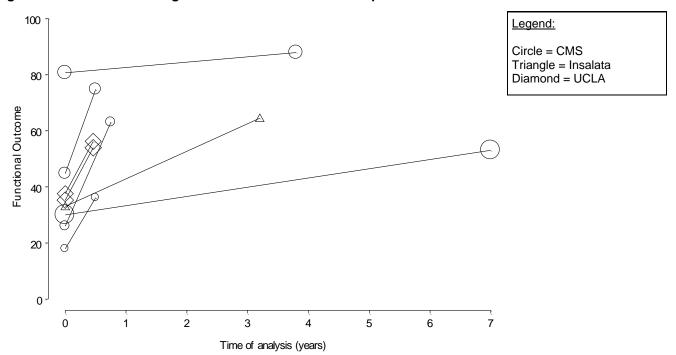


Figure 30. Studies examining functional outcomes for nonoperative treatments

Question 4. Comparative Effectiveness of Nonoperative vs. Operative Treatments

The comparative effectiveness of nonoperative vs. operative interventions was examined in five comparative studies.

Nonoperative vs. Operative Treatments—Comparative Studies

Summary. Two RCTs and three cohort studies compared nonoperative treatment vs. operative RCR. The nonoperative treatments across the five studies varied in their components. Four studies^{66,165,196,197} included either physical therapy (treatment components not specified) or stretching and strengthening exercises, with or without the addition of steroid injections, oral medications, activity modification or manual therapy. One study¹⁹⁵ examined the use of shock wave therapy. Nonoperative treatments were compared to either open or mini-open RCR. One study included a third comparison group undergoing arthroscopic debridement.¹⁶⁵ All groups showed significant improvements over the study period regardless of the intervention. The majority of the studies showed significant difference in function, favouring repair over nonoperative interventions. However, the results were highly heterogeneous, with one study showing an absolute difference of 24.5 points on an 83-point scale in favour of the operative repair.¹⁶⁵ This same study showed a significantly shorter time to maximum range of motion among the group undergoing arthroscopic debridement (3.2 months) compared to the nonoperative and open repair groups (6.8 months each). In general the level of evidence is low for nonoperative vs. operative interventions. The findings were inconsistent within and across studies. Further, as with complex interventions, it is difficult to determine the relative contributions of each of the components in the nonoperative treatment regimes.

Results by individual study. Five studies (two RCTs^{66,195} and three cohort studies^{165,196,197}) compared nonoperative with operative treatment regimes. Pooled analyses are presented in Figure 31 and Figure 32. Summary tables of the patient characteristics and outcome data are available in Table 34 and Table 35. The body of evidence for key outcomes was graded and is shown in Table 36.

Shock wave therapy vs. mini-open RCR. De Carli et al.¹⁹⁵ conducted a RCT investigating the effectiveness of extracorporeal shock wave therapy vs. mini-open RCR. Shock wave therapy was conducted using an electromagnetic generator, however no additional information on the treatment protocol was reported. All patients had full-thickness tears. A total of 30 patients were enrolled, however the sample sizes of each group and tear sizes were not reported. Patients were followed for an average of 19 months and 24 months in the shock wave and RCR groups, respectively. The difference in all scores was significant from baseline to followup. In addition, patients in the mini-open repair group showed a statistically greater improvement on the ASES and UCLA scores compared to the shock wave group.

Steroid injection, physical therapy and activity modification vs. open RCR. Lunn et al.¹⁹⁶ conducted a prospective cohort study comparing nonoperative treatment consisting of steroid injections, physical therapy and activity modification vs. open repair. The type and injection site of the steroid, physical therapy treatment components and type of activity modification of the nonoperative group were not reported in the study. All patients had full-thickness RC tears. The

mean length of followup was 4.2 years (range: 2 to 6.6). Nineteen patients were enrolled in the study (14 received nonoperative interventions, 5 received open RCR). All patients were evaluated using the CMS, range of motion (flexion, external and internal rotation), and strength. For both groups, there was a significant difference between the preoperative and postoperative CMS (p=0.009). However, the difference between the groups at endpoint was not significant (p=0.61). For both range of motion and strength, data was not presented separately by treatment group. Range of motion differed between the affected and normal side at final followup (158 vs. 176 degrees in flexion, 48 vs. 58 degrees in external rotation, and T12 vs. T7 in internal rotation). Similarly, there was a significant difference in strength between the affected and normal side at final followup (p<0.001). Cuff integrity was assessed using MRI at an average of 4.2 years. Anatomic healing was obtained in 3 cases (60 percent) in the operative group; cuff healing was not assessed in the nonoperative group.

Physical therapy (manual therapy and strengthening and stability exercises) vs. open or miniopen RCR. Moosmayer et al.⁶⁶ examined the effectiveness of a physical therapy program vs. open or mini-open repair in a RCT. The physical therapy protocol consisted of manual therapy and exercises aimed at strengthening and stabilizing the shoulder muscles. Treatment session were 40 minutes and were provided on average twice weekly during the first 12 weeks, and then less frequently during the subsequent 6 to 12 weeks. The treatment goals and methods were specified before the study, however they were provided in a non-standardized manner according to the examination findings and treatment progression. One hundred and three patients with small or medium-sized full-thickness tears were randomly assigned to physical therapy (51 patients) or open/mini-open repair (52 patients). All but one patient in the repair group were followed for 12 months and included in the analysis. In the physical therapy group, 9 patients showed inadequate improvement from baseline after 15 sessions, and underwent secondary surgery. Their final assessment after the 15 sessions was carried forward for the 6 and 12 month analyses. There was no difference between physical therapy and RCR on the SF-36 physical or mental component summary scores, however a significant difference was found for the ASES (p<0.0005) and CMS (p=0.002), in favour of the surgical repair group. Cuff integrity was measured using MRI in the operative group only, where 38 of 50 patients were found to have an intact rotator cuff.

Physical therapy, oral medication and steroid injection vs. open RCR vs. arthroscopic debridement. Vad et al.¹⁶⁵ conducted a retrospective cohort study comparing four treatment arms: physical therapy and oral medication alone and with the addition of steroid injection, open RCR and arthroscopic debridement. The physical therapy treatment components, type of oral medication and steroid, and the steroid injection site were not specified in the study. One hundred and eight patients with massive full-thickness RC tears were enrolled in the study (28 received nonoperative treatment without steroid, 12 received nonoperative treatment with steroid, 36 received open RCR and 32 received debridement). The study reported combined outcome data for the two nonoperative treatment arms. All patients were followed for a minimum of 2 years; the mean followup duration was 3.2 years. Patients were evaluated using the Insalata shoulder rating questionnaire, range of motion (abduction), and time to maximum range of motion. For all groups, there were significant differences in the Insalata score and range of motion from preoperative to postoperative scores ($p \le 0.05$). In addition, there were significant between-group differences in the Insalata score at final followup, favoring surgery over

nonoperative treatment. The time to maximal range of motion was significantly different between the groups, with 6.8 months for the nonoperative and open RCR groups, and 3.2 months for the arthroscopic debridement group.

Steroid injection, stretching and strengthening vs. open RCR. Yamada et al.¹⁹⁷ conducted a retrospective cohort study comparing nonoperative treatment vs. open repair with acromioplasty. Patients in the nonoperative groups received a mixture of 1% lidocaine (4 mL) and dexamethasone sodium phosphate (2 mg) injected into the subacromial bursa once or twice per week, as well as heat treatments, passive stretching and strengthening exercises. Forty patients with massive tears enrolled in the study (14 received the nonoperative treatment, 26 received surgical repair). All patients were followed for a mean length of 4 years (12 months to 23 years). The JOA shoulder scale and strength score were used to evaluate patients. There was significant improvement in the JOA score for both the nonoperative treatment group (p=0.0012) and the operative group (p<0.0001). However, the difference in the JOA score between the groups at final followup was not significant (p>0.05). At study endpoint, muscle strength was greater in the operative group than the nonoperative group; however the statistical significance of this difference was not reported.

Separate meta-analyses were conducted for the two trials and three cohort studies comparing the effects of nonoperative treatment vs. surgical repair on functional outcome measures (Figure 31). The scales used to measure function included the ASES, ⁶⁶ CMS, ¹⁹⁶ Insalata, ¹⁶⁵ JOA, ¹⁹⁷ and the UCLA. ¹⁹⁵ Both of the trials significantly favoured repair over nonoperative treatments for functional outcomes. For the cohort studies, the pooled estimate of change in function shows no significant difference between groups, although the surgical repair is favored (SMD=-1.34; 95% CI, -2.95, 0.27). There was substantial heterogeneity between the three studies (p<0.0001, I²=92 percent), which may be attributed to differences in the nonoperative treatment components and the characteristics of the patients enrolled in each study.

	Non-oper	rative treat	ment		RCR		;	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
35.1.1 RCT/CCT									
De Carli	16	3	15	21	3	15	38.7%	-1.62 [-2.46, -0.78]	_ _
Moosmayer Subtotal (95% CI)	31	22.95	51 66	47.1	14.72	52 67	61.3% 100.0%	-0.83 [-1.23, -0.43] -1.14 [-1.89, -0.38]	-
Heterogeneity: Tau ² = Test for overall effect:	Z = 2.95 (P =	-	1 (P = 0.1	0), 1- =	04%				
35.1.2 Cohort Studies		0.4		40.5		-	04.00/		
Lunn 2008 Vad 2002	15.6 26.1	3.4 8.9	14 40	16.5 50.6	3.4 7.92	5 36		-0.25 [-1.28, 0.77] -2.87 [-3.52, -2.22]	- - -
Yamada 2000 Subtotal (95% CI)	17.86	14.63	14 68	27.12	9.13	26 67	34.1% 100.0%	-0.80 [-1.48, -0.13] -1.34 [-2.95, 0.27]	
Heterogeneity: Tau ² = Test for overall effect:	-		2 (P < 0.	00001)	; l ² = 92°	%			
									-2 -1 0 1 2
									Favours RCR Favours n-o treatr

Two cohort studies^{196,197} provided data for meta-analysis for the effects of nonoperative treatment vs. surgical repair on pain (Figure 32). The pain subscales of the CMS¹⁹⁶ and JOA¹⁹⁷ scales were used in this analysis. Baseline to followup change scores were compared between groups. The pooled analysis showed no statistically significant difference between the two

treatments for pain (SMD=0.81; 95% CI, -1.26 to 2.88). Heterogeneity between the studies was substantial (p=0.001, I^2 =90).

	Non-opera	Non-operative treatment			RCR		Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random	n, 95% CI
Lunn 2008	-4.6	1.4	14	-4.2	1.4	5	48.7%	-0.27 [-1.30, 0.75]		
Yamada 2000	-10.71	4.97	14	-17.88	3.06	26	51.3%	1.84 [1.06, 2.61]		
Total (95% CI)			28			31	100.0%	0.81 [-1.26, 2.88]		
Heterogeneity: Tau ² =			1 (P = 0.	001); l² =	= 90%				-2 -1 0	1 2
Test for overall effect:	Z = 0.77 (P =	0.44)						Favou	irs n-o treatment	avours RCR

Figure 32. Nonoperative treatment vs. RCR for pain

Author, year	Intervention (N participants enrolled) Study design	Age (yr), mean±SD (range) / Males, N (%) Other characteristics	Type of tear; size of tear Duration of symptoms (mo), mean±SD (range)
De Carli, ¹⁹⁵ 2006	G1: Shock wave therapy (NR)	G1: NR / NR	FTT; NR
	G2: Mini-open RCR (NR)	G2: NR / NR	
	RCT		NR
Lunn JV, ¹⁹⁶ 2008	G1: Steroid injection, PT & activity modification (14)	G1: 47.1 yr (30–66) / Males: 1 (7) G2: 46.2 yr (38–59) / Males: 3 (60)	FTT; NR
	G2: Open RCR (5)		4.3 yr (6 mo–10 yr)
	Prospective cohort		
Moosmayer S, ⁶⁶ 2010	G1: PT (51) G2: Open / mini-open repair (52)	G1: 61±7.6 yr / Males: 36 (71) G2: 59±7.5 yr / Males: 37 (71)	FTT; Sm, Med
	G3: Secondary surgery (9)§		G1: 9.8±9.8 mo; G2: 12.3±18.7 mo
	RCT		12.5±10.7 110
Vad VB, ¹⁶⁵ 2002	G1: PT & oral medication (28) G2: PT, oral medication & steroid injection	G1 & 2: 63.2 yr / NR G3: 59.4 yr / NR	FTT; Mass
	(12) G3 : Open RCR (36)	G4: 62.9 yr / NR	6.3 mo (1–17 mo)
	G4: Arthroscopic debridement (32)		
	Retrospective cohort		
Yamada N, ¹⁹⁷ 2000	G1: Steroid injection, stretching, strengthening (14)	G1: 70 yr (55–81) / Males: 9 (64) G2: 62 yr (47–82) / Males: 24 (92)	FTT; Mass
	G2 : Open RCR (26)		G1: 44 mo (12 mo–11 yr); G2: 13 mo (1 mo–4.5 yr)
	Retrospective cohort		

FTT = full-thickness tear; G = group; Mass = massive; Med = medium; mo = month; NR = not reported; PT = physical therapy; RCR = rotator cuff repair; RCT = randomized controlled trial; SD = standard deviation; Sm = small; yr = year

Author, year	Intervention (N analysed) Followup mean (range)	Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 1 vs. Group 2 p-value	
De Carli, ¹⁹⁵	G1: Shock wave therapy	ASES	47 / 70, p<0.05	50 / 87, p<0.05	p<0.05	
2006	(NR)	CMS	33 / 67, p<0.05	30 / 77, p<0.05	NR	
	G2: Mini-open RCR (NR)	UCLA	11 / 27, p<0.05	11 / 32, p<0.05	p<0.05	
	G1: 24 (12–36) mo G2: 19 (12–26) mo					
Lunn JV, 2008 ¹⁹⁶	G1: Steroid injection, PT & activity modification (14)	CMS*	53 (32–78.5) / 69.5 (44–95), p=0.009	51 (24.5–65) / 66.6 (37.5–87), p=0.009	p=0.61	
	G2: Open RCR (5) 4.2 yr (2–6.6)	ROM (degrees; affected,	NR	F: NR / 158, 176 (NR by group) ER: NR / 48, 58	NR	
	4.2 yi (2-0.0)	normal sides) Strength (kg; affected, normal sides)	NR	IR: NR/ T12, T7 ER: NR / 3.2, 6, p<0.0001 (NR by group)	NR	
		Cuff integrity n/N (%), MRI	3 / 5 (60)	NR	NA	
Moosmayer	G1: PT (51)	SF-36 (95%CI)	PCSS: 38.6 (36.2–41.1)	PCSS: 38.2 (36.6–39.9)	G1 vs. G2:	
S, ⁶⁶ 2010	G2: Open / mini-open	6 mo	47.3 (44.7–50.0)	47.9 (45.3–50.4)	PCSS: 0.84>p>0.10‡	
	repair (51)	12 mo	48.9 (46.0–51.7), p=NR	50.7 (47.8–53.6), p=NR	MCSS: 0.92>p>0.29‡	
	G3: Secondary surgery		MCSS: 57.3 (54.7–59.9)	MCSS: 54.1 (50.9–57.3)		
	(9)§	6 mo	57.6 (55.5–59.7)	57.5 (55.0–60.0)		
		12 mo	57.5 (55.4–59.5), p=NR	56.2 (53.7–58.8), p=NR	G2 vs. G3: NR	
	12 mo			G3: NR		
		ASES*(95%CI)	48.2 (44.1–52.2)	45.5 (41.5–49.6)	G1 vs. G2: p<0.0005‡	
		6 mo	75.8 (70.2–81.4)	84.5 (80.3–88.6)		
		12 mo	79.2 (72.7–85.5), p=NR	92.6 (88.6–96.6), p=NR		
				G3: 42.1 (30.1–54.2)	G2 vs. G3: NR	
				Pre-op : 48.9 (32.6–65.2)		
				6 mo: 75.4 (59.2–91.7) 12 mo: 88.9 (77.4–100.0), p=NI	R	

Table 35. Outcome data for studies assessing operative vs. nonoperative interventions

ABD = abduction; ASES = American Shoulder and Elbow scale; CI = confidence interval; CMS = Constant-Murley score; ER = external rotation; F = flexion; G = group; Insalata = L'Insalata Shoulder Rating Questionnaire; IR = internal rotation; JOA = Japanese orthopaedic association; kg = kilogram; MCSS = mental component summary score; mo = the standard s

month; MRI = magnetic resonance imaging; NR = not reported; PCSS = physical component summary score; PT = physical therapy; RCR = rotator cuff repair; ROM = range of motion; SD = standard deviation; SF-36 = Short Form-36; UCLA = University of California Los Angeles scale; yr = year;

- *Subscales reported
- [†]No group specification

Calculated by UAEPC

§ Subset of patients who underwent secondary surgery following failed PT

|| Score after failed PT, prior to surgery

"One case was unable to undergo MRI. Two subjects had inconclusive MRI assessment (not included in the result)

Author, year Intervention (N analysed) Followup mean (range)		Outcome	Group 1 Baseline mean±SD (range)/ Endpoint mean±SD (range)	Group 2 Baseline mean±SD (range)/ Endpoint mean±SD (range)) p-value	
			38.4 (34.4–42.4)	35.3 (31.6–39.0)	G1 vs. G2: p=0.002‡	
		6 mo	64.1 (58.5–69.7)	64.9 (60.2–69.7)		
		12 mo	66.8 (60.6–73.1), p=NR	76.8 (72.6–80.9), p=NR		
				G3: 36.2 (27.3–45.2)	G2 vs. G3: NR	
				Pre-op : 35.9 (26.9–44.9)		
				6 mo: 57.9 (43.8–72.0)		
				12 mo: 69.8 (55.1–84.4), p=NR		
		Cuff integrity	NR	38 / 50 (76) ¶	G1 vs. G2: NR	
		n/N (%), MRI 12 mo		8 / 9 (89)	G2 vs. G3: p=0.67‡	
Vad VB, 2002 ¹⁶⁵	G1 & G2: PT & oral	Insalata	G1 & G2: 44.4±1.7 / 70.5±1.4,	G3: 33±1.2 / 83.6±1.4, p≤0.05	p<0.01‡	
	medication (± steroid injection) (40)		p≤0.05	G4: 42.3±1.4 / 81.4±1.3, p≤0.05	p<0.01‡	
	G3: Open RCR (36)	ROM (degrees)	G1 & G2: ABD: 68 / 108,	G3: ABD: 72 / 116, p≤0.05	NR	
	G4: Arthroscopic		p≤0.05	G4: ABD: 74 / 110, p≤0.05		
	debridement (32)	Time to maximal	G1 & G2: 6.8 mo (2–16)	G3: 6.8 mo (4–16)	NR	
	3.2 yr (2–7)	ROM		G4: 3.2 mo (1–8)		
Yamada N, 2000 ¹⁹⁷	G1: Steroid injection, stretching, strengthening	JOA*	53.2 (40–65) / 71.1 (48–88), p=0.0012	58.8 (43–73) / 85.9 (67–100), p<0.0001	p>0.05	
	(14)	Strength score	ABD & ER: NR / 4- (n=3)	ABD & ER: NR / 5- (n=9)	NR	
	G2: Open RCR & acromioplasty (26)	(Manual muscle test)				
	4 yr (12 mo–23 yr)					

Table 35. Outcome data for studies as	sessing operative vs	nononerative interventions	(continued)
Table 33. Outcome data for studies as	bacaaling operative va.		continueu)

Technique	Number of studies; subjects (analyzed)*	Outcome		Strength of evidence				
			Risk of bias	Consistency	Directness	Precision	Confounding	
Shock wave therapy	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
	1; 30	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Steroid injection, PT,	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
and activity modification vs.	1; 19	Function	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
PT vs. open or mini- open RCR	1; 102	HRQL	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	1; 102	Function	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	1; 50	Cuff integrity	RCT Medium	Unknown	Direct	Imprecise	Absent	Low
	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
PT, oral medication,	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
and steroid injection vs.	1; 108	Function	Cohort Medium	Unknown	Direct	Imprecise	Absent	Low
arthroscopic	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
debridement vs. open RCR	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient
Passive stretching,	0	HRQL	n/a	n/a	n/a	n/a	n/a	Insufficient
strengthening, and corticosteroid	1; 40	Function	Cohort Medium	Unknown	Direct	Imprecise	Present	Low
injection vs. open	0	Cuff integrity	n/a	n/a	n/a	n/a	n/a	Insufficient
RCR with acromioplasty	0	Time to return to work	n/a	n/a	n/a	n/a	n/a	Insufficient

Table 36. Strength of evidence for nonoperative vs. operative treatment

HRQL = health-related quality of life; n/a = not applicable; PT = physical therapy; RCR = rotator cuff repair *Number analyzed if different from number studied

Question 5. Complications

Summary. Overall, 85 of the 137 studies included in this review reported data on complications across all interventions. Sixty-four studies reported at least one event of the 34 different complications identified, while 21 studies reported no complications and 52 studies did not report any data on complications. In general, the rates of complications were low and the majority of complications were not deemed to be clinically important or were reported only in a few studies. Throughout, "rate" refers to the number of patients experiencing complications during the study period. Study lengths vary, so no standardized time period is used. A priori, we identified the following complications to be the most clinically important:

- Retears: This complication was reported in 14 studies. Among the 9 studies examining operative approaches, the rates of retear were generally low (≤ 0.10). One retrospective cohort study¹¹³ investigating operative augmentation using McLaughlin procedure vs. patch graft found retear rates of 0 vs. 0.18. Three studies examining postoperative rehabilitation reported low rates (≤ 0.14). In addition, retears due to technical failures were reported in 16 studies. In 12 studies investigating operative approaches, the reported rates of technical failure were low (≤ 0.07). Rates for technical failure for a variety of operative techniques ranged from 0 to 0.33, and for one operative augmentation study⁶⁷ the rate was 0.03.
- Infection: 32 studies reported data on infection. Among 25 studies that examined operative approaches, the rate of infection was low with the majority of studies reporting no infections. Studies of operative techniques and augmentations generally reported low rates of infection (≤0.05). Three studies examining postoperative rehabilitation reported low rates of infection, except in one study¹⁷⁹ for a progressive rehabilitation program reporting a rate of 0.29.
- Stiffness: 24 studies provided data on stiffness following treatment. The rates were low (≤ 0.08) among 20 studies examining operative approaches. Higher rates of postoperative stiffness were observed for mini-open RCRs with two of the six studies reporting rates of 0.14^{157} and 0.17.¹⁷¹ Likewise, two of the 10 studies examining arthroscopic RCR reported rates of 0.08^{80} and 0.11.¹⁷¹ One study⁸¹ examining a single vs. double-row operative technique and one¹⁰⁹ on augmentation both reported low rates of postoperative stiffness, with 0.06 and 0, respectively. Similarly, two nonoperative studies reported low rates of 0.04^{190} and 0.07.¹⁸⁶
- Reflex sympathetic dystrophy: In general the rates of reflex sympathetic dystrophy were low (≤0.02) across the seven studies examining operative approaches; however, higher rates were observed in a BA study¹²² of arthroscopic RCR (0.12) and a retrospective cohort study⁶³ of arthroscopic debridement with tenotomy (0.13). One study¹⁸⁰ evaluating postoperative rehabilitation reported one case of reflex sympathetic dystrophy among the 15 patients studied.
- Neurological injury: The rates of postoperative neurological injury were low (≤0.06) in 12 studies examining operative approaches, techniques or augmentations.

Results by complication. Of the 137 studies included in this review, 85 studies reported on 34 different complications for nonoperative and operative interventions (see tables below); 52 studies (eight trials, ^{71,102,105,133,143,178,185,195} five prospective cohort studies, ^{72,85,148,177,196} nine retrospective cohort studies, ^{87,106,125,154,165,172,181,183,197} 18 BA studies, ^{60,69,79,89,90,100,104,115,116,123,142,160,166,168,175,187,192,193} eleven cohort studies providing BA data. ^{62,86,126,128,135,141,144,149,150,188,191} and one case-control study¹⁶⁴) did not report any data on

majority of complications were reported for operative studies; only two studies^{186,190} reported complications associated with nonoperative treatments, one study reported complications with nonoperative vs. operative treatments,⁶⁶ while four postoperative rehabilitation studies^{179,180,182,184} reported complications. Complication rates for studies focusing on postoperative rehabilitation may be attributable to either the preceding surgery or the rehabilitation components.

Twenty-one studies (seven trials,^{78,96-98,163,176,194} one prospective cohort,¹⁵⁹ two retrospective cohorts,^{132,138} and 11 BA studies^{84,91,95,99,111,121,131,158,162,174,189}) reported that no complications occurred during the course of the study (Table 60). The remaining 63 studies reported at least one event in the course of a nonoperative, operative, or postoperative rehabilitation treatment. Of these 63, twelve were trials: seven^{73,81,109,114,117,136,137} that compared operative interventions, four^{179,180,182,184} that compared postoperative rehabilitation, and one that compared nonoperative and operative interventions.⁶⁶ Twenty-one studies used a cohort design, ^{63,64,68,75,77,88,94,112,113,118,119,129,134,139,140,147,157,167,170,171,173} all of which compared operative interventions. Thirty-one studies used a BA design: 29 studies,^{65,67,70,74,76,80,82,83,92,93,101,103,107,108,110,120,122,124,127,130,145,146,151-153,155,156,161,169} examined

operative interventions and two^{186,190} examined nonoperative interventions. No BA studies provided data on complications for postoperative rehabilitation.

Retears. Fourteen studies (Table 37) reported postoperative retears (three trials, ^{179,182,184} five cohort studies, ^{77,112,113,157,173} six uncontrolled studies ^{70,83,127,151-153}). These studies used clinical evaluation or imaging to identify the presence of retears in patients who were unsatisfied with their postoperative outcome. It should be noted that not all retears are symptomatic (e.g., associated with pain, stiffness, reduced function), theref ore some retears may have been undetected in patients who were satisfied with their clinical outcome. Studies which systematically examined all patients using imaging to investigate what proportion had an intact cuff are reported under the key outcome "tendon integrity" above. Overall, the rates of retears from 10 studies that examined operative approach were consistent and rates ranged from 0 to 0.10. Rates of retears for McLaughlin procedure, patch graft¹¹³ and platelet-rich plasma augmentation¹⁵² with arthroscopic repair were 0, 0.18, and 0.07, respectively. Studies examining physical therapy alone^{182,184} and physical therapy with continuous passive motion¹⁸⁴ reported rates ranging from 0 to 0.05, while one study¹⁷⁹ reported a rate of 0.14 for a traditional postoperative rehabilitation program and no events for a progressive rehabilitation program.

Intervention	Author, year Category Design	Patients evaluation; Evaluation criteria (imaging/ clinical)	Events	Sample size	Rate (95% CI)
Operative					
Open RCR	Cofield 2001 ⁸³ Operative approach BA	Unsatisfied; Clinical	3‡	105	0.03 (0.01–0.08)
	Prasad 2005 ¹⁵¹ Operative approach BA	Unsatisfied; Clinical	1	40	0.03 (0.004–0.13)
	Rokito 1999 ¹⁵³ Operative approach BA	Unsatisfied; Clinical	3	30	0.1 (0.03–0.26)
Mini-open RCR	Severud 2003 ¹⁵⁷ Operative approach Retrospective cohort	Unsatisfied; Clinical	1	29	0.03 (0.01–0.17)
	Youm 2005 ¹⁷³ Operative approach Retrospective cohort	Unsatisfied; Clinical	3	42	0.07 (0.02–0.19)
Arthroscopic RCR	Bennett 2003 ⁷⁰ Operative approach BA	Unsatisfied; Clinical	1	24	0.04 (0.01–0.20)
	Buess 2005 ⁷⁷ Operative approach Prospective cohort	Unsatisfied; Clinical	2§	66	0.03 (0.008–0.10)
	Ide 2005 ¹¹² Operative approach Prospective cohort	Unsatisfied; MRI	1	50	0.02 (0.003–0.10)
	Severud 2003 ¹⁵⁷ Operative approach Retrospective cohort	Unsatisfied; Clinical	0	35	0 (0.00–0.07)
	Youm 2005 ¹⁷³ Operative approach Retrospective cohort	Unsatisfied; Clinical	1	42	0.02 (0.004–0.12)
Open or mini-open RCR	Buess 2005 ⁷⁷ Operative approach Prospective cohort	Unsatisfied; Clinical	0	30	0 (0.00–0.08)
Stabilization of LHB & open RCR	Maier 2007 ¹²⁷ Operative approach BA	Unsatisfied; Clinical	2	21	0.10 (0.03–0.29)
McLaughlin procedure RCR	Ito 2003 ¹¹³ Operative augmentation Retrospective cohort	Unsatisfied; Clinical	0	13	0 (0.00–0.17)
Patch graft RCR	Ito 2003 ¹¹³ Operative augmentation Retrospective cohort	Unsatisfied; Clinical	3	17	0.18 (0.06–0.41)
Arthroscopic RCR & platelet- rich plasma augmentation	Randelli 2008 ¹⁵² Operative augmentation BA	Unsatisfied; Clinical	1*	14	0.07 (0.01–0.3)

BA = before-and-after; CI = confidence interval; LHB = long head of biceps; MRI = magnetic resonance imaging; PT = physical therapy; RCR = rotator cuff repair; RCT = randomized controlled trial

*Re-tear due to injury. Patient unavailable for last followup and sample size represents the number of patients enrolled.

† No group specified.

‡Retear due to injury (2) and aggressive PT (1)

§ One patient experienced retear and stiffness

Table 37. Re-tear (continued)

Intervention	Author, year Category Design	Patients evaluation; Evaluation criteria (imaging/ clinical)	Events	Sample size	Rate (95% CI)
Postoperative Rehabilitation					
PT alone	Michael 2005 ¹⁸² Post-operative rehabilitation RCT	Unsatisfied; Clinical	1	21	0.05 (0.01–0.23)
Continuous passive motion & PT	Michael 2005 ¹⁸² Post-operative rehabilitation RCT	Unsatisfied; Clinical	0	34	0 (0.00–0.07)
Continuous passive motion & PT program vs. PT alone	Raab 1996 ¹⁸⁴ Post-operative rehabilitation RCT	Unsatisfied; Clinical	1†	26	0.04 (0.007–0.19)
Progressive group	Klintberg 2009 ¹⁷⁹ Post-operative rehabilitation RCT	Unsatisfied; Clinical	0	7	0 (0.00–0.28)
Traditional group	Klintberg 2009 ¹⁷⁹ Post-operative rehabilitation RCT	Unsatisfied; Clinical	1	7	0.14 (0.03–0.51)

BA = before-and-after; CI = confidence interval; LHB = long head of biceps; MRI = magnetic resonance imaging; PT = physical therapy; RCR = rotator cuff repair; RCT = randomized controlled trial

*Re-tear due to injury. Patient unavailable for last followup and sample size represents the number of patients enrolled.

† No group specified.

‡Retear due to injury (2) and aggressive PT (1)

§ One patient experienced retear and stiffness

Technical failure. Sixteen studies reported failure of anchors or other surgical constructs (seven cohort studies^{88,112,118,134,147,157,167} and nine uncontrolled studies^{67,74,82,92,110,122,146,161,169}) (Table 38). Overall, the rates of technical failure from twelve studies that examined operative approach ranged from 0 to 0.07, with only one study⁸² reporting a rate higher than 0.05. Rates for technical failure in 4 studies for a variety of operative techniques were provided and ranged from 0 to 0.33. One operative augmentation study had a rate of 0.03.

Table 38. Technical failure

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR	Ide 2005 ¹¹² Operative approach Prospective cohort	0	50	0 (0.00–0.05)
	Millar NL, 2009 ¹³⁴ Operative approach/technique Retrospective cohort	0	20	0 (0.00–0.12)
Mini-open RCR	Severud 2003 ¹⁵⁷ Operative approach Retrospective cohort	0	29	0 (0.00–0.09)
	Verma 2006 ¹⁶⁷ Operative approach Retrospective cohort	0	33	0 (0.00–0.08)

BA = before-and-after; CI = confidence interval; RCR = rotator cuff repair

*No group specification

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Arthroscopic RCR	Boileau 2005 ⁷⁴	0	65	0
	Operative approach			(0.00-0.04)
	BA			
	Deutsch 2008 ⁹²	2	39	0.05
	Operative approach			(0.01–0.17)
	Cohort – BA data			
	Ide 2007 ¹¹⁰	0	20	0
	Operative approach			(0.00–0.12)
	BA			
	Ide 2005 ¹¹²	0	50	0
	Operative approach			(0.00–0.05)
	Prospective cohort			
	Lafosse 2007 ¹²²	0	17	0
	Operative approach			(0.00–0.14)
	BA			
	Park 2004 ¹⁴⁶	0	42	0
	Operative approach			(0.00–0.06)
	Cohort – BA data			
	Severud 2003 ¹⁵⁷	0	35	0
	Operative approach			(0.00-0.07)
	Retrospective cohort			
	Tauro 2004 ¹⁶¹	1	42	0.02
	Operative approach			(0.004-0.12)
	BA			
	Verma 2006 ¹⁶⁷	1	38	0.03
	Operative approach			(0.005-0.13)
	Retrospective cohort			
	Waibl 2005 ¹⁶⁹	1	22	0.05
	Operative approach			(0.008-0.22)
	BA			· · · · ·
Arthroscopic RCR & biceps tenodesis	Checchia 2005 ⁸²	1	15	0.07
	Operative approach			(0.01–0.30)
	BA			,
Single-row fixation	Park 2008 ¹⁴⁷	1	40	0.03
5	Operative technique			(0.004–0.13)
	Prospective cohort			(, , , , , , , , , , , , , , , , , , ,
Double-row fixation	Park 2008 ¹⁴⁷	1	38	0.03
	Operative technique			(0.005-0.13)
	Prospective cohort			(, , , , , , , , , , , , , , , , , , ,
Simple stitch	Ko 2008 ¹¹⁸	9	39	0.23
	Operative technique	-		(0.005–0.13)
	Prospective cohort			. ,
Modified mattress locking stitch	Ko 2008118	6	36	0.17
	Operative technique	-		(0.08–0.32)
	Prospective cohort			()
Mitek metal suture anchor (open RCR)	Cummins 2003 ⁸⁸	0	18	0
	Operative technique	U U		(0.00–0.13)
	Prospective cohort			(
Headed bio-corkscrews (open RCR)	Cummins 2003 ⁸⁸	3	9	0.33
	Operative technique			(0.12–0.65)
	Prospective cohort			. ,
Arthroscopic knotted	Millar NL, 2009 ¹³⁴	1	29	0.03
	Operative approach/technique			(0.006–0.17)
	Retrospective cohort			

Table 38. Technical failure (continued)

Table 38	. Technical	failure	(continued)
----------	-------------	---------	-------------

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Arthroscopic knotless	Millar NL, 2009 ¹³⁴ Operative approach/technique Retrospective cohort	0	38	0 (0.00–0.07)
Mattress suture vs. transosseus suture (arthroscopic RCR)	Matis 2006 ¹²⁹ Operative technique Prospective cohort	1*	90	0.01 (0.002–0.06)
Open RCR & augmentation	Audenaert 2006 ⁶⁷ Operative augmentation BA	1	39	0.03 (0.005–0.13)

Infection. Thirty-two studies reported data on infection (five trials, ^{73,136,179,180,182} eleven cohort studies, ^{63,68,75,77,88,94,112,113,119,147,157} and 16 uncontrolled studies ^{65,74,80,82,83,101,103,108,110,122,124,130,145,146,155,161}) (Table 39). Overall, the rates of infection from

studies^{65,74,80,82,83,101,103,108,110,122,124,130,145,146,155,161}) (Table 39). Overall, the rates of infection from 25 studies that examined operative approach ranged from 0 to 0.06 with many studies reporting no infections. Rates of infection for various operative techniques and augmentations were provided and ranged from 0 to 0.05. Three RCTs^{179,180,182} investigating postoperative rehabilitation provided data on infection rates but the events are likely related to surgery and may not necessarily be attributed to the rehabilitation program.

Table 39. Infection

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR	Baker 1995 ⁶⁸	1	20	0.05
	Operative approach			(0.01–0.24)
	Retrospective cohort			. ,
	Cofield 2001 ⁸³	2	105	0.02
	Operative approach			(0.005-0.07)
	BĂ			· · · · ·
	Gazielly 1994 ¹⁰³	0	100	0
	Operative approach			(0.00-0.03)
	BĂ			· · · · ·
	Hsu 2007 ¹⁰⁸	0	47	0
	Operative approach			(0.00-0.05)
	BA			
	Ide 2005 ¹¹²	0	50	0
	Operative approach			(0.00-0.05)
	Prospective cohort			
	Mohtadi 2008 ¹³⁶	0	29	0
	Operative approach			(0.00-0.09)
	RCT			. ,
	Pai 2001 ¹⁴⁵	2	58	0.03
	Operative approach			(0.01–0.10)
	BA			. ,
Mini-open RCR	Baker 1995 ⁶⁸	1	17	0.06
	Operative approach			(0.01–0.27)
	Retrospective cohort			. ,
	Kose 2008 ¹¹⁹	1	25	0.04
	Operative approach			(0.007-0.20)
	Retrospective cohort			. ,

BA = before-and-after; CI = confidence interval; LHB = long head of biceps; PT = physical therapy; RCR = rotator cuff repair; RCT = randomized controlled trial

*Sample size represents the number of participants enrolled in the study because the patient with the complication was excluded from the analysis.

*No group specification

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Mini-open RCR (continued)	Mohtadi 2008 ¹³⁶ Operative approach	0	31	0 (0.00–0.08)
	RCT Severud 2003 ¹⁵⁷	0	29	0
	Operative approach Retrospective cohort			(0.00–0.09)
Arthroscopic RCR	Boileau 2005 ⁷⁴	0	65	0
·	Operative approach BA			(0.00–0.04)
	Buess 2005 ⁷⁷	0	66	0
	Operative approach	Ũ	00	(0.00–0.04)
	Prospective cohort			(,
	Charousset 2008 ⁸⁰	0	104	0
	Operative approach BA			(0.00–0.03)
	Ide 2007 ¹¹⁰	0	20	0
	Operative approach BA	J. J	20	(0.00–0.12)
	Ide 2005 ¹¹²	0	50	0
	Operative approach	U	50	(0.00–0.05)
	Prospective cohort			(0.00 0.00)
	Kose 2008 ¹¹⁹	0	25	0
	Operative approach	č	_0	(0.00–0.10)
	Retrospective cohort			(
	Lafosse 2007 ¹²²	0	17	0
	Operative approach BA			(0.00–0.14)
	Lichtenberg 2006 ¹²⁴	0	53	0
	Operative approach BA			(0.00–0.05)
	McBirnie 2005 ¹³⁰	1	53	0.02
	Operative approach BA	·		(0.003–0.10)
	Severud 2003 ¹⁵⁷	0	35	0
	Operative approach	U	55	(0.005–0.15)
	Retrospective cohort			0.00-0.10
Arthroscopic RCR (continued)	Park 2004 ¹⁴⁶	0	42	0
······································	Operative approach	-		(0.00–0.06)
	Cohort – BA data			,)
	Tauro 2004 ¹⁶¹	1	42	0.02
	Operative approach BA			(0.004–0.12)
Open or mini-open RCR	Buess 2005 ⁷⁷	1	30	0.03
	Operative approach			(0.006-0.17)
	Prospective cohort			
Arthroscopic RCR & biceps tenodesis	Checchia 2005 ⁸²	0	15	0
	Operative approach BA			(0.00–0.15)
Open debridement & acromioplasty	Gartsman 1997 ¹⁰¹	1	33	0.03
,,	Operative approach BA			(0.005–0.15)
Arthroscopic debridement	Klinger 2005 ⁶⁵	0	33	0
	Operative approach	č	50	(0.00-0.08)
	BA			(0.00)

Table 39. Infection (continued)

Table 39. Infection (continued)

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Arthroscopic debridement with tenotomy	Klinger 2005 ⁶³	0	24	0
	Operative approach			(0.00–0.10)
	Retrospective cohort			
Arthroscopic debridement without	Klinger 2005 ⁶³	0	17	0
tenotomy	Operative approach			(0.00-0.14)
	Retrospective cohort			(<i>'</i>
Biceps tenotomy vs. tenodesis	Boileau 2007 ⁷⁵	1†	72	0.01
	Operative approach	•		(0.002-0.07)
	Retrospective cohort			
Watertight anatomical repair	Favard 2009 ⁹⁴	2	103	0.02
	Operative approach			(0.005-0.07)
	Retrospective cohort			
Palliative treatment (partial repair or LHB	Favard 2009 ⁹⁴	1	89	0.01
tenotomy)	Operative approach			(0.002-0.06)
••	Retrospective cohort			. ,
Double-row fixation	Park 2008 ¹⁴⁷	0	38	0
	Operative technique			(0.00-0.07)
	Prospective cohort			· · · ·
Single-row fixation	Park 2008 ¹⁴⁷	2	40	0.05
	Operative technique			(0.01–0.17)
	Prospective cohort			· · · ·
Mason-Allen technique with non-	Boehm 2005 ⁷³	2	49	0.04
absorbable sutures	Operative technique			(0.01–0.14)
	RCT			· · · · ·
Kessler technique with absorbable	Boehm 2005 ⁷³	1	44	0.02
sutures	Operative technique			(0.004-0.12)
	RCT			
Open RCR & augmentation	Scheibel 2007 ¹⁵⁵	1	23*	0.04
	Operative augmentation			(0.008-0.21)
	BÁ			
	110			
McLaughlin procedure RCR	Ito 2003 ¹¹³	0	17	0
	Operative augmentation			(0.00–0.14)
	Retrospective cohort			
Patch graft RCR	Ito 2003 ¹¹³	0	13	0
	Operative augmentation			(0.00–0.17)
	Retrospective cohort			
Postoperative Rehabilitation	<u></u>			
Continuous passive motion & PT	LaStayo 1998 ¹⁸⁰	1	17	0.06
program	Post-operative rehabilitation			(0.01–0.27)
	RCT			
	Michael 2005 ¹⁸²	2	34	0.06
	Post-operative rehabilitation			(0.02–0.19)
	RCT			
PT alone	LaStayo 1998 ¹⁸⁰	0	15	0
	Post-operative rehabilitation			(0.00–0.15)
	RCT			
	Michael 2005 ¹⁸²	1	21	0.05
	Post-operative rehabilitation			(0.01–0.23)
	RCT			
Progressive group	Klintberg, 2009 ¹⁷⁹	2	7	0.29
	Post-operative rehabilitation			(0.08–0.64)
	RCT			
Traditional group	Klintberg, 2009 ¹⁷⁹	0	7	0
	Post-operative rehabilitation			(0.00–0.28)
	RCT			

Stiffness. Twenty-four studies provided data on stiffness following treatment (four trials, ^{81,109,136,137} seven cohort studies, ^{77,94,112,157,167,171,173} three cohort studies with BA data, ^{92,107,146} and ten BA studies^{65,74,76,80,110,124,145,151,186,190} (Table 40). Overall, the rates of postoperative stiffness from 21 studies that examined operative approach ranged from 0 to 0.17 with six studies reporting no events. ^{109,110,112,124,136,146} Rates for operative techniques and nonoperative treatment ranged from 0 to 0.6 and 0.04 to 0.07, respectively. One study¹⁰⁹ examining operative augmentation reported no events.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Dpen RCR	lannotti 2006 ¹⁰⁹ Operative augmentation RCT	0	15	0 (0.00–0.15)
	Ide 2005 ¹¹² Operative approach Prospective cohort	0	50	0 (0.00–0.05)
	Mohtadi 2008 ¹³⁶ Operative approach RCT	0	29	0 (0.00–0.09)
	Montgomery 1994 ¹³⁷ Operative approach CCT	1	50	0.02 (0.004–0.11)
	Pai 2001 ¹⁴⁵ Operative approach BA	1	58	0.02 (0.003–0.09)
	Prasad 2005 ¹⁵¹ Operative approach BA	1	40	0.03 (0.004–0.13)
Mini-open RCR	Boszotta 2004 ⁷⁶ Operative approach BA	1	84	0.01 (0.002–0.06)
	Mohtadi 2008 ¹³⁶ Operative approach RCT	0	31	0 (0.00–0.08)
	Severud 2003 ¹⁵⁷ Operative approach Retrospective cohort	4	29	0.14 (0.06–0.31)
	Verma 2006 ¹⁶⁷ Operative approach Retrospective cohort	0	33	0 (0.00–0.08)
	Warner 2005 ^{1/1} Operative approach Retrospective cohort	2	12	0.17 (0.05–0.45)
	Youm 2005 ¹⁷³ Operative approach Retrospective cohort	0	42	0 (0.00–0.06)
Open or mini-open RCR	Buess 2005 ⁷⁷ Operative approach Prospective cohort	1	30	0.03 (0.006–0.17)
Arthroscopic RCR	Boileau 2005 ⁷⁴ Operative approach BA	1	65	0.02 (0.003–0.08)
	Buess 2005 ⁷⁷ Operative approach Prospective cohort	4*	66	0.06 (0.02–0.15)

Table 40. Stiffness

BA = before-and-after; CCT = controlled clinical trial; CI = confidence interval; LHB = long head of biceps; NSAID = non-

steroidal anti-inflammatory drug; RCR = rotator cuff repair; RCT = randomized controlled trial

*One patient experienced stiffness and retear

Table 40. Stiffness (continued)

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative	Design			
Arthroscopic RCR (continued)	Charousset 2008 ⁸⁰	8	104	0.08
	Operative approach	Ũ		(0.04–0.14)
	BA			(0.01 0.11)
	Deutsch 2008 ⁹²	1	39	0.03
	Operative approach	•	00	(0.005–0.13)
	Cohort – BA data			(0.000 0.10)
	Ide 2007 ¹¹⁰	0	20	0
	Operative approach	Ŭ	20	(0.00–0.12)
	BA			(0.00 0)
	Ide 2005 ¹¹²	0	50	0
	Operative approach	Ū,		(0.00–0.05)
	Prospective cohort			()
	Lichtenberg 2006 ¹²⁴	0	53	0
	Operative approach	· ·	00	(0.00–0.05)
	BA			()
	Park 2004 ¹⁴⁶	0	42	0
	Operative approach	-		(0.00–0.06)
	Cohort – BA data			()
	Severud 2003 ¹⁵⁷	0	35	0
	Operative approach			(0.00-0.07)
	Retrospective cohort			(,
	Verma 2006 ¹⁶⁷	1	38	0.03
	Operative approach			(0.005–0.13)
	Retrospective cohort			· · · · · · · · · · · · · · · · · · ·
	Warner 2005 ¹⁷¹	1	9	0.11
	Operative approach			(0.02-0.44)
	Retrospective cohort			
	Youm 2005 ¹⁷³	2	42	0.05
	Operative approach			(0.1–0.16)
	Retrospective cohort			
Combination approach	Henn 2008 ¹⁰⁷	2	125	0.02
	Operative approach			(0.004-0.06)
	Cohort – BA data			
Arthroscopic debridement	Klinger 2005 ⁶⁵	1	33	0.03
	Operative approach			(0.005–0.15)
	BA			
	Montgomery 1994 ¹³⁷	1	38	0.03
	Operative approach			(0.005–0.13)
	ССТ			
Watertight anatomical repair	Favard 2009 ⁹⁴	7	103	0.07
	Operative approach			(0.03–0.13)
	Retrospective cohort			
Palliative treatment (partial repair or LHB	Favard 2009 ⁹⁴	1	89	0.01
tenotomy)	Operative approach			(0.002–0.06)
	Retrospective cohort			
Single-row arthroscopic RCR	Charousset 2007 ⁸¹	2	33	0.06
	Operative technique			(0.02–0.20)
	RCT			
Double-row arthroscopic RCR	Charousset 2007 ⁸¹	0	28	0
	Operative technique			(0.00–0.09)
	RCT			
Open DCD & persing suggestation	lannotti 2006 ¹⁰⁹		4 5	0
Open RCR & porcine augmentation		0	15	0
	Operative augmentation			(0.00–0.15)
	RCT			

Table 40. Stiffness (continued)

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Nonoperative				
Nonoperative treatment (analgesic, NSAID, steroid injection, reeducation program)	Koubaa 2006 ¹⁹⁰ Nonoperative BA	1	24	0.04 (0.007–0.20)
	Ghroubi 2008 ¹⁸⁶ Nonoperative BA	4	59	0.07 (0.03–0.16)

Reflex sympathetic dystrophy. Eight studies (one trial,¹⁸⁰ two cohort studies,^{63,75} and five uncontrolled studies^{103,108,122,130,145}) provided data on reflex sympathetic dystrophy (Table 41). Overall, the rates of dystrophy from seven studies that examined operative approach ranged from 0 to 0.13. One study¹⁸⁰ compared physical therapy alone with continuous passive motion and physical therapy and reported rates of 0.7 and 0, respectively.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR	Hsu 2007 ¹⁰⁸ Operative approach BA	1	47	0.02 (0.004–0.11)
	Gazielly 1994 ¹⁰³ Operative approach BA	2	100	0.02 (0.006–0.07)
	Pai 2001 ¹⁴⁵ Operative approach BA	1	58	0.02 (0.003–0.09)
Arthroscopic RCR	Lafosse 2007 ¹²² Operative approach BA	2	17	0.12 (0.03–0.34)
	McBirnie 2005 ¹³⁰ Operative approach BA	1	53	0.02 (0.003–0.10)
Arthroscopic debridement & tenotomy	Klinger 2005 ⁶³ Operative approach Retrospective cohort	3	24	0.13 (0.04–0.31)
Arthroscopic debridement without tenotomy	Klinger 2005 ⁶³ Operative approach Retrospective cohort	0	17	0 (0.00–0.14)
Biceps tenotomy vs. tenodesis	Boileau 2007 ⁷⁵ Operative approach Retrospective cohort	1†	72	0.01 (0.002–0.07)
Postoperative Rehabilitation				
Continuous passive motion & PT program	LaStayo 1998 ¹⁸⁰ Post-operative rehabilitation RCT	0	17	0 (0.00–0.14)
PT alone	LaStayo 1998 ¹⁸⁰ Post-operative rehabilitation RCT	1	15	0.07 (0.01–0.30)

Table 41. Reflex sympathetic dystrophy

BA = before-and-after; CI = confidence interval; PT = physical therapy; RCR = rotator cuff repair; RCT = randomized controlled trial

[†]No group specification

Neurologic injury. Twelve studies (Table 42) (three trials,^{109,114,137} two cohort studies,^{112,113} and seven uncontrolled studies^{65,74,103,108,110,145,161} provided data on neurologic injury. Overall, the rates of injury from 10 studies that examined operative approach were consistent and ranged from 0 to 0.06. Two studies examining operative augmentation reported no events.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR	Gazielly 1994 ¹⁰³ Operative approach BA	2	100	0.02 (0.006–0.07)
	Hsu 2007 ¹⁰⁸ Operative approach BA	0	47	0 (0.00–0.05)
	lannotti 2006 ¹⁰⁹ Operative augmentation RCT	0	15	0 (0.00–0.15)
	Ide 2005 ¹¹² Operative approach Prospective cohort	3	50	0.06 (0.02–0.16)
	Montgomery 1994 ¹³⁷ Operative approach CCT	1	50	0.02 (0.004–0.11)
	Pai 2001 ¹⁴⁵ Operative approach BA	2	58	0.03 (0.01–0.12)
Mini-open RCR	Kim 2003 ¹¹⁴ Operative approach CCT	0	34	0 (0.00–0.07)
Arthroscopic RCR	Boileau 2005 ⁷⁴ Operative approach BA	0	65	0 (0.00–0.04)
	Ide 2007 ¹¹⁰ Operative approach BA	1	20	0.05 (0.01–0.24)
	Ide 2005 ¹¹² Operative approach Prospective cohort	0	50	0 (0.00–0.05)
	Kim 2003 ¹¹⁴ Operative approach CCT	0	42	0 (0.00–0.06)
	Tauro 2004 ¹⁶¹ Operative approach BA	0	42	0 (0.00–0.06)
Arthroscopic debridement	Klinger 2005 ⁶⁵ Operative approach BA	0	33	0 (0.00–0.08)
	Montgomery 1994 ¹³⁷ Operative approach CCT	0	38	0 (0.00–0.07)
Arthroscopic debridement with tenotomy	Klinger 2005 ⁶³ Operative approach Retrospective cohort	0	24	0 (0.00–0.10)
Arthroscopic debridement without tenotomy	Klinger 2005 ⁶³ Operative approach Retrospective cohort	0	17	0 (0.00–0.14)

Table 42. Neurological injury

BA = before-and-after; CCT = controlled clinical trial; CI = confidence interval; RCR = rotator cuff repair; RCT = randomized controlled trial

Table 42. Neurological injury (continued)

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR & porcine augmentation	lannotti 2006 ¹⁰⁹ Operative augmentation RCT	0	15	0 (0.00–0.15)
McLaughlin procedure RCR	Ito 2003 ¹¹³ Operative technique Retrospective cohort	0	17	0 (0.00–0.14)
Patch graft RCR	Ito 2003 ¹¹³ Operative technique Retrospective cohort	0	13	0 (0.00–0.17)

Reoperation—**NOS.** Nine studies provided data on the need for reoperation (three trials, 114,136,137 four cohort studies, 75,88,134,140 and two uncontrolled studies 83,108) (Table 43). Overall, the rates of reoperation from eight studies that examined operative approach ranged from 0 to 0.24. Rates of reoperation for a variety of operative techniques were provided and ranged from 0.06 to 0.18.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR	Cofield 2001 ⁸³ Operative approach BA	5 (hypertrophic bursal scar excision (2); glenohumeral arthritis (1); impaired healing due to renal failure (1); unknown (1)	105	0.05 (0.02–0.11)
	Hsu 2007 ¹⁰⁸ Operative approach BA	0	47	0 (0.00–0.05)
	Mohtadi 2008 ¹³⁶ Operative approach RCT	0	29	0 (0.00–0.09)
	Millar NL, 2009 ¹³⁴ Operative approach/technique Retrospective cohort	4†	20	0.2 (0.08–0.42)
	Montgomery 1994 ¹³⁷ Operative approach CCT	4	50	0.08 (0.03–0.19)
Mini-open RCR	Kim 2003 ¹¹⁴ Operative approach CCT	0	34	0 (0.00–0.07)
	Mohtadi 2008 ¹³⁶ Operative approach RCT	1†	31	0.03 (0.006–0.16)
Arthroscopic RCR	Kim 2003 ¹¹⁴ Operative approach CCT	0	42	0 (0.00–0.06)
	Mullett 2006 ¹⁴⁰ Operative approach Prospective cohort	3	96	0.03 (0.01–0.09)

Table 43. Reoperation—NOS

AC = acromioclavicular; BA = before-and-after; CCT = controlled clinical trial; CI = confidence interval; RCR = rotator cuff repair; RCT = randomized controlled trial *No group specification †Due to traumatic events

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative	-			
Arthroscopic subacromial decompression	Mullett 2006 ¹⁴⁰ Operative approach Prospective cohort	26	114	0.23 (0.16–0.31)
Arthroscopic debridement	Montgomery 1994 ¹³⁷ Operative approach CCT	9	38	0.24 (0.13–0.39)
Biceps tenotomy vs. tenodesis	Boileau 2007 ⁷⁵ Operative approach Retrospective cohort	2*	72	0.03 (0.008–0.10)
Mitek metal suture anchor (open RCR)	Cummins 2003 ⁸⁸ Operative technique Prospective cohort	1	18	0.06 (0.01–0.26)
Headed bio-corkscrews (open RCR)	Cummins 2003 ⁸⁸ Operative technique Prospective cohort	1	9	0.11 (0.02–0.43)
Arthroscopic knotted	Millar NL, 2009 ¹³⁴ Operative approach/technique Retrospective cohort	4†	29	0.14 (0.05–0.31)
Arthroscopic knotless	Millar NL, 2009 ¹³⁴ Operative approach/technique Retrospective cohort	7†	38	0.18 (0.09–0.33)

Table 43. Reoperation—NOS (continued)

Postoperative sudden pain/impingement syndrome. One RCT¹⁸² provided data on postoperative sudden pain and impingement syndrome (Table 44). The rate of ostoperative sudden pain ranged from 0 in physical therapy alone to 0.03 in continuous passive motion with physical therapy program, while the rate of postoperative impingement syndrome ranged from 0 in continuous passive motion with physical therapy program to 0.05 in physical therapy alone.

Table 44. Postoperative pain or impingement syndrome

Intervention	Category	Posoperative pain/Impingement			
		Events	Sample size	Rate (95% CI)	
Postoperative Rehabilitation					
Continuous passive motion & PT program	Michael 2005 ¹⁸² Post-op rehabilitation RCT	1/0	34	0.03 (0.005–0.15) / 0 (0–0.07)	
PT alone	Michael 2005 ¹⁸² Post-op rehabilitation RCT	0 / 1	21	0 (0–0.11) / 0.05 (0.009– 0.23)	

CI = confidence interval; PT = physical therapy; RCT = randomized controlled trial

Glenohumeral instability. One postoperative rehabilitation study¹⁸⁰ provide data on glenohumeral instability in patients undergoing continuous passive motion or manual passive range of motion exercises (Table 45). Only one case of glenohumeral instability was reported in the manual passive range of motion exercise group.

Table 45. Glenohumeral instability

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Postoperative Rehabilitation				
Continuous passive motion	LaStayo 1998 ¹⁸⁰ Post-op rehabilitation RCT	0	17	0 (0.00–0.14)
Manual passive ROM exercises	LaStayo 1998 ¹⁸⁰ Post-op rehabilitation RCT	1	15	0.07 (0.01–0.30)

CI = confidence interval; RCT = randomized clinical trial; ROM = range of motion; post-op = postoperative

Fracture of the greater tuberosity. One prospective cohort study¹²⁹ provide data on fracture of the greater tuberosity of humerus bone (Table 46). The rate of fracture of the greater tuberosity was 0.01 in the study.

Table 46. Fracture of the greater tuberosity

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Mattress suture vs. transosseus suture (arthroscopic RCR)	Matis 2006 ¹²⁹ Operative technique Prospective cohort	1*	90	0.01 (0.002–0.06)

CI = confidence interval; RCR = rotator cuff repair

*No group specification

Biceps pathology. Two BA studies^{122,127} provided data on sublaxation or secondary rupture of the long head of biceps (LHB) tendon (Table 47). The rate of biceps complications in these studies investigating arthroscopic RCR and stabilization of LHB & open RCR was 0.12 and 0.14, respectively. One prospective cohort study⁶⁴ provided data on biceps tendon disruption/inflammation (Table 19). The rate of biceps tendon disruption/inflammation in arthroscopic RCR with PGA tacs vs. suture tying was 0.16 (0.05 for disruption/ 0.10 for inflammation) with no group specification.

Table 47. Biceps pathology

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Arthroscopic RCR	Lafosse 2007 ¹²² Operative approach BA	2	17	0.12 (0.03–0.34)
Stabilization of LHB & open RCR	Maier 2007 ¹²⁷ Operative approach BA	3	21	0.14 (0.05–0.35)
Bioabsorbable PGA tacs vs. suture tying (arthroscopic RCR)	Bennett 2004 ⁶⁴ Operative technique Prospective cohort	3*	19	0.16 (0.06–0.38)

BA = before-and-after; CI = confidence interval; LHB = long head of biceps PGA = Polymerized lactic acid tack; RCR = rotator cuff repair

*No group specification

Deltoid disruption. Two studies (one trial¹⁰⁹ and one BA study¹⁰¹) reported no deltoid disruption from operative interventions including open RCR, open debridement, and open RCR with augmentation (Table 48).

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR	lannotti 2006 ¹⁰⁹ Operative augmentation RCT	0	15	0 (0.00–0.15)
Open debridement & acromioplasy	Gartsman 1997 ¹⁰¹ Operative approach BA	0	33	0 (0.00–0.08)
Open RCR & porcine augmentation	lannotti 2006 ¹⁰⁹ Augmentation RCT	0	15	0 (0.00–0.15)

Heterotopic bone formation. One retrospective cohort study¹³⁹ provide data on heterotopic bone formation (Table 49). The rate of heterotopic bone formation was 0.26 in the open or arthroscopic debridement group and 0.27 in the open RCR group.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% Cl)
Operative				
Open RCR	Motycka 2004 ¹³⁹ Operative approach Retrospective cohort	9	33	0.27 (0.15–0.44)
Open or arthroscopic debridement	Motycka 2004 ¹³⁹ Operative approach Retrospective cohort	8	31	0.26 (0.14–0.43)

CI = confidence interval; RCR = rotator cuff repair

Arthropathy. One retrospective cohort study¹³⁹ and one BA study¹⁵⁶ provided data on arthropathy (Table 50). The cohort study compared open RCR with open or arthroscopic debridement and rates of postoperative AC joint arthrosis for the two arms were 1.0 and 0.42, respectively. The BA study examined arthroscopic debridement and reported a rate of 0.04.

Table 50. Arthropathy

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR	Motycka 2004 ¹³⁹ Operative approach Retrospective cohort	29	29†	1 (0.91–1.0)
Open or arthroscopic debridement	Motycka 2004 ¹³⁹ Operative approach Retrospective cohort	10	24†	0.42 (0.24–0.61)
Arthroscopic debridement only	Scheibel 2004 ¹⁵⁶ Operative approach BA	1	23*	0.04 (0.008–0.21)

AC = acromioclavicular; BA = before-and-after; CI = confidence interval; RCR = rotator cuff repair *Sample size represents the number of participants enrolled in the study because the patient with the event had reoperation and was excluded from the analysis.

[†]Sample size represents the number of patients without preoperative arthrosis on radiograph.

Hematoma. Four studies (three BA studies^{70,120,156} and one retrospective cohort study⁶³) provided data on hematoma (Table 51). The rates from the three BA studies were consistent, 0.08, 0.06, and 0.05. The cohort study using arthroscopic debridement with and without tenotomy reported no events of hematoma in both groups.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Arthroscopic RCR	Bennett 2003 ⁷⁰ Operative approach BA	2	24	0.08 (0.02–0.26)
	Kreuz 2005 ¹²⁰ Operative approach BA	1*	16	0.06 (0.01–0.28)
Arthroscopic debridement	Scheibel 2004 ¹⁵⁶ Operative approach BA	1	22	0.05 (0.008–0.22)
Arthroscopic debridement with tenotomy	Klinger 2005 ⁶³ Operative approach Retrospective cohort	0	24	0 (0.00–0.10)
Arthroscopic debridement without tenotomy	Klinger 2005 ⁶³ Operative approach Retrospective cohort	0	17	0 (0.00–0.14)

Table 51. Hematoma

BA = before-and-after; CI = confidence interval; RCR = rotator cuff repair

*The patient developed post-operative stiffness (frozen shoulder) due to hematoma.

Seroma. One RCT,¹⁰⁹ one retrospective cohort study¹⁷⁰ and five uncontrolled studies^{76,83,92,93,101} provided data on seroma for operative approaches (Table 52). The rates of seroma were consistent for the uncontrolled studies, ranging from 0.01 to 0.06. However, two controlled studies examining the use of porcine augmentation with rotator cuff repair^{109,170} both found high rates of hypersensitive reaction in patients receiving the graft, with event rates of 0.2 and 0.3.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative	<u> </u>			
Open RCR	Cofield 2001 ⁸³	1 (at graft	105	0.01
	Operative approach BA	donor site)		(0.002–0.05)
	lannotti 2006 ¹⁰⁹	0	15	0 (0–0.15)
	Operative augmentation RCT			. ,
	Walton 2007 ¹⁷⁰	0	15	0 (0–0.15)
	Operative augmentation Retrospective cohort			, , , , , , , , , , , , , , , , , , ,
Mini-open RCR	Boszotta 2004 ⁷⁶	1 (in the	84	0.01
	Operative approach	area of		(0.002-0.06)
	BA	incision)		. ,
	Deutsch 2008 ⁹²	1	39	0.03
	Operative approach			(0.005–0.13)
	Cohort – BA data			
	Ellman 1993 ⁹³	1	40	0.03
	Operative approach			(0.004–0.13)
	Cohort – BA data			
Open RCR & porcine augmentation	lannotti 2006 ¹⁰⁹	3 (reaction	15	0.2 (0.07–
	Augmentation	to graft)		0.45)
	RCT			/ - / /
	Walton 2007 ¹⁷⁰	4 (reaction	15	0.3 (0.11–
	Operative augmentation	to graft)		0.52)
0	Retrospective cohort			
Open debridement & acromioplasty	Gartsman 1997 ¹⁰¹	2	33	0.06
	Operative approach			(0.02–0.20)
	BA			

Table 52. Seroma

BA = before-and-after; CI = confidence interval; RCR = rotator cuff repair; RCT = randomized controlled trial

Lymphedema. One BA study¹⁸⁶ provided data on lymphedema (Table 53). The rate of lymphedema in the nonoperative treatment was 0.02.

Table 53. Lymphedema

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Nonoperative				
Nonoperative treatment (Analgesic, NSAID, steroid injection, reeducation program)	Ghroubi 2008 ¹⁸⁶ Nonoperative BA	1	59	0.02 (0.003–0.09)

BA = before-and-after; CI = confidence interval; NSAID = non-steroidal anti-inflammatory drug

Synovitis. Two BA studies^{67,130} provided data on synovitis (Table 54). There were no reactive synovitis events in patients undergoing arthroscopic RCR or open RCR with augmentation.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Arthroscopic RCR	McBirnie 2005 ¹³⁰ Operative approach BA	0	53	0 (0.00–0.05)
Open RCR & augmentation (polyester graft)	Audenaert 2006 ⁶⁷ Operative augmentation BA	0	39	0 (0–0.06)

Table 54. Reactive synovitis

BA = before-and-after; CI = confidence interval; RCR = rotator cuff repair

Local reaction to suture material. One retrospective cohort study¹⁵⁷ provided data on local reaction to suture material (Table 55). The rate of local reaction to suture material ranged from 0 in the mini-open RCR to 0.03 in the arthroscopic RCR.

Table 55. Local reaction to suture material

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Mini-open RCR	Severud 2003 ¹⁵⁷ Operative approach Retrospective cohort	0	29	0 (0.00–0.09)
Arthroscopic RCR	Severud 2003 ¹⁵⁷ Operative approach Retrospective cohort	1	35	0.03 (0.005–0.15)

CI = confidence interval; RCR = rotator cuff repair

Wound dehiscence. One CCT^{137} provided data on wound dehiscence (Table 56). The rate of dehiscence ranged from 0 for arthroscopic debridement and 0.02 for open RCR.

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Open RCR	Montgomery 1994 ¹³⁷ Operative approach CCT	1	50	0.02 (0.004–0.11)
Arthroscopic debridement	Montgomery 1994 ¹³⁷ Operative approach CCT	0	38	0 (0.00–0.07)

CCT = controlled clinical trial; CI = confidence interval; RCR = rotator cuff repair

Delayed wound healing. One prospective cohort study¹⁴⁷ provided data on wound healing (Table 57). The rate of delayed wound healing ranged from 0 in single-row arthroscopic RCR to 0.03 in double-row arthroscopic RCR.

Table 57. Delayed wound healing	
---------------------------------	--

Intervention	Author, year Category Design	Events	Sample size	Rate (95% CI)
Operative				
Single-row fixation	Park 2008 ¹⁴⁷ Operative technique Prospective cohort	0	40	0 (0.00–0.06)
Double-row fixation	Park 2008 ¹⁴⁷ Operative technique Prospective cohort	1	38	0.03 (0.005–0.13)

CI = confidence interval

Cosmetic deformity. Three studies (one trial,¹¹⁴ one cohort study,⁶³ and one uncontrolled study⁶⁵) provided data on cosmetic deformity for operative approaches (Table 58). The rates from the three studies were consistent among designs and ranged from 0 to 0.08.

Author, year Intervention Category Design		Events	Sample size	Rate (95% CI)
Operative				
Mini-open RCR	Kim 2003 ¹¹⁴ Operative approach CCT	2	34	0.06 (0.02–0.19)
Arthroscopic RCR	Kim 2003 ¹¹⁴ Operative approach CCT	0	42	0 (0.00–0.06)
Arthroscopic debridement only	Klinger 2005 ⁶⁵ Operative approach BA	1	33	0.03 (0.005–0.15)
Arthroscopic debridement with tenotomy	Klinger 2005 ⁶³ Operative approach Retrospective cohort	2	24	0.08 (0.02–0.26)
Arthroscopic debridement without tenotomy	Klinger 2005 ⁶³ Operative approach Retrospective cohort	0	17	0 (0.00–0.14)

Table 58. Cosmetic deformity

BA = before-and-after; CCT = controlled clinical trial; CI = confidence interval; RCR = rotator cuff repair

Other medical complications. Eight studies reported on 12 other medical complications (Table 59): skin hypersensitivity,¹¹⁴ skin bulla,¹¹⁷ pneumonia,⁸³ deep vein thrombosis,^{83,182} myocardial infarction,⁸³ postoperative depression,⁸³ laryngeal nerve palsy,¹⁴⁶ facial nerve palsy,¹⁴⁶ allergic reaction to oral anti-inflammatory drugs,¹³⁰ massive intraoperative swelling of the neck,¹²⁹ neck pain,¹¹⁷ and polymyalgia rheumatica.⁶⁶ The rates for all events were consistent and ranged from 0 to 0.05 (Table 59).

Complication	Author, year Intervention Category Design		Events	Sample size	Rate (95% CI)	
Skin hypersensitivity	Mini-open vs. arthroscopic RCR	Kim 2003 ¹¹⁴ Operative approach	1*	76	0.01 (0.002–0.07)	
Skin bulla	MCS repair	CCT Ko S-H, 2009 ¹¹⁷ Operative technique CCT	1	35	0.03 (0.005–0.15)	
	Simple stitch repair	Ko S-H, 2009 ¹¹⁷ Operative technique CCT	1	36	0.03 (0.005–0.14)	
Pneumonia	Open RCR	Cofield 2001 ⁸³ Operative approach BA	1	105	0.01 (0.002–0.05)	
DVT	Open RCR	Cofield 2001 ⁸³ Operative approach BA	1	105	0.01 (0.002–0.05)	
	Continuous passive motion & PT program	Michael 2005 ¹⁸² German Post-op rehab RCT	0	34	0 (0.00–0.07)	
	PT alone	Michael 2005 ¹⁸² German Post-op rehab RCT	1	21	0.05 (0.009–0.23)	
MI	Open RCR	Cofield 2001 ⁸³ Operative approach BA	1	105	0.01 (0.002–0.05	
Postoperative depression	Open RCR	Cofield 2001 ⁸³ Operative approach BA	1	105	0.01 (0.002–0.05)	
Laryngeal nerve palsy	Arthroscopic RCR	Park 2004 ¹⁴⁶ Operative approach Cohort – BA data	1	42	0.02 (0.004–0.12)	
Facial nerve palsy	Arthroscopic RCR	Park 2004 ¹⁴⁶ Operative approach Cohort – BA data	1	42	0.02 (0.004–0.12)	
Allergic reaction to oral anti-inflammatory drugs	Arthroscopic RCR	McBirnie 2005 ¹³⁰ Operative approach BA	1	53	0.02 (0.003–0.10)	
Massive intraoperative swelling of the neck	Mattress suture vs. transosseus suture (arthroscopic RCR)	Matis 2006 ¹²⁹ Operative technique Prospective cohort	1*	90	0.01 (0.002–0.06)	
Neck pain	MCS repair	Ko S-H 2009 ¹¹⁷ Operative technique CCT	1	35	0.03 (0.005–0.15)	
	Simple stitch repair	Ko S-H 2009 ¹¹⁷ Operative technique CCT	1	36	0.03 (0.005–0.14)	
Polymyalgia rheumatica	Open <u>OR</u> Mini- open RCR (+acromioplasty)	Moosmayer 2010 ⁶⁶ Non-operative vs. operative	0	52	0 (0.00–0.05)	
	Nonoperative (PT)	Moosmayer 2010 ⁶⁶ Non-operative vs. operative	1	51	0.02 (0.003–0.10	

Table 59. Other medical complications

BA = before-and-after; CCT = controlled clinical trial; CI = confidence interval; DVT = deep vein thrombosis; MI = myocardial infarction; PT = physical therapy; RCR = rotator cuff repair; RCT = randomized controlled trial

*No group specification

Table	60. No	complications
-------	--------	---------------

Intervention	Author, year Category Design
Open RCR	McCallister 2005 ¹³¹
•	Operative approach
	BA
Arthroscopic RCR	Cole 2007 ⁸⁴
	Operative approach
	BA – Report zeros
	Lafosse 2007 ¹²¹
	Operative approach
	BA Sugaya 2007 ¹⁵⁸
	Operative approach
	BA
	Deutsch 2007 ⁹¹
	Operative approach
	BA
	Ide 2005 ¹¹¹
	Operative approach
	BA
	Tauro 2006 ¹⁶²
	Operative approach
	Cohort – BA data
Open debridement & tuberplasty	Fenlin 2002 ⁹⁵
	Operative approach
	BA
Arthroscopic RCR & SLAP repair vs. arthroscopic	Franceschi 2008 ⁹⁶
RCR & biceps tenotomy	Operative approach
	RCT
RCR & tenodesis with detachment vs. RCR &	Franceschi 2007b ⁹⁷
tenodesis without detachment	Operative approach
	RCT
Classic open acromioplasty vs. modified open	Torrens 2003 ¹⁶³
acromioplasty	Operative approach
	CCT
Complete open RCR vs. partial open RCR vs.	Moser 2007 ¹³⁸
debridement	Operative approach
	Retrospective cohort Zumstein 2008 ¹⁷⁴
Open RCR & augmentation	
	Operative augmentation
	BA Fuchs 2006 ⁹⁹
	Operative augmentation
	BA
Double-row vs. single-row arthroscopic RCR	Brks RT, 2009 ⁷⁸
Double few vs. single few antifiescopie from	Operative technique
	RCT
	Franceschi 2007a ⁹⁸
	Operative technique
	RCT
	Sugaya 2005 ¹⁵⁹
	Operative technique
	Prospective cohort
Ultrasonic suture welding vs. hand-tied knots (mini-	McIntyre 2006 ¹³²
open RCR)	Operative technique
	Retrospective cohort
Land-based & Aquatic therapy program vs. land-	Brady 2008 ¹⁷⁶
based program	Post-operative rehabilitation
	CCT

BA = before-and-after; CCT = controlled clinical trial; RCR = rotator cuff repair; RCT = randomized controlled trial; SLAP = superior labrum from anterior to posterior

Table 60.	No	complications	(continued)
-----------	----	---------------	-------------

Intervention	Author, year Category Design
Sodium hyaluraonate vs. dexamethasone	Shibata 2001 ¹⁹⁴ Nonoperative approach RCT
Pulsed radiofrequency ablation	Kane 2008 ¹⁸⁹ Nonoperative approach BA

Table 61. Complications not reported

Intervention	Author, year Category Design		
Open RCR	Caniggia 1995 ⁷⁹		
	Operative approach		
	BA		
	Cools 2006 ⁸⁶		
	Operative approach		
	Cohort – BA data		
	lannotti 1996 ⁶⁰		
	Operative approach		
	BA		
	Kirschenbaum 1993 ¹¹⁵		
	Operative approach		
	BA		
	Mallon 2004 ¹²⁸		
	Operative approach		
	Cohort – BA data		
	Misamore 1995 ¹³⁵		
	Operative approach		
	Cohort – BA data		
	Trenerry 2005 ¹⁶⁴		
	Operative approach		
	Case control – BA data		
Mini-open RCR	Baysal 2005 ⁶⁹		
	Operative approach		
	ВА		
Open <u>or</u> mini-open RCR	Klepps 2004 ¹¹⁶		
	Operative		
	BA		
	Vitale 2007 ¹⁶⁸		
	Operative approach		
	BA		
Open <u>or</u> mini-open <u>or</u> arthroscopic RCR	Gladstone 2007 ¹⁰⁴		
	Operative approach		
	Cohort – BA data		
	Tashjian 2006 ¹⁶⁰		
	Operative approach		
	BA		
Open <u>or</u> arthroscopic RCR	Davidson 2000 ⁸⁹		
	Operative approach		
	BA		
	Oh 2008 ¹⁴⁴		
	Operative approach		
	Cohort – BA data		
Open vs. mini-open RCR	Hata 2004 ¹⁰⁶		
	Operative approach		
	Retrospective cohort		

BA = before-and-after; CCT = controlled clinical trial; PT = physical therapy; RCR = rotator cuff repair; RCT = randomized controlled trial

Intervention	Author, year Category Design
Open vs. arthroscopic RCR	Costouros 2006 ⁸⁷
	Operative approach
	Retrospective cohort
Open or mini-open vs. arthroscopic RCR	Bishop 2006 ⁷²
	Operative approach
	Prospective cohort
Mini-open vs. arthroscopic RCR	Colegate-Stone 2009 ⁸⁵
	Operative approach
	Prospective cohort
	Liem 2007 ¹²⁵
	Operative approach
	Retrospective cohort
	Pearsall 2007 ¹⁴⁸
	Operative approach
	Prospective cohort
	Sauerbrey 2005 ¹⁵⁴
	Operative approach
	Retrospective cohort
Arthroscopic RCR	Bennett 2003 ⁶²
	Operative approach
	Cohort – BA data
	DeFranco 2007 ⁹⁰
	Operative
	BÁ
	Levy 2008 ¹²³
	Operative
	BÁ
	Nho 2009 ¹⁴²
	Operative
	BÁ
Double-row vs. single row arthroscopic RCR	Grasso 2009 ¹⁰⁵
	Operative technique
	RCT
Side-to-side repair vs. tendon to bone repair	Bigoni 2009 ⁷¹
	Operative technique
	RCT
Arthroscopic RCR: staple fixation vs. side-to-side	Wilson 2002 ¹⁷²
suture	Operative technique
	Retrospective cohort
Mini-open RCR vs. shock wave therapy	De Carli 2006 ¹⁹⁵
	Non-operative vs. operative
	RCT
Rehab as inpatient vs. outpatient	Delbrouck 2004 ¹⁷⁷
	Postoperative rehabilitation
	Prospective cohort
Inpatient rehabilitation centre vs. private practice	Marc 2009 ¹⁸¹
specializing in 'CGE'	Postoperative rehabilitation
-	Retrospective cohort
	Gartsman 1998 ¹⁰⁰
	Operative approach
	BA
	Nam 2008 ¹⁴¹
	Operative approach
	Cohort – BA data
	150
	Porcellini 2006 ¹³⁰
	Porcellini 2006 ¹⁵⁰ Operative approach

Table 61. Complications not reported (continued)

Intervention	Author, year Category Design
Inpatient rehabilitation centre vs. private practice specializing in 'CGE' (continued)	Pillay 1994 ¹⁴⁹ Operative approach
Open RCR vs. arthroscopic debridement	Cohort – BA data Ogilvie-Harris 1993 ¹⁴³
	Operative approach CCT
Arthroscopic debridement only	Vaz 2000 ¹⁶⁶ Operative approach
	BA
Arthroscopic RCR & acromioplasty vs. arthroscopic RCR alone	Gartsman 2004 ¹⁰² Operative approach RCT
	Milano 2007 ¹³³ Operative approach RCT
Arthroscopic decompression	Lim 2005 ¹²⁶ Operative approach Cohort – BA data
Rehabilitation vs. no rehabilitation	Leroux 1993 ¹⁹¹ Post-operative rehabilitation Retrospective cohort
Individualized PT & home exercise program vs. home exercise program	Hayes 2004 ¹⁷⁸ Post-operative rehabilitation RCT
Home exercise: Videotape-based vs. PT instruction	Roddey 2002 ¹⁸⁵ Post-operative rehabilitation RCT
Standardized vs. non-standardized PT program	Milroy 2008 ¹⁸³ Post-operative rehabilitation Retrospective cohort
Postoperative rehabilitation	Boissonnault 2007 ¹⁷⁵ Post-operative rehabilitation BA
Nonoperative treatment	Hawkins 1995 ¹⁸⁷ Nonoperative approach BA (Exercise protocol)
	Heers 2005 ¹⁸⁸ Nonoperative approach Cohort – BA data
	(Home exercise program) Levy 2008 ¹⁹² Nonoperative approach BA
	(Anterior deltoid rehabilitation program) Scheuermann 1991 ¹⁹³ Nonoperative
	BA (Early functional PT and active shoulder support)
Nonoperative treatment vs. RCR	Lunn 2008 ¹⁹⁶ Operative vs. nonoperative Prospective cohort Vad 2002 ¹⁶⁵
	Operative vs. nonoperative Retrospective cohort Yamada 2000 ¹⁹⁷
	Operative vs. nonoperative Retrospective cohort

Table 61. Complications not reported (continued)

Question 6. Evidence on the Role of Prognostic Factors on Treatment Outcomes

Summary. Overall, 72 of the 137 studies examined the impact of prognostic factors on patient outcomes. General conclusions are limited due to the varied methodologies across studies, particularly the different outcomes for which prognostic factors were evaluated. Variations in findings may also be due to limited sample sizes and potential for type II errors, i.e., failing to find a difference when one actually exists.

Among operative studies, 65 of 113 studies examined prognostic factors. The factors most often examined were:

- Tear size (n=39): Twenty-two studies found evidence of worse outcomes for larger tears, while 16 studies found no impact of tear size. One study made no conclusions.⁷¹ Most of the studies evaluated operative approaches and there were no patterns in terms of findings by specific operative approach.
- Age (n=28): Fifteen studies found evidence of worse outcomes among older patients, while 13 studies found no impact of age. Most of the studies evaluated operative approaches, and no patterns were seen by operative approach.
- Sex (n=16): Ten studies found no differences in outcomes for men and women. Six studies found differences, however the findings differed with three studies showing better outcomes for women (open RCR,¹²⁸ arthroscopic RCR,¹⁰⁰ nonabsorbable vs. absorbable sutures⁷³) and three studies favouring men (open RCR,⁸³ arthroscopic RCR,⁸⁰ arthroscopic single row vs. double row¹⁰⁵).
- WCB status (n=12): Ten studies found no impact of WCB status for open RCR (n=3), arthroscopic RCR (n=6), and nonabsorbable vs. absorbable sutures (n=1). Two studies (open RCR vs. mini-open vs. arthroscopic RCR,¹⁰⁷ arthroscopic RCR⁸⁰) showed worse outcomes for patients with WCB claims.
- Duration of symptoms (n=13): Thirteen studies showed no evidence for different outcomes based on duration of symptoms. These included evaluations of arthroscopic RCR (n=6), mini-open or arthroscopic (n=1), open (n=4), arthroscopic debridement (n=1), and open vs. arthroscopic (n=1).
- Preoperative stiffness, range of motion, or strength (n=10): Five uncontrolled studies examining arthroscopic (n=2) and open (n=3) repairs and one controlled study examining arthroscopic repairs (n=1) showed worse outcomes with greater preoperative symptoms. In one study,¹³⁴ outcomes were similar for open and arthroscopic groups, depending on the preoperative symptoms investigated. The remaining three studies^{114,141,144} showed no difference in outcomes based on preoperative symptoms.

Among the other interventions examined in this report, four of eleven studies that evaluated postoperative rehabilitation, two of 10 studies evaluating nonoperative interventions, and one of five studies comparing operative with nonoperative interventions examined the impact of various prognostic factors. The variation in interventions, factors that were examined, and findings across studies preclude any overall interpretations or conclusions.

Prognostic factors by intervention and outcome. We aimed to identify the role of prognostic factors (e.g., patient and clinical characteristics) as moderators of the treatment effect measured in nonoperative, operative and postoperative rehabilitation studies assessing RC tears. Overall,

the impact of prognostic factors on patient outcomes was assessed through either subgroup, regression or non-parametric analysis in 72 studies. Due to the small number of studies addressing each intervention and comparison, meta-regression analysis was not feasible. Therefore, the findings from the individual studies that reported data on the role of prognostic factors are presented.

Operative Studies

Of the 113 studies examining the effectiveness of operative interventions, 65 studies (five RCTs, 71,73,105,109,133 one CCT, 114 seven prospective cohort studies, 64,72,77,112,117,147,148 eight retrospective cohort studies, 68,75,119,125,134,154,157,173 12 cohort studies with BA data, 62,86,92,93,107,128,135,141,144,149,162,164 and 32 BA studies $^{60,65,70,74,76,80,83,84,89,90,99-}_{101,103,104,108,110,115,116,120-124,130,131,142,145,151,160,166,174}$) explored the role of various patient or clinical factors as prognostic factors. Six of the studies focused on operative techniques, $^{64,71,73,105,117,147}_{64,71,73,105,117,147}$

three focused on augmentations,^{99,109,174} and 55 studies examined operative approaches. One study investigated both operative approaches and techniques.¹³⁴ The prognostic factors were examined using subgroup analysis in 45 studies, regression analysis in 15 studies, both subgroup and regression in two studies, non-parametric tests in two studies, and both subgroup analysis and non-parametric tests in one study. The analysis was planned a priori in 39 studies, while 26 studies conducted the analysis post hoc.

Five studies^{72,100,107,144,160} conducted an analysis of the role of prognostic factors on health-related quality of life. The studies used multiple regression models¹⁶⁰ or subgroup analysis^{72,100,107,144} to examine a variety of prognostic factors, including age,¹⁰⁰ sex,¹⁰⁰ tear size,^{72,100} WCB status,¹⁰⁷ number of comorbidities,¹⁶⁰ and preoperative stiffness.¹⁴⁴ A variety of potential confounding factors were controlled in two studies^{144,160} but they were not explored in the analysis. The investigators of one study concluded that age, but not sex, influences healthrelated quality of life outcomes. They found that older patients had less improvement in the SF-36 after arthroscopic repair.¹⁰⁰ In studies investigating tear size, no significant differences in health related quality of life outcomes for patients with small and large tears were found.^{72,100}

The author conclusions for other prognostic factors are presented in Table 62. Fifty-five studies^{60,62,64,65,68,70-73,75-77,80,84,86,89,92,93,99-101,104,105,107,108,112,114,116,119-125,128,130,131,133-135,141,142,144,145,147-149,151,154,157,160,166,173,174} conducted an analysis of the role of prognostic factors on functional outcome measures. The studies used subgroup analysis, ${}^{60,62,64,65,68,70-72,76,77,84,92,93,99-101,107,108,112,114,116,119,120,123-125,130,131,135,141,144,145,147-149,151,154,157,166,173,174}$ multiple regression analysis 73,75,80,90,104,105,109,121,122,128,133,134,142,160 to examine a various prognostic factors, including age, 70,73,76,80,84,100,105,108,119,121,122,124,125,128,130,131,133,134,142,145,148,151,166 sex, 64,70,80,100,105,128,130,131,133,148,151,166 tear size, $^{60,68,71,72,76,77,92,93,100,104,105,112,114,116,121-}$ 125,128,130,134,142,145,147,148,151,154,157,173 duration of symptoms, 80,92,114,121,122,134,145,151 etiology of tear, 114,121,133 tear pattern, 76,92,105 tear type, 62,65,75,99,108,120,149,174 location, 105 number of tendons torn, 75,92,131,142,174 hand dominance, 73,80,105,133,166 preoperative strength, 86,105,114,134,145 preoperative shoulder stiffness, ^{134,141,144} preoperative range of motion, ^{65,145} preoperative latency, ¹⁶⁶ mechanism of injury, ¹²² smoking status, ^{128,148,151} body mass index, ¹⁵¹ number of comorbidities, ¹⁶⁰ WCB status, ^{60,73,80,84,107,121,122,130,135} upper-limb heavy work, ⁸⁰ nature of work, ¹⁶⁶ repair tension, ⁸⁹ fatty infiltration, ^{75,104,105,122,133} muscle atrophy, ¹⁰⁴ quality and condition of the biceps tendon, ^{60,76,92,105,122,124,133,148} tissue quality, ^{60,145,166} operative time, ¹³⁴ surgical learning curve, ¹³⁴ difficulty of repair, ⁶⁰ tendon retraction, ^{105,124} acromion type, ^{76,114,133,166} acromiohumeral distance, ^{75,76} atrophy of teres minor, ⁷⁵ duration of immobilization, ⁷⁶ diabetes, ^{108,148} glenoid or

humeral osteoarthritis,^{65,148} concomitant distal clavicle excision,¹⁴⁸ presence of subscapularis tear,^{65,133} and superior migration of humeral head.⁶⁵ The majority of studies found that age was not associated with functional outcome,^{70,76,80,119,121,122,128,131,134,145,148} while one found older age to predict better functional score¹³³ and three concluded older age to predict poorer scores.^{73,105,151} Similarly, gender did not predict functional outcomes in six studies,^{64,70,131,133,148,151} whereas three studies found males to have better^{73,80,105} and two studies found males to have worse^{100,128} outcomes compared with females. Authors' conclusions regarding the role of tear size on functional outcomes was inconsistent across studies. Studies reported that small tear size predicted better function,^{60,68,72,76,93,100,112,114,116,123,142,145,147,151} or reported no influence of tear size on functional outcome.

reported no influence of tear size on functional outcome. ^{73,77,92,104,105,121,122,124,125,128,130,148,154,157,173} All of the studies which examined the symptom duration found no effect on functional outcomes.^{80,121,122,134,145,151} Authors' conclusions for the remaining factors are displayed in Table 62.

remaining factors are displayed in Table 62. Seventeen studies^{68,72,74,84,90,299,103,104,109,110,116,117,124,125,134,142} assessed the role of prognostic factors on cuff integrity. The studies used subgroup analysis^{68,72,84,92,99,103,110,116,124,125} or multiple regression analysis^{74,90,104,109,134,142} or non-parametric tests¹¹⁷ to examine the effect of various patient factors on cuff integrity, including tear size,^{68,72,74,92,103,104,109,110,116,117,124,125,134,142} age,^{74,84,90,103,110,124,125,134,142} sex,⁷⁴ number of tendons torn,^{92,142} duration of symptoms,^{74,92,134} tendon retraction,^{110,124} preoperative strength,^{74,134} preoperative stiffness,¹³⁴ fatty infiltration and muscle atrophy,^{99,104} tear pattern,^{84,92,110,117} biceps pathology,^{84,92,124} tear type,⁹⁹ time to surgery,⁸⁴ operative time,¹³⁴ surgical learning curve,¹³⁴ hand dominance,⁸⁴ WCB status,^{74,84} and degree of occupational use.¹⁰³ The authors found that the most significant factors affecting cuff integrity were age and tear size. Older age was found to be associated with recurrent tears in all studies investigating this factor^{74,84,90,103,110,124,125,142} but one.¹³⁴ Increased tear size was found to be a significant risk factor for tendon defects in several studies,^{68,72,74,103,104,109,116,134,142} while four studies found no significant effect of tear size on cuff integrity.^{92,110,124,125} No association was found between sex^{74,84} or duration of preoperative symptoms^{74,84,92,134} on cuff integrity. Table 62 presents the authors' conclusions for the role of the remaining prognostic factors on cuff integrity.

Sixteen studies^{62,64,70,72,83,84,89,92,114,116,121,128,141,148,151,160} examined the role of prognostic factors on pain. The studies used subgroup analysis^{62,64,70,72,83,84,92,114,116,128,141,148,151} or multiple regression analysis^{89,121,160} to examine the effect of various prognostic factors on pain, including age,^{70,83,84,121,128,148,151} sex,^{64,70,83,84,128,148,151} tear size,^{72,83,92,114,116,121,128,148,151} duration of preoperative symptoms,^{83,84,92,114,121,151} WCB,^{84,121,128} etiology of tear,^{83,114,121} biceps pathology or procedure,^{83,84,92,148} osteoarthritis,¹⁴⁸ diabetes,¹⁴⁸ concomitant distal clavicle excision,¹⁴⁸ smoking,^{128,148,151} hand dominance,^{83,84} acromion morphology,^{83,114} tear pattern,^{84,92} side affected,⁸³ location of tear,⁸³ repair tension,⁸⁹ number of tendons torn,⁹² preoperative strength,¹¹⁴ preoperative stiffness,¹⁴¹ BMI,¹⁵¹ and number of comorbidities.¹⁶⁰ The authors' conclusions on the role of these prognostic factors on pain were variable. Older patients were found to have significantly more pain,⁸⁴ and significantly less improvement in outcome,¹⁵¹ in two studies, while three other studies found no association between age and pain level.^{70,121,128,148} Sex was found not to effect outcomes in four studies,^{64,70,148,151} yet one study found that men had significantly less postoperative pain than women.⁸³ For tear size, several studies found that smaller tear size was associated with less pain than large or massive tears, yet the difference was not statistically significant^{72,83,116} in all but two studies.^{148,151} Three studies found no effect of tear size on outcomes.^{92,114,128} Symptom duration was consistently found not to influence the outcome.^{84,114,121,151} The author conclusions for other prognostic factors are presented in Table 62 below.

below. Ten studies^{72,75,83,92,121,125,141,148,162,164} examined the role of prognostic factors on range of motion. The studies used subgroup analysis^{72,83,92,125,141,148,162,164} or regression analysis^{75,121} to examine various prognostic factors including age,^{75,83,121,148,164} sex,^{75,83,148,164} tear size,^{72,83,92,125,148,162,164} duration of preoperative symptoms,^{92,121,164} biceps pathology,^{92,121,148} concomitant distal clavicle excision,¹⁴⁸ osteoarthritis,¹⁴⁸ diabetes,¹⁴⁸ etiology of tear,^{121,164} WCB,^{121,164} time to followup,⁷⁵ preoperative function,⁷⁵ number of tendons torn,⁹² preoperative stiffness,¹⁴¹ hand dominance,¹⁶⁴ tear type,¹⁶⁴ and presence of comorbidities.¹⁶⁴ Author conclusions regarding the prognostic factors for range of motion varied. Cofield⁸³ reported that older age was associated with lower active range of motion, whereas the results from two studies^{92,148} indicated that age had no affect. Cofield⁸³ further reported that men demonstrated significantly better active abduction than women. Four authors^{92,121,125,148} found that tear size had no affect on range of motion, comparatively, two^{72,83} studies found that smaller tears showed better range of motion outcomes after surgery than larger tear sizes. Tauro¹⁶² reported tear size was positively correlated to range of motion. Duration of preoperative symptoms was found to have no effect on postoperative range of motion. Table 62 presents authors' conclusions for the remaining prognostic factors examined in the studies.

have no effect on postoperative range of motion. Table 62 presents authors' conclusions for the remaining prognostic factors examined in the studies. Thirteen studies^{71,74,83,86,92,101,104,105,115,121,125,141,147} assessed the role of prognostic factors on strength. The studies used subgroup analysis,^{71,83,86,89,92,101,125,141,147,153} multiple regression analysis,^{74,104,105,121} or analysis using non-parametric tests.¹¹⁵ The patient factors that were examined include age,^{74,83,105,121,153} sex,^{74,83,86,105} tear size,^{71,83,104,105,115,125,147,153} duration of preoperative symptoms,^{92,121} biceps pathology,^{92,105,121} preoperative strength,^{74,105} preoperative shoulder stiffness,¹⁴¹ number of tendons torn,⁹² type of tendon,¹⁰¹ tendon retraction,¹⁰⁵ location,¹⁰⁵ shape,¹⁰⁵ fatty infiltration¹⁰⁵ and muscle atrophy,¹⁰⁴ etiology of tear,¹²¹ hand dominance,¹⁰⁵ general health status,¹⁵³ and WCB.¹²¹ The majority of the 13 studies investigating strength concluded that tear size affected post operative strength; however, results varied. Three studies^{92,105,125} found no significant effect between tear size and strength, whereas the remaining authors made no conclusions⁷¹ or found that the greater the tear size, the poorer the result achieved for postoperative strength.^{74,83,101,115,121,147} Authors' conclusions for the remaining factors are displayed in Table 62.

	02. FTOYHOSHC TACK	ors in operative studies		
Author, year Study design	Intervention Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Baker CL, ⁶⁸ 1995 Retrospective cohort	G1: Open RCR G2: Mini-open RCR 3.3 yr	Subgroup analysis by tear size (post hoc)	UCLA cuff integrity	All small tears had good-to-excellent results. With large tears, more patients had good-to-excellent results in open than mini-open repair group. Cuff was more likely to be intact for smaller size tear.

Table 62. Prognostic factors in operative studies

AC joint = acromioclavicular joint; ASES = American Shoulder and Elbow Scale; BA = before-and-after; BMI = body mass index; CCT = controlled clinical trial; CMS = Constant-Murley score; DASH = Disabilities of the Arm, Shoulder and Hand; DM = diabetes mellitus; ER = external rotation; F = flexion; G = group; JOA = Japanese orthopaedic association; LHB = long head of biceps; mo = month; NR = not reported; PENN = University of Pennsylvania Shoulder Score; pre-op = preoperative; QOL = quality of life; RCR = rotator cuff repair; RCT = randomized controlled trial; ROM = range of motion; SF-12 = Short form-12; SF-36 = Short Form-36; SS = supraspinatus; SSI = shoulder strength index; SST = simple shoulder test; UCLA = University of California Los Angeles Scale; VAS = visual analogue scale; WCB = workers' compensation board; yr = year

*Scores are improvement measures

Author, year	Intervention	ors in operative studies (Outcome	
Study design	Followup, mean (range)	Type of analysis	variable	Authors' conclusions
Bennett WF, ⁶² 2003 BA	Open RCR 3.2 yr (2–4)	Subgroup analysis by tear orientation (a priori)	ASES CMS % function pain	There is no statistical difference between anterosuperior and posterosuperior tear types for any of the outcomes.
Bennett WF, ⁷⁰ 2003 BA	Arthroscopic RCR NR (2–4 yr)	Subgroup analysis by age and sex (post hoc)	ASES CMS pain	Age or sex were not associated with outcomes.
Bennett WF, ⁶⁴ 2003 Prospective cohort	G1: Bioabsorbable tacs G2: Suture tying NR (2–4 yr)	Subgroup analysis by sex (a priori)	ASES CMS pain	No significant impact of sex on outcomes.
Bigoni M, ^{/1} 2009 RCT	G1: Side-to-side repair (25) G2: Tendon-to- bone fixation (25) 12 mo	Subgroup analysis by tear size (a priori)	CMS strength	No conclusions were made due to a small number of patients.
Bishop J, ⁷² 2006 Prospective cohort	G1: Open / mini- open RCR G2: Arthroscopic RCR 12 mo	Subgroup analysis by tear size (post hoc)	SF-36 ASES CMS ROM pain cuff integrity	In the open repair group, smaller tear size tended to have better, but non-significant, functional outcome scores including pain score, F and ER strength testing. In the arthroscopic group, smaller tears have significantly better outcomes except in pain which showed non-significant improvement. Tear size was associated with cuff integrity in the arthroscopic group but not in the open group.
Boehm TD, ⁷³ 2005 RCT	G1: Nonabsorbable sutures (Mason- Allen technique) G2: Absorbable sutures (Kessler technique) 2.2 yr (2–2.5)	Regression analysis controlling for hand dominance, WCB status, age, sex, tear size, and type of suture (a priori)	CMS	No significant influence of hand dominance, WCB status, tear size, and suture type on outcome. Male gender and older patients had significantly worse outcomes.
Boileau P, ⁷⁵ 2007 Retrospective cohort	G1: Biceps tenotomy G2: Biceps tenodesis 2.9±0.6 yr (2–6.3)	Regression analysis controlling for number of tendons torn, extension of tear, fatty infiltration, acromiohumeral distance, and atrophy of teres minor (post hoc)	CMS ROM	No significant effect of number of tendons torn or the extension of tear on functional outcomes. Fatty infiltration and acromiohumeral distance did not have a measurable effect on the outcome. Pre-op absence or atrophy of teres minor was associated with fatty infiltration of infraspinatus and significantly worse outcomes compared to patients with healthy teres minor.
Boileau P, ⁷⁴ 2005 BA	Arthroscopic RCR 2.4 yr (2–3.8)	Multiple regression analysis controlling for age, sex, (a priori) tear size, duration of symptoms, WCB status, additional procedures (post hoc)	cuff integrity	Tendon healing was negatively associated with increasing age and delamination of the subscapularis or infraspinatus tendon. Small tear size was positively associated with tendon healing. No association between tendon healing and sex, duration of symptoms, previous injections, WCB status, or additional procedures.
Boszotta H, ⁷⁶ 2004 BA	Mini-open RCR 2.9 yr (2.3–3.7)	Subgroup analysis by age, tear size, tear pattern, closure technique, number of sutures, quality and condition of long biceps tendon, acromion type, acromiohumeral distance, and immobilization (post hoc)	CMS UCLA	Larger tear size was associated with worse outcome. The quality and condition of long biceps tendon was associated with outcome. Patients with curved or hooked acromion types have significantly better outcomes than patients with flat-shaped acromion. There was no significant influence of age, pre-op acromiohumeral distance, tear configuration, closure technique, number of sutures or type and duration of immobilization on outcome.

	62. Prognostic fact			
Author, year Study design	Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Buess E, ⁷⁷ 2005 Prospective cohort	G1: Open or mini- open RCR G2: Arthroscopic RCR 2 yr (15 mo–3.3 yr)	Subgroup analysis by tear size (a priori)	SST	No significant effect of tear size on outcome for both groups.
Charousset C, ⁸⁰ 2008 BA	Arthroscopic RCR 2 yr (maximum)	Multiple regression analysis controlling for age, sex, dominant side affected, upper-limb heavy work, WCB status, duration of symptoms, mechanism of tearing, number of tendons torn, extension and retraction of lesion, tendon quality, bone quality, and tendon reducibility (a priori)	CMS	Women had significantly worse outcome than men. Upper-limb heavy work was negatively associated with outcome. Poor bone quality was found to be associated with poor functional recovery. No significant effect of age, dominant side, duration of symptoms, mechanism of tearing, type of job, involvement of multiple tendons, fatty degeneration, supraspinatus tear extent in sagittal or coronal planes, or AC joint involvement on functional outcome. Sex, age, tears involving 3 tendons and pre-op strength were predictive of post-op strength recovery in CMS subscale. No effect of WCB on functional outcome but time to recovery was longer.
Cofield RH, ⁸³ 2001 BA	Open RCR 13.4 yr (2–22)	Subgroup analysis by age, sex, tear size, etiology of tear, side affected, hand dominance, duration of symptoms, shape of acromion, location of the tear, biceps tenodesis, and type of immobilization (post hoc)	pain active ROM strength	Patients with large or massive tears had lower active ROM and strength measures than patients with smaller tears. There was a trend for more pain with a larger tear size but this association was not significant. Men had significantly better active abduction and less pain than women. Older age was associated with lower active ROM and strength. Pre-op ROM and strength was associated with post-op ROM and strength. Etiology of tear, side of the repair, hand dominance, symptom duration, shape of acromion, location of the tear, biceps tenodesis, and type of immobilization did not influence outcome.
Cole BJ, ⁸⁴ 2007 BA	Arthroscopic RCR 2.7 yr (2–3.8)	Subgroup analysis by age, sex, hand dominance, time to surgery, WCB status, biceps procedure, number of suture anchors and tear pattern (post hoc)	CMS Rowe score SST pain cuff integrity	Older patients had significantly more pain and less ER power. WCB status did not affect pain assessment, functional outcome scores, or ROM. Older age and pre-op extension of the tear into the infraspinatus were associated with recurrent tears. Concomitant biceps procedures, number of suture anchors used, time to surgery, gender, dominant or non dominant side, WCB status, and tear pattern were not associated with recurrent tears.
Cools A, ⁸⁶ 2006 Prospective cohort as BA	Open RCR 18 mo (12–20)	Subgroup analysis by pre- op strength (post hoc)	CMS	Pre-op strength was positively correlated with functional outcome.
Davidson PA, ⁸⁹ 2000 BA	Open <u>or</u> arthroscopic RCR 2 yr (minimum)	Regression analysis controlling for repair tension (a priori)	CMS pain	Increased tension on RCR was significantly associated with worse outcomes.
DeFranco MJ, ⁹⁰ 2007 BA	Arthroscopic RCR 22.3 mo (12 mo–3 yr)	Multiple regression analysis controlling for age (a priori)	cuff integrity	Younger patients had significantly better outcomes than older patients.

Author, year Study design	Intervention Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Deutsch A, ⁹² 2008 Prospective cohort as BA	Arthroscopic RCR 3.2 yr (2–5)	Subgroup analysis by number of tendons torn, tear size, tear pattern, presence of biceps tearing, and duration of pre-op symptoms (a priori)	ASES ROM strength pain cuff integrity	No significant effect of number of tendons torn or tear size on outcomes. Tear recurrence was significantly correlated with asymmetric retraction. No significant influence of biceps tears or duration of pre-op symptoms on tear recurrence.
Ellman H, ⁹³ 1993 Prospective cohort as BA	Arthroscopic RCR 3.6 yr (2–7.3)	Subgroup analysis by tear size (a priori)	UCLA	Small tears associated with higher UCLA score than large tears.
Fuchs B, ⁹⁹ 2006 BA	Open RCR & augmentation 3.2 yr (2–4.4)	Subgroup analysis by tear orientation, muscle atrophy (a priori).	CMS cuff integrity	There was no significant difference in the total CMS score between patient with supraspinatus tears and those with subscapularis tears. However, patients with subscapularis tears experienced significantly more pain at followup, as measured by the CMS pain subscale. Muscle atrophy approached significance as a predictor for retear.
Gartsman GM, ¹⁰⁰ 1998 BA	Arthroscopic RCR 12.7 mo (11–21)	Subgroup analysis by age, sex, and tear size (a priori)	SF-36 ASES CMS	Older patients had significantly less improvement in SF-36. Female patients had significantly greater improvements in CMS and ASES than male patients. Tear with a greater length, width, and area had significantly less improvement in the strength score in CMS.
Gartsman GM, ¹⁰¹ 1997 BA	Open debridement & acromioplasty 5.3 yr (4–9.8)	Subgroup analysis by type and condition of tear (post hoc)	CMS UCLA SSI	All patients with severe superior migration of the humeral head had poor ROM, function, and strength. Poor outcomes were associated with irreparable tears of the subscapularis or teres minor, muscular atrophy of these two muscles, and moderate-to-severe superior migration of the humeral head.
Gazielly DF, ¹⁰³ 1994 BA	Open RCR 4 yr (2–6)	Subgroup analysis by tear size, degree of occupational use, age (a priori)	cuff integrity	Age, size of tear, and occupational use was associated with tear recurrence.
Gladstone JN, ¹⁰⁴ 2007 BA	Open <u>or</u> mini-open <u>or</u> arthroscopic RCR 12 mo (12–15)	Regression analysis controlling for fatty infiltration and muscle atrophy of supraspinatus and infraspinatus, and tear size (a priori)	ASES CMS strength cuff integrity	Patients with poor muscle quality had significantly less improvement in outcomes. Muscle atrophy and fatty infiltration have a strong negative effect on functional outcomes and strength. Pre-op tear size was the only significant predictor of cuff integrity, but it did not predict functional outcome or strength.
Grasso A, ¹⁰⁵ 2009 RCT	 G1: Arthroscopic single row repair (37) G2: Arthroscopic double row repair (35) 24.8±1.4 mo 	Multiple regression analysis controlling for age, sex, dominance, location, shape, area of cuff tear, tendon retraction, fatty degeneration, treatment of the biceps tendon, preoperative strength (a priori)	DASH CMS Work-DASH strength	Age had a significant negative correlation with CMS. Sex was significantly correlated with DASH and strength. Preoperative strength was associated with postoperative strength. All other variables had no significant correlations with outcome in multivariate analysis.

	Intervention	ors in operative studies (
Author, year Study design	Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Henn RF, ¹⁰⁷ 2008 Prospective cohort as BA	Open <u>or</u> mini-open <u>or</u> arthroscopic RCR 12.3 ± 1.7 mo (7.4– 20.2)	Subgroup analysis by WCB status. Multiple regression analysis controlling for multiple confounders (age, sex, smoking, expectations, number of comorbidities, education, marital status, work demands, and tear size) (a priori)	SF-36 DASH	Patients with WCB claims reported worse outcomes, after controlling for confounding factors. WCB patients were significantly younger, had greater work demands, and had lower marital rates, education levels, and pre-op expectations for the outcome.
Hsu SL, ¹⁰⁸ 2007 BA	Open RCR 4.1 yr (2–7.1)	Subgroup analysis by presence of diabetes, and tear type (a priori). Non-parametric analysis for age (post hoc).	CMS	No statistical difference between patients with and without DM in total CMS. Patients with partial tears had significantly better total CMS scores than those with complete or large tears. Age was associated with strength score.
lannotti JP, ¹⁰⁹ 2006 RCT	G1: Porcine submucosa augmentation G2: No augment 14 mo (12 mo–2.2 yr)	Regression analysis controlling for tear size (a priori)	cuff integrity	Large tears were significantly more likely to heal than massive tear in both groups.
lannotti JP, ⁶⁰ 1996 BA	Open RCR NR	Subgroup analysis by WCB status, tear size, biceps tendon rupture, quality of remaining cuff tissue, and difficulty of repair (a priori)	CMS	WCB status and premorbid activity level did not influence functional outcome. Patients with larger tear sizes had significantly worse outcomes than patients with smaller tear sizes. Biceps tendon rupture, poor tissue quality, and difficulty of tendon mobilization were adversely associated with functional outcome.
Ide J, ¹¹⁰ 2007 BA	Arthroscopic RCR 3 yr (2–5)	Subgroup analysis by age, degree of tendon retraction, tear pattern and size (post hoc)	cuff integrity	Patients with severe tendon retraction had significantly more recurrences than those with minimal or moderate retraction. Significantly more failed repairs in older age than younger age. No significant effect of tear pattern and size on tear recurrence.
Ide J, ¹¹² 2005 Prospective cohort	G1: Open RCR G2: Arthroscopic RCR 4.1 yr (2.1–6.9)	Subgroup analysis by tear size (post hoc)	UCLA JOA	Small tears had significantly better outcomes compared with large tears regardless of operative group.
Kim SH, ¹¹⁴ 2003 CCT	G1: Mini-open RCR G2: Arthroscopic RCR 3.3 yr (2.0–5.3)	Subgroup analysis by tear size, etiology of tear, acromial morphology, symptoms duration, and pre-op strength (a priori)	UCLA ASES pain	Larger tears had significantly worse scores on the UCLA, ASES, and function-VAS, but not pain-VAS. No other pre-op factors had a significant correlation with outcomes.
Kirschenbaum D, ¹¹⁵ 1993 BA	Open RCR 12 mo (maximum)	Non-parametric analysis of tear size (post hoc)	strength	Tear size was not significantly associated with strength; however, abduction and flexion strength was consistently less in patients with large or massive tears.
Klepps S, ¹¹⁶ 2004 BA	Open <u>or</u> mini-open RCR 12 mo (minimum)	Subgroup analysis by tear size (post hoc)	ASES CMS UCLA pain cuff integrity	Larger or massive tear size was associated with worse, but non-significant, functional outcomes (CMS, UCLA, ASES) and pain score, and were more likely to retear than small or medium tears.

Table	Intervention	ors in operative studies (continucuj	
Author, year Study design	Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Klinger HM, ⁶⁵ 2005 BA	Arthroscopic debridement only 2.6 yr (2–3.8)	Subgroup by tear type, presence of subscapularis tear, superior migration of humeral head, decreased ROM, glenohumeral arthritis (post hoc)	CMS	The presence of two or more of these prognostic factors is correlated with poor outcome.
Ko S-H, ¹¹⁷ 2009 Prospective cohort	 G1: Massive cuff stitch repair (35) G2: Simple stitch repair (36) 2.8 (2–3.4) yr 	Non-parametric analysis by tear size and configuration (post hoc)	cuff integrity	No effect of tear size and configuration on cuff integrity.
Kose KC, ¹¹⁹ 2008 Retrospective cohort	G1: Mini-open RCR G2: Arthroscopic RCR 2.2 yr (12 mo–6.8 yr)	Subgroup analysis by age (post hoc)	CMS UCLA	There was a significant negative association between age and pain in the mini-open group. Age was not associated with the CMS score.
Kreuz PC, ¹²⁰ 2005 BA	Arthroscopic RCR 3 yr (2–4)	Subgroup analysis by tear type (a priori)	CMS	Complete tears had significant improvement in outcomes compared to partial tears. Delay between trauma and outcome was inversely proportional.
Lafosse L, ¹²¹ 2007 BA	Arthroscopic RCR 3 yr (2–4.8)	Regression analysis controlling for etiology of tear, age, duration of symptoms, WCB status (a priori) and tear size (post hoc).	CMS pain active ROM strength	Etiology of tear, age, duration of symptoms, concomitant biceps procedures, pre-op status of the biceps tendon, degree of fatty infiltration, and WCB status did not affect outcomes. Large / massive tears were associated with more post- op weakness than small tears but no significant difference were found for pain, CMS score, or active ER or IR.
Lafosse L, ¹²² 2007 BA	Arthroscopic RCR 2.4 yr (2–3.3)	Multiple regression analysis controlling for age, mechanism of injury, duration of symptoms, and degree of fatty infiltration (a priori); WBC status, tear size and biceps pathology (post hoc)	CMS UCLA	No significant effect of age, duration of symptoms, WCB status, tear etiology, tear size, and biceps pathology on outcomes. The effect of rerupture and persistent fatty degeneration could not be determined.
Levy, ¹²³ 2008 BA	Arthroscopic RCR 3.2 yr (2–6.1)	Subgroup analysis by tear size (a priori)	CMS	Small tears had significantly better outcomes than large tears.
Lichtenberg S, ¹²⁴ 2006 BA	Arthroscopic RCR 2.2 yr	Subgroup analysis by age, tear size, grade of retraction, and biceps pathology (post hoc)	CMS cuff integrity	No significant effect of tear size, retraction, or biceps pathology on outcome measures. Age was a negative prognostic factor for retears.
Liem D, ¹²⁵ 2007 Retrospective cohort	G1: Mini-open RCR G2: Arthroscopic RCR 12 mo (minimum)	Subgroup analysis by age and tear size (post hoc)	CMS ROM cuff integrity	No significant effect of tear size on outcomes. Age was a negative prognostic factor for retears.

Table 62. Prognostic factors in operative studies (continued)				
Author, year Study design	Intervention Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Mallon WJ, ¹²⁸ 2004 Retrospective cohort as BA	Open RCR 12 mo (minimum)	Subgroup analysis by smoking status and sex (a priori). Multiple regression analysis controlling for age, smoking status, tear size, and WBC status (a priori).	UCLA pain	Non-smokers had significantly greater improvement in UCLA and post-op pain scores than smokers. Women had greater improvement in the UCLA score between pre-op and post-op assessment, compared with men. Age, tear size and WCB status were not found to predict outcomes.
McBirnie JM, ¹³⁰ 2005 BA	Arthroscopic RCR 2.4 yr (2–5)	Subgroup analysis by age, sex, WCB status (a priori), and tear size (post hoc)	CMS	No significant effects of WCB status, tear size, and additional procedures on outcome. No analysis of age and sex as planned.
McCallister WV, ¹³¹ 2005 BA	Open RCR 5.5±2.2 yr (2–10)	Subgroup analysis by age, sex, and number of tendons torn (post hoc)	SST	No significant effect of age and sex. Participants with a lower number of tendons torn had significantly better outcomes than patients with a higher number.
Milano G, ¹³³ 2007 RCT	G1: Arthroscopic RCR & acromioplasty G2: Arthroscopic RCR 2 yr	Multiple regression analysis controlling for age, sex, dominance, location, shape, area, retraction, reducibility of cuff tear, fatty degeneration, involvement of subscapularis tendon, LHB treatment and type of acromion (a priori)	CMS DASH	Age was significantly positively associated with DASH scores. Gender and dominance did not significantly influence outcomes. There was no significant effect of location and area of tears on outcome. Tears that were U-shaped, retracted, partially reducible, involved the subcapularis, or had severe fatty degeneration had significantly worse outcomes.
Millar NL, ¹³⁴ 2009 Retrospective cohort	G1: Open repair (20) G2: Arthroscopic knotted (29) G3: Arthroscopic knotless (38) 2 yr	Multiple regression analysis controlling for age, tear size, duration of symptoms, preoperative F and SS strength, preoperative stiffness, operative time, and surgical learning curve (a priori)	ASES cuff integrity	Preoperative SS strength was significantly associated with ASES score. There was no significant effect of stiffness, operative time, preoperative tear size, surgical learning curve on ASES score. Shorter operative time and smaller tear size was associated with lower retear rate. No significant association was found between age, duration of symptoms, preoperative F, SS strength, surgical learning curve, and the rate of cuff integrity.
Misamore GM, ¹³⁵ 1995 Retrospective cohort as BA	Open RCR 3.8 yr (2–5.7)	Subgroup analysis by WCB status (a priori)	UCLA return to work	Patients without a WCB claim had significantly better outcomes as measured by the UCLA total score and individual subscores compared to those with a WCB claim. A significantly higher proportion of patients not receiving WCB returned to work compared to WCB patients.
Nam SC, ¹⁴¹ 2008 Prospective cohort as BA	Arthroscopic RCR 2.6 yr (16 mo–6.2 yr)	Subgroup analysis by pre- op shoulder stiffness (a priori)	CMS SST UCLA pain ROM strength	Pre-op shoulder stiffness was not associated with outcomes.
Nho SJ, ¹⁴² 2009 BA	Arthroscopic RCR 2.4 yr	Multiple regression analysis controlling for age, tear size and number of torn tendons (a priori)	ASES cuff integrity	Increased age, tear size and number of torn tendons were found to be significant predictors of tendon defect after repair. Patients without biceps or AC joint pathology and with normal tissue quality were significantly less likely to have a post-op tendon defect. Concomitant AC joint coplaning or distal clavicle excision was significantly negatively associated with ASES score.

Author, year Study design	Intervention Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Oh JH, ¹⁴⁴ 2008 Prospective cohort as BA	Open <u>or</u> arthroscopic RCR 15.1 mo (12 mo– 2.7 yr)	Subgroup analysis by pre- op stiffness (a priori)	SF-36 ASES CMS SST	No significant effect of shoulder stiffness on outcomes.
Pai VS, ¹⁴⁵ 2001 BA	Open RCR 2.8 yr	Subgroup analysis by age, duration of symptoms, pre-op range of motion and strength, tear size, and quality of tendon (a priori)	CMS UCLA	No significant effect of age and duration of symptoms on outcome. Patients with poor pre-op ROM and strength or poor tendon quality had worse outcomes. Patients with massive tears had significantly worse outcomes than patients with other tear sizes but there was no overall significant effect of tear size on outcome.
Park JY, ¹⁴⁷ 2008 Prospective cohort	G1: Double-row anchor RCR G2: Single-row anchor RCR 2.1 yr (22 mo–2.5 yr)	Subgroup analysis by tear size (post hoc)	ASES CMS SSI	Large to massive tears had significantly poorer outcomes than small tears when treated with single-row repair fixation.
Pearsall AW, ¹⁴⁸ 2007 Prospective cohort	G1: Mini-open RCR (25) G2: Arthroscopic RCR (27) 4.2 yr (2.3–7)	Subgroup analysis by age, sex, tear size, smoking, osteoarthritis, diabetes, biceps pathology, concomitant distal clavicle excision (a priori)	SST* UCLA pain (VAS)* ROM*	There was an inverse correlation between smoking and improvement in SST. Patients with larger tears had significantly less improvement in pain than patients with smaller tears. Presence of glenoid or humeral osteoarthritis had a significant effect on UCLA score. There was no significant effect of age, sex, presence of diabetes, biceps pathology, or concomitant distal clavicle excision on outcome improvements.
Pillay R, ¹⁴⁹ 1994 Retrospective cohort as BA	Arthroscopic RCR 18.6 mo (6 mo–2.5 yr)	Subgroup analysis by tear type (a priori)	UCLA	There was no association between tear type and UCLA functional score.
Prasad N, ¹⁵¹ 2005 BA	Open RCR 2.2 yr (12 mo–4.2)	Subgroup analysis by age, sex, tear size, BMI, smoking status, and duration of symptoms (post hoc)	CMS pain	Older patients and patients with massive tears showed significantly less improvement in outcome compared to younger patients and patients with smaller tears. BMI, gender, smoking, and duration of symptoms did not affect the outcome.
Sauerbrey M, ¹⁵⁴ 2005 Retrospective cohort	G1: Mini-open RCR G2: Arthroscopic RCR 2.1 yr (13 mo–4 yr)	Subgroup analysis by tear size (a priori)	Modified ASES	Surgical approaches were effective regardless of tear size.
Severud EL, ¹⁵⁷ 2003 Retrospective cohort	G1: Mini-open RCR G2: Arthroscopic RCR 3.7 yr (2–6.8)	Subgroup analysis by tear size (post hoc)	ASES UCLA	No significant effect of tear size on outcomes.
Tashjian RZ, ¹⁶⁰ 2006 BA	Open <u>or</u> mini-open <u>or</u> arthroscopic RCR 12 mo (maximum)	Multivariate regression analysis for number of comorbidities, with age, sex, WCB status, number of prior non- shoulder surgeries, smoking, tear size, symptom duration, and expectation as confounding variables (a priori).	SF-36 DASH SST VAS (pain, function, QOL)	Greater number of comorbidities was associated with significantly worse final scores on four SF- 36 subsections (bodily pain, general health, role emotional, and vitality). Patients with more comorbidities showed significantly greater improvement on the VAS, DASH and SST than patients with fewer comorbidities.

Author, year Study design	Intervention Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Tauro JC, ¹⁶² 2006 Retrospective cohort as BA	Arthroscopic RCR 2 yr	Subgroup analysis by tear size, pre-op stiffness (a priori)	Total passive ROM deficit (TROMD)	Tear size represented as a cuff tear index (CTI) was positively correlated with TROMD, where larger tear size was associated with more stiffness. Patients with pre-op stiffness were more likely to experience post-op stiffness.
Trenerry K, ¹⁶⁴ 2005 Case-control as BA	Open RCR 17.3 mo (15.5–19)	Subgroup analysis by age, sex, hand dominance, affected side, symptom duration, mechanism of onset, WCB status, tear size, tear type, shoulder comorbidities, pre-op ROM (a priori)	ROM	There were no significant effects of any factors, with the exception of pre-op ROM restriction of hand behind the back, which was a significant predictor of post-op shoulder stiffness.
Vaz S, ¹⁶⁶ 2000 BA	Arthroscopic debridement only 3.1 yr (12 mo–4 yr)	Subgroup analysis by age, sex, side of tear, nature of job, pre-op latency, acromion morphology and condition of cuff (post hoc)	CMS	There was no significant impact of any of the factors on outcome, except that patients with sedentary jobs returned to work significantly sooner than manual laborers.
Youm T, ¹⁷³ 2005 Retrospective cohort	G1: Mini-open RCR G2: Arthroscopic RCR 3.0 yr (2.0–5.8)	Subgroup analysis by tear size (post hoc)	ASES UCLA	No significant effect of tear size within or between operative groups.
Zumstein MA, ¹⁷⁴ 2008 BA	Open RCR & augmentation 9.9 yr (6.7–12.8)	Subgroup analysis by number of tendons torn and tear orientation (post hoc)	CMS	Number of tendons torn and tear type had no impact on post-op functional scores. However, patients with anterosuperior tears and those with three-tendon tears showed significantly greater gain compared to their pre-op state than did the two-tendon tears and posterosuperior tears.

Postoperative Rehabilitation Studies

Of the eleven studies evaluating the effectiveness of postoperative rehabilitation treatments, four studies (two RCTs,^{180,184} one retrospective cohort study¹⁸¹ and one BA study¹⁷⁵) explored the role of various patient or clinical factors as prognostic factors (Table 63). The prognostic factors were examined using subgroup analysis in two studies,^{175,184} regression analysis in one study,¹⁸⁰ correlation analysis in one study,¹⁸¹ and both subgroup and regression analysis in the remaining study.¹⁷⁵ All studies planned the analyses a priori. Patient variables examined in the studies included age,^{175,180,181,184} sex,^{175,180,181,184} tear size,^{175,180,181,184} biceps pathology,¹⁸¹ number of comorbidities,¹⁷⁵ smoking,¹⁷⁵ and type of preoperative treatment.¹⁷⁵ The role of prognostic factors was evaluated for functional outcomes in all of the studies, as well as for health-related quality of life,¹⁷⁵ pain, range of motion, and strength.¹⁸⁰ In one study,¹⁷⁵ a greater number of comorbidities was found to be correlated with significantly worse health-related quality of life scores, but not with functional outcome scores. Three studies found that age, sex, and tear size were not associated with outcomes, with the exception that women had greater improvement in pain subscales,^{180,184} while men had greater improvement in range of motion.¹⁸⁰ Authors' conclusions for the remaining factors are displayed in Table 63.

Author, year Study design	Intervention Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
Boissonnault WG, ¹⁷⁵ 2007 BA	Rehabilitation protocol 13 wk (3–28)	Subgroup analysis by number of comorbidities. Multiple regression analysis controlling for age, sex, smoking, tear size, pre- op treatment. (a priori)	SF-36 DASH	A greater number of comorbidities was associated with significantly worse SF-36 scores, but not with DASH scores.
LaStayo PC, ¹⁸⁰ 1998 RCT	G1: CPM G2: Manual passive ROM exercises 22 mo (6 mo–3.8 yr)	Regression analysis controlling for age, sex, and tear size (a priori).	SPADI pain ROM strength	No significant effect of age, sex, or size of tear on outcomes, except that women indicated significantly less pain than men.
Marc T, ¹⁸¹ 2009 Retrospective cohort	 G1: Inpatient in rehab centre (26) G2: Private practice specializing in 'CGE' (38) G3: Inpatient and outpatient (16) 2 yr (minimum) 	Correlation analysis controlling for age, tear size, sex biceps pathology (a priori)	CMS	Gain in CMS is not influenced by age, sex, tear size or state of biceps.
Raab MG, ¹⁸⁴ 1996 RCT	G1 : CPM & PT G2 : PT only 3 mo	Subgroup analysis by age, sex, and tear size (a priori)	Shoulder score	Age, sex, and tear size were not associated with the overall shoulder score. For the subscores, women showed a significant improvement in the pain and men showed significant improvement in the ROM.

Table 63. Prognostic factors in postoperative rehabilitation studies

BA = before-and-after; CGE = Concept Global d'Epaule; CPM = continuous passive motion; DASH = Disabilities of the Arm, Shoulder and Hand; G = group; mo = month; PT = physical therapy; RCT = randomized controlled trial; ROM = range of motion; SF-36 = Short Form-36; SPADI = Shoulder Pain and Disability Index; wk = week; yr = year

Nonoperative Studies

Of the 10 studies examining the effectiveness of nonoperative interventions, two studies (one prospective cohort with before-and-after data¹⁸⁸ and one BA study¹⁸⁷) explored the role of various patient or clinical factors as prognostic factors (Table 64). The analysis of prognostic factors was specified a priori in one study¹⁸⁸ and post hoc the other study.¹⁸⁷ The studies used subgroup analysis to examine the effect of tear type,¹⁸⁸ cause of tear,¹⁸⁷ duration of symptoms,¹⁸⁷ pain,¹⁸⁷ sleep loss,¹⁸⁷ and WCB status¹⁸⁷ on functional outcome scores.^{187,188} Functional scores were found to be negatively correlated with preoperative sleep loss and WCB claim in one study.¹⁸⁷ In contrast, functional improvement was shown to be independent of tear type,¹⁸⁸ duration of symptoms, degree of pain, and cause of tear.¹⁸⁷

Table	Table 64. Prognostic factors in honoperative studies						
Author, year Study design	Intervention Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions			
Hawkins RH, ¹⁸⁷ 1995 BA	Exercise protocol 3.8 yr (2.6–4.6)	Subgroup analysis by WCB status, sleep loss, duration of symptoms, degree of pain, and cause of tear (post hoc)	ASES CMS	WCB claim and preoperative sleep loss was associated with unsatisfactory functional outcome. None of the other patient variables were found to predict treatment outcome.			
Heers G, ¹⁸⁸ 2005 Prospective cohort as BA	Home exercise program 2.7 mo (maximum)	Subgroup by tear type (a priori)	CMS	Patients showed significant functional improvement regardless of type of tear.			

Table 64. Prognostic factors in nonoperative studies

ASES = American Shoulder and Elbow Scale; BA = before-and-after; CMS = Constant-Murley score; mo = month; WCB = workers' compensation board; yr = year

Operative vs. Nonoperative Studies

Of the five studies that examined the effectiveness of nonoperative vs. operative interventions, one retrospective cohort study¹⁹⁷ conducted a post hoc subgroup analysis to explore the effect of age and timing of surgery on functional outcomes (Table 65). The authors found that age had no significant effect on function, as measured by the JOA scale. Time between symptom onset and surgery affected outcomes, where intervals longer than 12 months were associated with postoperative difficulties.

Table 65. Prognostic factors in operative vs. nonoperative studies

Author, year Study design	Intervention Followup, mean (range)	Type of analysis	Outcome variable	Authors' conclusions
2000 Retrospective cohort	G1: Steroid injection, stretching, strengthening G2: Open RCR 4 yr (12 mo–23 yr)	Subgroup analysis by age and timing of surgery (post hoc)	JOA	Age had no significant effect on function, as assessed by the JOA scale. Time between symptom onset and surgery was associated with outcomes, where intervals longer than 12 months were associated with postoperative difficulties.

G = group; JOA = Japanese orthopaedic association; mo = month; RCR = rotator cuff repair; yr = year

Chapter 4. Discussion

Summary of Findings

This report provides a comprehensive synthesis of the evidence on the comparative effectiveness of nonoperative and operative interventions for RC tears. The findings and strength of evidence for comparative studies are summarized in Table 66. The variability in the studies in the table illustrates the numerous comparisons that have been made across the studies in this area. Uncontrolled studies were not included in the table, as they represent an extremely low grade on the hierarchy of evidence. The result is that there is sparse data available for most interventions. This precludes firm conclusions for any single approach or for the optimal overall management of this condition. The majority of the data is derived from studies of low methodological quality or lower in the hierarchies of evidence. Sample sizes were generally moderate and varied considerably from study to study, with an overall median of 53 patients per study (IQR 30 to 85). Overall, the evidence shows that all interventions result in substantial improvements; however, few differences of clinical importance are evident when comparisons between interventions are available. The following is a summary of the evidence for the different types of interventions.

KQ1: Early vs. late repair. Only one study comparing early surgical repair vs. late surgical repair after failed nonoperative treatment was identified. There was low evidence in favor of early repair for function and no difference between groups for cuff integrity. The paucity of evidence related to this question is of particular concern, as primary care providers are frequently faced with the dilemma of whether to refer patients to surgery immediately or delay surgery by opting for initial nonoperative treatment.

KQ2a: Comparative effectiveness of operative approaches. The most frequent comparison was mini-open vs. arthroscopic rotator cuff repair; this comparison provided moderate evidence for no difference in function or cuff integrity between the two approaches. There was also moderate evidence showing no statistical or clinically important differences in function between open and mini-open repairs; however, there was some evidence suggesting an earlier return to work by approximately 1 month for mini-open repairs. There was moderate evidence for no difference in function between open or mini-open vs. arthroscopic repairs and arthroscopic repairs with and without acromioplasty. There was moderate evidence for greater improvement in function for open repairs compared to debridement only. The strength of evidence was low for the remaining comparisons and outcomes; hence, the evidence was too limited to make a conclusion.

KQ2b: Comparative effectiveness of operative techniques. The most frequent comparison was single-row vs. double-row fixation. There was moderate evidence in favour of double-row fixation for function, yet the clinical significance of the difference is questionable, and no difference for cuff integrity. Moderate evidence showed no difference between mattress stitch and simple stitch for cuff integrity. The evidence was too limited to make conclusions for the other techniques studied.

KQ2c: Comparative effectiveness of operative augmentation. Three relatively small studies evaluated two different augmentation techniques, and no overall conclusions were possible.

KQ2d: Comparative effectiveness of postoperative rehabilitation. The most frequent comparison was continuous passive motion with physical therapy vs. physical therapy alone. This resulted in moderate evidence showing no clinical or statistical difference in function but low evidence for earlier return to work with continuous passive motion. The evidence for other aspects of postoperative rehabilitation was too limited to make conclusions.

KQ3: Comparative effectiveness of nonoperative interventions. Three studies compared different nonoperative interventions; hence, no overall conclusions were possible regarding any single approach.

KQ4: Comparative effectiveness of nonoperative vs. operative treatment. Five studies compared different nonoperative and operative interventions. Because the interventions and comparisons differed across the studies, the evidence was too limited to make conclusions regarding the relative effectiveness of the individual modalities.

KQ5: Complications. A total of 34 different complications were reported in 85 studies. The incidence of complications was generally low, yet studies varied considerably in their risk estimates. In 21 studies, it was reported that no complication occurred during the course of the study. Generally, the benefit of receiving treatment for RC tears appears to outweigh the risk of associated harms.

KQ6: Prognostic factors. The variety of prognostic factors examined across many different outcomes and the inconsistency among authors' conclusions make it difficult to identify predictors of good outcome for nonoperative and operative treatments. However, older age, increasing tear size and extent of preoperative symptoms were repeatedly found to be associated with recurrent tears. Sex, WCB status, and duration of symptoms were not found to be associated with poorer outcomes in the majority of studies that examined these variables.

Comparison (number of studies)	Strength of evidence	Summary
Early vs. late repair		
Early RCR vs. late RCR (n=1)	Low	The evidence was too limited to make a conclusion.
Operative approaches		
Open RCR vs. mini-open RCR (n=3)	Moderate	No statistically significant or clinically important difference for function. Some evidence for earlier return to work or sports (by approximately 1 month) with mini-open repairs.
	Low	The evidence was too limited to make a conclusion for health-related quality of life.
Mini-open RCR vs. arthroscopic RCR (n=10)	Moderate	No difference in function or cuff integrity.
Open RCR vs. arthroscopic RCR (n=3)	Low	The evidence was too limited to make a conclusion.
Open or mini-open RCR vs. arthroscopic RCR	Moderate	No difference in function.
(n=2)	Low	The evidence was too limited to make a conclusion for cuff integrity.
Open RCR vs. open or arthroscopic debridement (n=4)	Moderate	Some evidence for greater improvement in function for open RCR.
Arthroscopic RCR with acromioplasty vs. without acromioplasty (n=3)	Moderate	No difference in function.
Arthroscopic RCR vs. acromioplasty alone	Low	The evidence was too limited to make a conclusion.
Biceps tenotomy vs. tenodesis (n=1)	Low	The evidence was too limited to make a conclusion.
RCR vs. palliative treatment (n=1)	Low	The evidence was too limited to make a conclusion.
Arthroscopic RCR with SLAP repair vs. arthroscopic RCR with biceps tenotomy (n=1)	Low	The evidence was too limited to make a conclusion.
Mini-open RCR plus tenodesis with detachment vs. without detachment (n=1)	Low	The evidence was too limited to make a conclusion.
Arthroscopic debridement with biceps tenotomy vs. without tenotomy (n=1)	Low	The evidence was too limited to make a conclusion.
Complete open RCR vs. partial open RCR vs. debridement (n=1)	Low	The evidence was too limited to make a conclusion.
Open RCR with classic open acromioplasty vs. open RCR with modified open acromioplasty (n=1)	Low	The evidence was too limited to make a conclusion.

Table 66. Summary of strength of evidence for nonoperative and operative interventions

CGE = Concept Global d'Epaule; PT = physical therapy; RCR = rotator cuff repair; SLAP = superior labral from anterior to posterior

Table 66. Summary of strength of evidence for nonoperative and operative interventions (continued)

Comparison (number of studies)	Strength of evidence	Summary
Operative techniques		
Single-row vs. double-row suture anchor fixation (n=6)	Moderate	No clinically important difference for function and no difference for cuff integrity.
Bioabsorbable tacs vs. suture tying (n=1)	Low	The evidence was too limited to make a conclusion.
Side-to-side vs. tendon-to-bone fixation (n=1)	Low	The evidence was too limited to make a conclusion.
Nonabsorbable vs. absorbable sutures (n=1)	Low	The evidence was too limited to make a conclusion.
Bioabsorbable corkscrews vs. metal suture anchor (n=1)	Low	The evidence was too limited to make a conclusion.
Mattress locking vs. simple stitch (n=2)	Moderate	No difference in cuff integrity.
	Low	The evidence was too limited to make a conclusion for function.
Mattress vs. transosseous suture (n=1)	Low	The evidence was too limited to make a conclusion.
Ultrasonic welding vs. hand-tied knots (n=1)	Low	The evidence was too limited to make a conclusion.
Staple fixation vs. side-to-side suture (n=1)	Low	The evidence was too limited to make a conclusion.
Operative augmentation		
Porcine small intestine submucosa vs. no augmentation (n=2)	Low	The evidence was too limited to make a conclusion.
Patch graft vs. no augmentation (n=1)	Low	The evidence was too limited to make a conclusion.
Postoperative rehabilitation		
Continuous passive motion with PT treatment vs. PT treatment (n=3)	Moderate	No clinical or statistical difference in function. Some evidence for earlier return to work with continuous passive motion.
Aquatic therapy with land-based therapy vs. land-based therapy (n=1)	Low	The evidence was too limited to make a conclusion.
Postoperative rehabilitation (continued)		
Inpatient vs. day patient rehabilitation (n=1)	Low	The evidence was too limited to make a conclusion.
Individualized PT program with home exercise vs. home exercise (n=1)	Low	The evidence was too limited to make a conclusion.
Progressive vs. traditional loading (n=1)	Low	The evidence was too limited to make a conclusion.
Inpatient rehabilitation vs. outpatient CGE (n=1)	Low	The evidence was too limited to make a conclusion.
Standardized vs. non-standardized PT program (n=1)	Low	The evidence was too limited to make a conclusion.
Videotape vs. PT home exercise instruction (n=1)	Low	The evidence was too limited to make a conclusion.

Table 66. Summary of strength of evidence for nonoperative and operative interventions (continued)

Comparison (number of studies)	Strength of evidence	Summary
Nonoperative interventions		
Sodium hyaluraonate vs. dexamethasone (n=1)	Low	The evidence was too limited to make a conclusion.
Rehabilitation vs. no rehabilitation (n=1)	Low	The evidence was too limited to make a conclusion.
Physical therapy, oral medications and steroid injection vs. physical therapy, oral medications and no steroid injection (n=1)	Low	The evidence was too limited to make a conclusion.
Nonoperative vs. operative treatment		
Shock-wave therapy vs. mini-open RCR (n=1)	Low	The evidence was too limited to make a conclusion.
Steroid injection, physical therapy, and activity modification vs. open repair (n=1)	Low	The evidence was too limited to make a conclusion.
Physical therapy vs. open or mini-open RCR	Low	The evidence was too limited to make a conclusion.
Physical therapy treatment, oral medication, and steroid injection vs. arthroscopic debridement vs. open repair (n=1)	Low	The evidence was too limited to make a conclusion.
Passive stretching, strengthening, and corticosteroid injection vs. open repair with acromioplasty (n=1)	Low	The evidence was too limited to make a conclusion.

Applicability

The study populations in this body of evidence were relatively homogeneous. The vast majority included only patients with full-thickness tears. There was more variation in the number of tendons involved with many studies including patients with only one torn tendon (e.g., supraspinatus) while others included any tendon and tendon combination (e.g., supraspinatus plus infraspinatus, supraspinatis plus infraspinatus plus subscupularis). Studies similarly differed in the number and types of comorbidities permitted for enrollement of study patients. The mean age was clustered between 50 and 65 years, with males comprising an average slightly more than half of the study participants. The duration since symptom onset was not reported in the majority of studies, but when reported was generally between 12 and 18 months.

The other issue regarding applicability for this body of evidence relates to the practitioners administering the interventions (e.g., surgeons, physical therapists, or other healthcare providers). Outcome effects may differ between the trials and real life practice based on practitioners' skills and experience, volume of surgery, and variations or rigor surrounding cointerventions or procedural protocols.

Limitations of the Existing Evidence

The strength of evidence was low for the majority of interventions that were evaluated and compared in the management of RC tears. The low grade was driven by the high risk of bias within individual studies and the lack of consistency and precision across studies. The majority of studies in this field are lower in the hierarchies of evidence, with most studies lacking an independent comparison or control group. Overall, there were 21 RCTs and 6 CCTs; however, all of these were assessed as high risk of bias based on an empirically derived tool for assessing risk of bias developed by The Cochrane Collaboration. The trial features that were most problematic were inadequate blinding, inadequate allocation concealment, and incomplete outcome data. Inadequate blinding is an important limitation in this body of research due to the nature of the intervention and can lead to exaggerated effect estimates. Methodological approaches to adequately prevent knowledge of the intervention should be employed, such as blinding outcome assessors to treatment status. While blinding is not always feasible, adequate allocation concealment is always possible in an RCT and should be routinely employed. Incomplete outcome data or missing data was a problem in a number of trials due to loss to followup and inadequate handling of missing data in the reporting and/or analysis. Loss to followup was more problematic in studies that extended over a longer period of time. While attrition might be expected when the followup is over a number of years, it can exaggerate treatment effects and the potential for this bias should be considered when designing, conducting, and interpreting research.

One of the values of randomization is that all potential confounders, both known and unknown, are accounted for; hence, the results observed can be more closely attributed to the treatment under study. The majority of studies that were included in this report were not randomized; therefore, they are particularly vulnerable to bias resulting from lack of comparability between the groups under study. Moreover, the majority of studies did not control for important potential confounders in their design or analysis.

The strength of evidence was also rated low due to the lack of consistency and precision of results across studies. This is primarily due to the varied comparisons made across this body of literature with relatively few studies comparing the same interventions. Lack of consistency across studies may also be attributable to the variation in pathological presentation of rotator cuff disease. While the majority of patients had full-thickness tears, the size and configuration of the tears, degree of fatty infiltration, and number and type of comorbidities varied widely across the studies included in the review. Also contributing to the lack of consistency and precision was the variability in outcomes assessed across the studies.

The choice of outcomes and measurement tools needs attention in this area of research. The most common outcome assessed was function; however, 21 different tools were used for this purpose and often multiple tools were used within the same study. This makes comparisons across studies challenging. Moreover, it is unclear whether these functional scores are measuring the same construct to allow comparisons across studies that use different tools. There was also inconsistency in which ranges of motion were assessed in the studies and the vast majority of studies failed to report whether measurements were obtained actively or passively. Contributing to the inconsistency was the varied time points at which outcomes were assessed.

There was a paucity of evidence for some key questions that were considered clinically important. In particular, there was only one study that addressed whether early vs. late surgical repair results in better patient outcomes (Question 1). This question was identified as a critical issue by our technical expert panel, as there is uncertainty regarding whether, for what duration, and for which patients nonoperative treatment should be attempted prior to surgery. In addition, only three studies were identified that compared the effectiveness of nonoperative with operative treatment. Thus, firm conclusions on the optimal management of RC tears could not be made.

The body of evidence was insufficient for many outcomes that were considered by our review team to be clinically important a priori. These included health-related quality of life, function, return to work, and tendon healing. Consensus on clinically and patient-important

outcomes is needed. Many studies only reported results for one or two outcomes which may suggest selective outcome reporting or may simply reflect the retrospective nature of the studies.

Discussion and consensus is required regarding what differences are clinically important when comparing interventions. In some meta-analyses, a statistically significant difference was observed but the difference on the measurement scale was not deemed to be clinically important (e.g., less than 10 points on a 100-point scale). Such information is critical for designing future research (e.g., planning for adequate sample sizes) and interpreting the findings.

A further limitation of this body of evidence was the limited or inconsistent reporting with respect to a number of variables and design considerations. For instance, some of the interventions were inadequately described to allow for replication in practice or determining applicability. This was more problematic for the nonoperative interventions. Specifically, studies often reported using physical therapy as an intervention, without further description of treatment components or delivery. Sufficient detail should be reported regarding the specific components of the interventions; timing, and frequency of each component; training and experience of the individuals implementing the interventions; and, cointerventions. As another example, lack of comprehensive assessment and reporting across studies for complications while others did not comment on complications. It is not known whether these investigators looked for complications of the same complications and assessment of complications (e.g., clinical vs. imaging) may have varied across studies.

Future Research

The following general recommendations for future research are based on the preceding discussion regarding the limitations of the current evidence base:

- All future studies should employ a comparison or control group and ensure comparability of treatment groups, optimally through the use of randomization.
- Future research should seek to minimize bias by blinding outcome assessors, using validated and standardized outcome assessment instruments, adequately concealing allocation (where applicable), and handling and reporting missing data appropriately.
- Studies examining the long-term effectiveness of treatments over the course of several years are needed; at the very least, studies should follow patients for a minimum of 12 months.
- Interventions and comparisons chosen for study should be guided by consensus regarding the most promising and/or controversial interventions in order to avoid numerous studies on disparate interventions.
- Consensus on clinically and patient-important outcomes is needed to ensure consistency and comparability across future studies. Moreover, consensus on minimal clinically important differences is needed to guide study design and interpretation of results.
- Future research needs to be reported in a consistent and comprehensive manner to allow for appropriate interpretation of results.

This review identified numerous comparators for which the evidence base is sparse and which are priorities for future research. There is a need for primary research comparing the effectiveness of early vs. delayed surgery, as much uncertainly remains regarding the appropriate timing of treatment. Currently, patients generally undergo surgery after several months of failed

conservative treatment, however evidence is needed to determine whether, for how long, and for which types of patients surgery should be delayed. Further, evidence comparing the relative effectiveness of operative vs. nonoperative treatments, and among the various nonoperative treatment options, was extremely sparse. Future research examining these comparisons should ensure that the diagnosis of rotator cuff tears is confirmed using imaging and that the interventions are described in sufficient detail to allow for adequate assessment and replication of treatments. Although the majority of studies identified in this review focused on the comparative effectiveness of operative treatments, there was sparse evidence for most individual treatment comparisons, leaving many unanswered questions. Investigators should use a streamlined approach in evaluating operative treatments, beginning with broad treatment questions prior to focusing on detailed procedures. One main unanswered question is the relative effectiveness among the approaches to repair (open, mini-open or arthroscopic). There is currently much enthusiasm for the use of arthroscopic procedures, however evidence of superior outcomes compared to open repair should be established prior to investing resources into this costly and technically difficult procedure.

Investigators should select the highest level of evidence appropriate of their research questions when designing future studies. Authors may find tools such as the CONSORT¹⁹⁸ and the STROBE¹⁹⁹ statements helpful in designing and reporting on randomized controlled trials and cohort studies, respectively. In addition, the trial comparing early vs. delayed repair by Moosmayer et al.⁶⁶ provides a good example of a well-designed and conducted study in this field.

Conclusions

Numerous interventions and comparisons have been studied for the nonoperative and operative management of RC tears. The data are sparse for most interventions which prevents making firm conclusions for any single approach or for the optimal overall management of this condition. Overall, the evidence shows that all interventions result in substantial improvements; however, few differences of clinical importance are evident when comparisons between interventions are available. The majority of the data were derived from studies of low methodological quality or lower in the hierarchies of evidence.

In terms of operative approaches, there is moderate evidence demonstrating no difference in function between mini-open and arthroscopic repairs, open and mini-open repairs, open or mini-open and arthroscopic repairs, and arthroscopic repairs with and without acromioplasty. There is some evidence suggesting an earlier return to work for mini-open as compared with open repairs and greater improvement in function for open repairs compared with arthroscopic debridement. For operative techniques, there is moderate evidence for no clinically important difference in function or cuff integrity between single-row and double-row fixation, and no difference for cuff integrity between mattress locking and simple stitch. The evidence was too limited to make conclusions regarding comparative effectiveness for the other surgical approaches and techniques studied. In terms of postoperative rehabilitation, there is moderate evidence demonstrating no difference in function but earlier return to work for continuous passive motion with physical therapy compared with physical therapy alone. No conclusions were possible for studies evaluating operative treatments. In general the rates of complications were low across all interventions. There is some evidence that tear size and age may modify outcomes; while, WCB status, sex, and duration of symptoms generally showed no significant impact.

Future research should incorporate design elements to minimize bias in treatment effects including randomization where possible, blinding of outcome assessors, comparability of study groups, and appropriate handling and reporting of missing data. Consensus is needed on clinically and patient-important outcomes, as well as minimum clinically-important differences. Consistency across studies is needed in choice of outcomes and measurement tools. Comprehensive and consistent reporting in future studies will allow for more accurate comparisons and the interpretation of findings across studies as well as greater understanding with respect to the applicability of the findings.

References

- 1. Crusher RH. Rotator cuff injuries. Accident & Emergency Nursing 2000;8(3):129-133.
- Bartolozzi A, Andreychik D, Ahmad S. Determinants of outcome in the treatment of rotator cuff disease. Clin Orthop Related Res 1994;(308):90-97.
- 3. Ghodadra NS, Provencher MT, Verma NN, et al. Open, mini-open and all-arthroscopic rotator cuff repair surgery: indications and implications for rehabilitations. J Orthop Sporsts Phys Ther 2009;39: 81-89.
- Suenaga N, Minami A, Kaneda K. Postoperative subcoracoid impingement syndrome in patients with rotator cuff tear. J Shoulder Elbow Surg 2000;9(4):275-278.
- 5. Wittenberg RH, Rubenthaler F, Wolk T, et al. Surgical or conservative treatment for chronic rotator cuff calcifying tendinitis—a matched-pair analysis of 100 patients. Arch Orthop Trauma Surg 2001;121(1-2):56-59.
- 6. Fukuda H. The management of partial thickness tears of the rotator cuff. J Bone Joint Surg Br 2003;85(1):3-11.
- Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am 2000;82(4):505-515.
- Favard L, Bacle G, Berhouet J. Rotator cuff repair. Joint Bone Spine 2007;74(6):551-557.
- Gomoll AH, Katz JN, Warner JJP, et al. Rotator cuff disorders - Recognition and management among patients with shoulder pain. Arthritis and Rheumatism 2004;50(12):3751-3761.
- Yamaguchi K., Tetro AM, Blam O, et al. Natural history of asymptomatic rotator cuff tears: a longitudinal analysis of asymptomatic tears detected sonographically. J Shoulder Elbow Surg 2001;10:199-203.
- 11. Snyder SJ, Tomlinson RJ. Arthroscopic evaluation and treatment of rotator cuff disease. Hand and Upper Extremity 1997;87-105.
- 12. Coghlan JA, Buchbinder R, Green S, et al. Surgery for rotator cuff disease [Systematic Review]. Cochrane Database Syst Rev 2008;(1):CD005619.

- Lin JC, Weintraub N, Aragaki DR. Nonsurgical treatment for rotator cuff injury in the elderly. Journal of the American Medical Directors Association 2008;9(9):626-632.
- 14. Zakaria D. Rates of carpal tunnel syndrome, epicondylitis, and rotator cuff claims in Ontario workers during 1997. Chronic Dis Can 2004;25:3239.
- 15. Zakaria D, Robertson J, MacDermid JC, et al. Estimating the population at risk for Ontario Workplace Safety and Insurance Board-covered injuries or diseases. Chronic Dis Can 2002;23:1721.
- Herberts P, Kadefors R, Hogfors C, et al. Shoulder pain and heavy manual labor. Clin Orthop Relat Res 1984;166-178.
- 17. Bureau of Labor Statistics. Nonfatal occupational injuries and illnesses requiring days away from work, 2007. United States Department of Labor. 2008. Available at: http://www.bls.gov/news.release/pdf/osh2.p df. Accessed January 25, 2010.
- MacDermid JC, Ramos J, Drosdowech D, et al. The impact of rotator cuff pathology on isometric and isokinetic strength, function, and quality of life. Journal of Shoulder and Elbow Surgery 2004;(6):593-598.
- Burbank KM, Stevenson JH, Czarnecki GR, et al. Chronic shoulder pain: Part I. Evaluation and diagnosis. American Family Physician 2008;77(4):453-460.
- 20. Hughes PC, Taylor NF, Green RA. Most clinical tests cannot accurately diagnose rotator cuff pathology: a systematic review. Australian Journal of Physiotherapy 2008;54(3):159-170.
- 21. Bryant L, Shnier R, Bryant C, et al. A comparison of clinical estimation, ultrasonography, magnetic resonance imaging, and arthroscopy in determining the size of rotator cuff tears. J Shoulder Elbow Surg 2002;11(3):219-224.
- 22. Oh LS, Wolf BR, Hall MP, et al. Indications for rotator cuff repair: A systematic review. Clinical Orthopaedics and Related Research 2007;(455):52-63.

- 23. Burbank KM, Stevenson JH, Czarnecki GR, et al. Chronic shoulder pain: Part II. Treatment. American Family Physician 2008;77(4):493-497.
- 24. Noerdlinger MA, Fadale PD. The role of injectable corticosteroids in orthopedics. Orthopedics 2001;24(4):400-405.
- 25. Nho S, Michael JS. American Academy of Orthopaedic Surgeons RIUSS. Systematic review of arthroscopic rotator cuff repair and mini-open rotator cuff repair. American Academy of Orthopaedic Surgeons, San Diego, February 14-18, 2007. Journal of Bone and Joint Surgery Am 2007;89A(Suppl 3):127-136.
- Iannotti JP, Codsi MJ, Lafosse L, et al. Management of rotator cuff disease: intact and repairable cuff. In: Iannotti JP, Williams GR, Jr., eds. Disorders of the shoulder: diagnosis and management. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007:53-100.
- Matsen FA III, Arntz CT, Lippitt SB. Rotator cuff 14037. In: Rockwood Jr CA, Matsen III FA, eds. The Shoulder. 2nd ed. Philadelphia, PA: W.B. Saunders Brace & Company; 1998:755-839.
- Hollinshead RM, Mohtadi NG, Vande Guchte RA, et al. Two 6-year follow-up studies of large and massive rotator cuff tears: comparison of outcome measures. J Shoulder Elbow Surg 2000;9(5):373-381.
- 29. Razmjou H, Bean A, van V O, et al. Crosssectional and longitudinal construct validity of two rotator cuff disease-specific outcome measures. BMC Musculoskeletal Disorders 2006;7:26.
- 30. Ware Jr JE. SF-36 health survey update. Spine 2000;25(24):3130-3139.
- Beaton DE, Richards RR. Measuring function of the shoulder. A cross-sectional comparison of five questionnaires. J Bone Joint Surg Am 1996;78(6):882-890.
- MacDermid JC, Drosdowech D, Faber K. Responsiveness of self-report scales in patients recovering from rotator cuff surgery. J Shoulder Elbow Surg 2006;15(4):407-414.
- 33. Kirkley A, Alvarez C, Griffin S. The development and evaluation of a diseasespecific quality-of-life questionnaire for disorders of the rotator cuff: The Western Ontario Rotator Cuff Index. Clin J Sport Med 2003;13(2):84-92.

- 34. Beaton DE, Schemitsch E. Measures of health-related quality of life and physical function. Clinical Orthopaedics and Related Research 2003;(413):90-105.
- 35. Hudak PL, Amadio PC, Bombardier C. Development of an upper extremity outcome measure: the DASH (disabilities of the arm, shoulder and hand) [corrected]. The Upper Extremity Collaborative Group (UECG). Am J Ind Med 1996;29(6):602-608.
- Roy JS, MacDermid JC, Woodhouse LJ. Measuring shoulder function: a systematic review of four questionnaires. Arthritis Rheum 2009;61(5):623-632.
- 37. L'Insalata JC, Warren RF, Cohen SB, et al. A self-administered questionnaire for assessment of symptoms and function of the shoulder. J Bone Joint Surg Am 1997;79(5):738-748.
- 38. Paul A, Lewis M, Shadforth MF, et al. A comparison of four shoulder-specific questionnaires in primary care. Ann Rheum Dis 2004;63(10):1293-1299.
- Lippitt SB, Harryman II DT, Matsen III FA. A practical tool for evaluation function: the simple shoulder test. The Shoulder: A Balance of Mobility and Stability. In: Matsem III FA, Fu FH, Hawkins RJ, eds. Rosemont, IL, the American Academy of Orthopaedic Surgeons; 1993:545-559.
- 40. Roddey TS, Olson SL, Cook KF, et al. Comparison of the University of California-Los Angeles Shoulder Scale and the Simple Shoulder Test with the shoulder pain and disability index: single-administration reliability and validity. Phys Ther 2000;80(8):759-768.
- 41. MacDermid JC, Solomon P, Prkachin K. The shoulder pain and disability index demonstrates factor, construct and longitudinal validity. BMC Musculoskeltetal Disorders 2006;7(12).
- 42. Roach KE, Budiman-Mak E, Songsiridej N, et al. Development of a shoulder pain and disability index. Arthritis Care & Research 1991;4(4):143-149.
- 43. Kocher MS, Horan MP, Briggs KK, et al. Reliability, validity, and responsiveness of the American Shoulder and Elbow Surgeons subjective shoulder scale in patients with shoulder instability, rotator cuff disease, and glenohumeral arthritis. J Bone Joint Surg Am 2005;87(9):2006-2011.

- 44. Richards RR, An KN, Bigliani LU, et al. A standardized method for the assessment of shoulder function. J Shoulder Elbow Surg 1994;3:347-352.
- 45. Michener LA, McClure PW, Sennett BJ. American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, patient self-report section: reliability, validity, and responsiveness. J Shoulder Elbow Surg 2002;11(6):587-594.
- 46. Amstutz HC, Sew Hoy AL, Clarke IC. UCLA anatomic total shoulder arthroplasty. Clin Orthop 1981;155:10-14.
- 47. Romeo AA, Mazzocca A, Hang DW, et al. Shoulder scoring scales for the evaluation of rotator cuff repair. Clin Orthop Related Res 2004;(427):107-114.
- Cook KF, Roddey TS, Olson SL, et al. Reliability by surgical status of self-reported outcomes in patients who have shoulder pathologies. J Orthop Sports Phys Ther 2002;32(7):336-346.
- 49. Leggin BG, Michener LA, Shaffer MA, et al. The Penn Shoulder Score: Reliability and validity. Journal of Orthopaedic and Sports Physical Therapy 2006;(3):138-151.
- 50. Higgins J, Green SE. Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.1 [updated September 2008]. The Cochrane Collaboration. 2008.
- 51. Cho M, Bero L. The quality of drug studies published in symposium proceedings. Ann Int Med 1996;124:185-189.
- 52. Lewis J, Machin D. Intention to treat who should use ITT? Br J Cancer 1993;68(4):647-650.
- 53. Newell D. Intention-to-treat analysis: implications for quantitative and qualitative research. Int J Epidemiol 1992;21:837-841.
- 54. Wells G, Shea B, O'Connell B, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Department of Epidemiology and Community Medicine, University of Ottawa, 2009.
- 55. Owens DK, Lohr KN, Atkins D, et al. AHRQ series paper 5: Grading the strength of a body of evidence when comparing medical interventions–Agency for Healthcare Research and Quality and the Effective Health-care Program. J Clin Epi 2010;63(5):513-523.

- 56. Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ 2004;328(7454):1490.
- 57. Tashjian RZ, Deloach J, Porucznik CA, et al. Minimal clinically important differences (MCID) and patient acceptable symptomatic state (PASS) for visual analog scales (VAS) measuring pain in patients treated for rotator cuff disease. J Shoulder Elbow Surg 2009;18(6):927-932.
- 58. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21(11):1539.
- 59. Deeks JJ, Altman DG, Bradburn MJ. Statistical methods for examining heterogeneity and combining results from several studies in meta-analysis. In: Egger M, Davey Smith G, Altman DG, eds. Systematic review in health care: metaanalysis in context (Second edition). London: BMJ Publishing Group; 2001:285-312.
- 60. Iannotti JP, Bernot MP, Kuhlman JR, et al. Postoperative assessment of shoulder function: a prospective study of fullthickness rotator cuff tears. J Shoulder Elbow Surg 1996;5(6):449-457.
- Galatz LM, Griggs S, Cameron BD, et al. Prospective longitudinal analysis of postoperative shoulder function: a ten-year follow-up study of full-thickness rotator cuff tears. J Bone Joint Surg Am 2001;83-A(7):1052-1056.
- 62. Bennett WF. Arthroscopic repair of massive rotator cuff tears: a prospective cohort with 2- to 4-year follow-up. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2003;19(4):380-390.
- 63. Klinger HM, Spahn G, Baums MH, et al. Arthroscopic debridement of irreparable massive rotator cuff tears—a comparison of debridement alone and combined procedure with biceps tenotomy. Acta Chirurgica Belgica 2005;105(3):297-301.
- 64. Bennett WF. Arthroscopic repair of anterosuperior (supraspinatus/subscapularis) rotator cuff tears: a prospective cohort with 2- to 4-year follow-up. Classification of biceps subluxation/instability. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2003;19(1):21-33.

- 65. Klinger HM, Steckel H, Ernstberger T, et al. Arthroscopic debridement of massive rotator cuff tears: negative prognostic factors. Arch Orthop Trauma Surg 2005;125(4):261-266.
- 66. Moosmayer S, Lund G., Seljom U, et al. Comparison between surgery and physiotherapy in the treatment of small and medium-sized tears of the rotator cuff: a randomised controlled study of 103 patients with one-year followup. J Bone Joint Surg Br 2010;92(1):83-91.
- 67. Audenaert E, Van NJ, Schepens A, et al. Reconstruction of massive rotator cuff lesions with a synthetic interposition graft: a prospective study of 41 patients. Knee Surg Sports Traumatol Arthrosc 2006;14(4):360-364.
- 68. Baker CL, Liu SH. Comparison of open and arthroscopically assisted rotator cuff repairs. Am J Sports Med 1995;23(1):99-104.
- 69. Baysal D, Balyk R, Otto D, et al. Functional outcome and health-related quality of life after surgical repair of full-thickness rotator cuff tear using a mini-open technique. Am J Sports Med 2005;33(9):1346-1355.
- Bennett WF. Arthroscopic repair of fullthickness supraspinatus tears (small-tomedium): A prospective study with 2- to 4year follow-up. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2003;19(3):249-256.
- Bigoni M, Gorla M, Guerrasio S, et al. Shoulder evaluation with isokinetic strength testing after arthroscopic rotator cuff repairs. J Shoulder Elbow Surg 2009;18(2):178-183.
- 72. Bishop J, Klepps S, Lo IK, et al. Cuff integrity after arthroscopic vs. open rotator cuff repair: a prospective study. J Shoulder Elbow Surg 2006;15(3):290-299.
- 73. Boehm TD, Werner A, Radtke S, et al. The effect of suture materials and techniques on the outcome of repair of the rotator cuff: a prospective, randomised study. J Bone Joint Surg Br 2005;87(6):819-823.
- 74. Boileau P, Brassart N, Watkinson DJ, et al. Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Bone Joint Surg Am 2005;87(6):1229-1240.
- 75. Boileau P, Baque F, Valerio L, et al. Isolated arthroscopic biceps tenotomy or tenodesis improves symptoms in patients with massive irreparable rotator cuff tears. J Bone Joint Surg Am 2007;89(4):747-757.

- Boszotta H, Prunner K. Arthroscopically assisted rotator cuff repair. [Review] [21 refs]. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2004;20(6):620-626.
- 77. Buess E, Steuber KU, Waibl B. Open vs. arthroscopic rotator cuff repair: a comparative view of 96 cases. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2005;21(5):597-604.
- 78. Burks RT, Crim J, Brown N, et al. A prospective randomized clinical trial comparing arthroscopic single- and doublerow rotator cuff repair: magnetic resonance imaging and early clinical evaluation. Am J Sports Med 2009;37(4):674-682.
- 79. Caniggia M, Maniscalco P, Pagliantini L, et al. Titanium anchors for the repair of rotator cuff tears: preliminary report of a surgical technique. J Orthop Trauma 1995;9(4):312-317.
- 80. Charousset C, Grimberg J, Duranthon LD, et al. The time for functional recovery after arthroscopic rotator cuff repair: correlation with tendon healing controlled by computed tomography arthrography. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2008;24(1):25-33.
- 81. Charousset C, Grimberg J, Duranthon LD, et al. Can a double-row anchorage technique improve tendon healing in arthroscopic rotator cuff repair?: A prospective, nonrandomized, comparative study of double-row and single-row anchorage techniques with computed tomographic arthrography tendon healing assessment. Am J Sports Med 2007;35(8):1247-1253.
- Checchia SL, Doneux PS, Miyazaki AN, et al. Biceps tenodesis associated with arthroscopic repair of rotator cuff tears. J Shoulder Elbow Surg 2005;14(2):138-144.
- Cofield RH, Parvizi J, Hoffmeyer PJ, et al. Surgical repair of chronic rotator cuff tears. A prospective long-term study. J Bone Joint Surg Am 2001;83-A(1):71-77.
- 84. Cole BJ, McCarty III LP, Kang RW, et al. Arthroscopic rotator cuff repair: prospective functional outcome and repair integrity at minimum 2-year follow-up. J Shoulder Elbow Surg 2007;16(5):579-585.

- 85. Colegate-Stone T, Allom R, Tavakkolizadeh A, et al. An analysis of outcome of arthroscopic vs. mini-open rotator cuff repair using subjective and objective scoring tools. Knee Surg Sports Traumatol Arthrosc 2009;17(6):691-694.
- 86. Cools A, Declercq G, Sneyers C, et al. Isokinetic muscle strength and functional restoration following surgical repair of the rotator cuff: A prospective study. Isokinetics and Exercise Science 2006;(3):291-300.
- Costouros JG, von Campe A, Gerber C. Arthroscopic Rotator Cuff Repair Leads to Less Postoperative Fatty Infiltration than Open Repair. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23 2006.
- Cummins CA, Strickland S, Appleyard RC, et al. Rotator cuff repair with bioabsorbable screws: An in vivo and ex vivo investigation. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2003;19(3):239-248.
- Bavidson PA, Rivenburgh DW. Rotator cuff repair tension as a determinant of functional outcome. J Shoulder Elbow Surg 2000;9(6):502-506.
- 90. DeFranco MJ, Bershadsky B, Ciccone J, et al. Functional outcome of arthroscopic rotator cuff repairs: a correlation of anatomic and clinical results. J Shoulder Elbow Surg 2007;16(6):759-765.
- 91. Deutsch A. Arthroscopic repair of partialthickness tears of the rotator cuff. J Shoulder Elbow Surg 2007;16(2):193-201.
- 92. Deutsch A, Kroll DG, Hasapes J, et al. Repair integrity and clinical outcome after arthroscopic rotator cuff repair using singlerow anchor fixation: A prospective study of single-tendon and two-tendon tears. Journal of Shoulder and Elbow Surgery 2008;(6):845-852.
- 93. Ellman H, Kay SP, Wirth M. Arthroscopic treatment of full-thickness rotator cuff tears:
 2- to 7-year follow-up study. Arthroscopy: The Journal of Arthroscopy & Related Surgery 1993;9(2):195-200.
- 94. Favard L, Berhouet J, Colmar M, et al. Massive rotator cuff tears in patients younger than 65 years. What treatment options are available? Orthop Traumatol Surg Res 2009;95(4 Suppl):19-26.

- 95. Fenlin Jr JM, Chase JM, Rushton SA, et al. Tuberoplasty: creation of an acromiohumeral articulation-a treatment option for massive, irreparable rotator cuff tears. J Shoulder Elbow Surg 2002;11(2):136-142.
- 96. Franceschi F, Longo UG, Ruzzini L, et al. No advantages in repairing a type II superior labrum anterior and posterior (SLAP) lesion when associated with rotator cuff repair in patients over age 50: a randomized controlled trial. Am J Sports Med 2008;36(2):247-253.
- 97. Franceschi F, Longo UG, Ruzzini L, et al. To detach the long head of the biceps tendon after tenodesis or not: outcome analysis at the 4-year follow-up of two different techniques. Int Orthop 2007;31(4):537-545.
- 98. Franceschi F, Ruzzini L, Longo UG, et al. Equivalent clinical results of arthroscopic single-row and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. Am J Sports Med 2007;35(8):1254-1260.
- 99. Fuchs B, Gilbart MK, Hodler J, et al. Clinical and structural results of open repair of an isolated one-tendon tear of the rotator cuff. J Bone Joint Surg Am 2006;88(2):309-316.
- 100. Gartsman GM, Brinker MR, Khan M. Early effectiveness of arthroscopic repair for fullthickness tears of the rotator cuff: an outcome analysis. J Bone Joint Surg Am 1998;80(1):33-40.
- 101. Gartsman GM. Massive, irreparable tears of the rotator cuff. Results of operative debridement and subacromial decompression. J Bone Joint Surg Am 1997;79(5):715-721.
- 102. Gartsman GM, O'Connor DP. Arthroscopic rotator cuff repair with and without arthroscopic subacromial decompression: a prospective, randomized study of one-year outcomes. J Shoulder Elbow Surg 2004;13(4):424-426.
- Gazielly DF, Gleyze P, Montagnon C. Functional and anatomical results after rotator cuff repair. Clinical Orthopaedics and Related Research 1994;(304):43-53.
- 104. Gladstone JN, Bishop JY, Lo IK, et al. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med 2007;35(5):719-728.

- 105. Grasso A, Milano G, Salvatore M, et al. Single-row vs. double-row arthroscopic rotator cuff repair: a prospective randomized clinical study. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2009;25(1):4-12.
- 106. Hata Y, Saitoh S, Murakami N, et al. Atrophy of the deltoid muscle following rotator cuff surgery. J Bone Joint Surg Am 2004;86-A(7):1414-1419.
- 107. Henn III RF, Kang L, Tashjian RZ, et al. Patients with workers' compensation claims have worse outcomes after rotator cuff repair. J Bone Joint Surg Am 2008;90(10):2105-2113.
- 108. Hsu SL, Ko JY, Chen SH, et al. Surgical results in rotator cuff tears with shoulder stiffness. Journal of the Formosan Medical Association 2007;106(6):452-461.
- 109. Iannotti JP, Codsi MJ, Kwon YW, et al. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am 2006;88(6):1238-1244.
- 110. Ide J, Tokiyoshi A, Hirose J, et al. Arthroscopic repair of traumatic combined rotator cuff tears involving the subscapularis tendon. J Bone Joint Surg Am 2007;89(11):2378-2388.
- 111. Ide J, Maeda S, Takagi K. Arthroscopic transtendon repair of partial-thickness articular-side tears of the rotator cuff: anatomical and clinical study. Am J Sports Med 2005;33(11):1672-1679.
- Ide J, Maeda S, Takagi K. A comparison of arthroscopic and open rotator cuff repair. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2005;21(9):1090-1098.
- 113. Ito J, Morioka T. Surgical treatment for large and massive tears of the rotator cuff. Int Orthop 2003;27(4):228-231.
- 114. Kim SH, Ha KI, Park JH, et al. Arthroscopic vs. mini-open salvage repair of the rotator cuff tear: outcome analysis at 2 to 6 years' follow-up. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2003;19(7):746-754.
- 115. Kirschenbaum D, Coyle J, Leddy JP, et al. Shoulder strength with rotator cuff tears: Pre- and postoperative analysis. Clinical orthopaedics and related research 1993;(288):174-178.

- 116. Klepps S, Bishop J, Lin J, et al. Prospective evaluation of the effect of rotator cuff integrity on the outcome of open rotator cuff repairs. Am J Sports Med 2004;32(7):1716-1722.
- 117. Ko S-H, Friedman D, Seo D-K, et al. A Prospective Therapeutic Comparison of Simple Suture Repairs to Massive Cuff Stitch Repairs for Treatment of Small- and Medium-Sized Rotator Cuff Tears. Arthroscopy—Journal of Arthroscopic and Related Surgery 2009;25(6):583-589.
- 118. Ko SH, Lee CC, Friedman D, et al. Arthroscopic single-row supraspinatus tendon repair with a modified mattress locking stitch: a prospective, randomized controlled comparison with a simple stitch. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2008;24(9):1005-1012.
- 119. Kose KC, Tezen E, Cebesoy O, et al. Miniopen vs. all-arthroscopic rotator cuff repair: Comparison of the operative costs and the clinical outcomes. Adv Ther 2008;25(3):249-259.
- 120. Kreuz PC, Remiger A, Lahm A, et al. Comparison of total and partial traumatic tears of the subscapularis tendon. J Bone Joint Surg Br 2005;87(3):348-351.
- 121. Lafosse L, Brozska R, Toussaint B, et al. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am 2007;89(7):1533-1541.
- 122. Lafosse L, Jost B, Reiland Y, et al. Structural integrity and clinical outcomes after arthroscopic repair of isolated subscapularis tears. J Bone Joint Surg Am 2007;89(6):1184-1193.
- 123. Levy O, Venkateswaran B, Even T, et al. Mid-term clinical and sonographic outcome of arthroscopic repair of the rotator cuff. J Bone Joint Surg Br 2008;90(10):1341-1347.
- 124. Lichtenberg S, Liem D, Magosch P, et al. Influence of tendon healing after arthroscopic rotator cuff repair on clinical outcome using single-row Mason-Allen suture technique: a prospective, MRI controlled study. Knee Surg Sports Traumatol Arthrosc 2006;14(11):1200-1206.

- 125. Liem D, Bartl C, Lichtenberg S, et al. Clinical outcome and tendon integrity of arthroscopic vs. mini-open supraspinatus tendon repair: a magnetic resonance imaging-controlled matched-pair analysis. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2007;23(5):514-521.
- 126. Lim JTK, Acornley A, Dodenhoff RM. Recovery after arthroscopic subacromial decompression: Prognostic value of the subacromial injection test. Arthroscopy-the Journal of Arthroscopic and Related Surgery 2005;21(6):680-683.
- 127. Maier D, Jaeger M, Suedkamp NP, et al. Stabilization of the long head of the biceps tendon in the context of early repair of traumatic subscapularis tendon tears. J Bone Joint Surg Am 2007;89(8):1763-1769.
- 128. Mallon WJ, Misamore G, Snead DS, et al. The impact of preoperative smoking habits on the results of rotator cuff repair. J Shoulder Elbow Surg 2004;13(2):129-132.
- 129. Matis N, Hubner C, Aschauer E, et al. Arthroscopic transosseous reinsertion of the rotator cuff. Operative Orthopadie und Traumatologie 2006;18(1):1-18.
- McBirnie JM, Miniaci A, Miniaci SL. Arthroscopic repair of full-thickness rotator cuff tears using bioabsorbable tacks. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2005;21(12):1421-1427.
- McCallister WV, Parsons IM, Titelman RM, et al. Open rotator cuff repair without acromioplasty. J Bone Joint Surg Am 2005;87(6):1278-1283.
- 132. McIntyre LF, Norris M, Weber B. Comparison of Suture Welding and Hand-Tied Knots in Mini-Open Rotator Cuff Repair. Arthroscopy—Journal of Arthroscopic and Related Surgery 2006;(8):836.
- 133. Milano G, Grasso A, Salvatore M, et al. Arthroscopic rotator cuff repair with and without subacromial decompression: a prospective randomized study. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2007;23(1):81-88.
- Millar NL, Wu X, Tantau R, et al. Open vs. two forms of arthroscopic rotator cuff repair. Clin Orthop Related Res 2009;467(4):966-978.
- 135. Misamore GW, Ziegler DW, Rushton JL. Repair of the rotator cuff. A comparison of results in two populations of patients. J Bone Joint Surg Am 1995;77(9):1335-1339.

- 136. Mohtadi NG, Hollinshead RM, Sasyniuk TM, et al. A randomized clinical trial comparing open to arthroscopic acromioplasty with mini-open rotator cuff repair for full-thickness rotator cuff tears: disease-specific quality of life outcome at an average 2-year follow-up. Am J Sports Med 2008;36(6):1043-1051.
- 137. Montgomery TJ Yerger B. Management of rotator cuff tears: A comparison of arthroscopic debridement and surgical repair. Journal of Shoulder and Elbow Surgery 1994;3(2):70-78.
- Moser M, Jablonski MV, Horodyski M, et al. Functional outcome of surgically treated massive rotator cuff tears: a comparison of complete repair, partial repair, and debridement. Orthopedics 2007;30(6):479-482.
- 139. Motycka T, Lehner A, Landsiedl F. Comparison of debridement vs. suture in large rotator cuff tears: long-term study of 64 shoulders. Arch Orthop Trauma Surg 2004;124(10):654-658.
- 140. Mullett H, Venkat V, Massoud S, et al. Small & Medium Rotator Cuff Tears: Comparison of Arthroscopic Rotator Cuff Repair vs Arthroscopic Subacromial Decompression. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- 141. Nam SC, Yong GR. Functional outcome of arthroscopic repair with concomitant manipulation in rotator cuff tears with stiff shoulder. Am J Sports Med 2008;36(7):1323-1329.
- 142. Nho SJ, Brown BS, Lyman S, et al. Prospective analysis of arthroscopic rotator cuff repair: Prognostic factors affecting clinical and ultrasound outcome. Journal of Shoulder and Elbow Surgery 2009;(1):13-20.
- 143. Ogilvie-Harris DJ, Demaziere A. Arthroscopic debridement vs. open repair for rotator cuff tears. A prospective cohort study. J Bone Joint Surg Br 1993;75(3):416-20.
- 144. Oh JH, Kim SH, Lee HK, et al. Moderate preoperative shoulder stiffness does not alter the clinical outcome of rotator cuff repair with arthroscopic release and manipulation. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2008;24(9):983-991.

- 145. Pai VS, Lawson DA. Rotator cuff repair in a district hospital setting: outcomes and analysis of prognostic factors. J Shoulder Elbow Surg 2001;10(3):236-241.
- 146. Park JY, Chung KT, Yoo MJ. A serial comparison of arthroscopic repairs for partial- and full-thickness rotator cuff tears. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2004;20(7):705-711.
- 147. Park JY, Lhee SH, Choi JH, et al. Comparison of the clinical outcomes of single- and double-row repairs in rotator cuff tears. Am J Sports Med 2008;36(7):1310-1316.
- 148. Pearsall AW, Ibrahim KA, Madanagopal SG. The results of arthroscopic vs. miniopen repair for rotator cuff tears at mid-term follow-up. J Orthop Surg 2007;2:24.
- 149. Pillay R. Arthroscopic subacromial decompression for chronic shoulder impingement. Journal of Orthopaedic Surgery 1994;(1):67-70.
- 150. Porcellini G, Paladini P, Campi F, et al. Shoulder instability and related rotator cuff tears: arthroscopic findings and treatment in patients aged 40 to 60 years. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2006;22(3):270-276.
- 151. Prasad N, Odumala A, Elias F, et al. Outcome of open rotator cuff repair. An analysis of risk factors. Acta Orthop Belg 2005;71(6):662-666.
- 152. Randelli PS, Arrigoni P, Cabitza P, et al. Autologous platelet rich plasma for arthroscopic rotator cuff repair. A pilot study. Disability and Rehabilitation 2008;(20-22):1584-1589.
- 153. Rokito AS, Cuomo F, Gallagher MA, et al. Long-term functional outcome of repair of large and massive chronic tears of the rotator cuff. J Bone Joint Surg Am 1999;81(7):991-997.
- 154. Sauerbrey AM, Getz CL, Piancastelli M, et al. Arthroscopic vs. mini-open rotator cuff repair: a comparison of clinical outcome. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2005;21(12):1415-1420.
- 155. Scheibel M, Brown A, Woertler K, et al. Preliminary results after rotator cuff reconstruction augmented with an autologous periosteal flap. Knee Surg Sports Traumatol Arthrosc 2007;15(3):305-314.

- 156. Scheibel M, Lichtenberg S, Habermeyer P. Reversed arthroscopic subacromial decompression for massive rotator cuff tears. J Shoulder Elbow Surg 2004;13(3):272-278.
- 157. Severud EL, Ruotolo C, Abbott DD, et al. All-arthroscopic vs. mini-open rotator cuff repair: A long-term retrospective outcome comparison. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2003;19(3):234-238.
- 158. Sugaya H, Maeda K, Matsuki K, et al. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. A prospective outcome study. J Bone Joint Surg Am 2007;89(5):953-960.
- 159. Sugaya H, Maeda K, Matsuki K, et al. Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row vs. dual-row fixation. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2005;21(11):1307-1316.
- 160. Tashjian RZ, Henn RF, Kang L, et al. Effect of medical comorbidity on self-assessed pain, function, and general health status after rotator cuff repair. J Bone Joint Surg Am 2006;88(3):536-540.
- 161. Tauro JC. Arthroscopic repair of large rotator cuff tears using the interval slide technique. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2004;20(1):13-21.
- 162. Tauro JC. Stiffness and rotator cuff tears: incidence, arthroscopic findings, and treatment results. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2006;22(6):581-586.
- 163. Torrens C, Lopez JM, Verdier E, et al. Open anterior acromioplasty with preservation of the coracoacromial ligament: A modified surgical technique. J Shoulder Elbow Surg 2003;12(1):9-14.
- 164. Trenerry K, Walton JR, Murrell GA. Prevention of shoulder stiffness after rotator cuff repair. Clin Orthop Related Res 2005;(430):94-99.
- 165. Vad VB, Warren RF, Altchek DW, et al. Negative prognostic factors in managing massive rotator cuff tears. Clin J Sport Med 2002;12(3):151-157.
- 166. Vaz SP. Bursectomy and acromial resection in arthroscopic treatment of sub-acromial impingement. Orthopedie traumatologie 2000;10(1):13-19.

- 167. Verma NN, Dunn W, Adler RS, et al. Allarthroscopic vs. mini-open rotator cuff repair: a retrospective review with minimum 2-year follow-up. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2006;22(6):587-594.
- 168. Vitale MA, Vitale MG, Zivin JG, et al. Rotator cuff repair: an analysis of utility scores and cost-effectiveness. J Shoulder Elbow Surg 2007;16(2):181-187.
- 169. Waibl B, Buess E. Partial-thickness articular surface supraspinatus tears: a new transtendon suture technique. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2005;21(3):376-381.
- 170. Walton JR, Bowman NK, Khatib Y, et al. Restore orthobiologic implant: not recommended for augmentation of rotator cuff repairs. J Bone Joint Surg Am 2007;89(4):786-791.
- 171. Warner JJ, Tetreault P, Lehtinen J, et al. Arthroscopic vs. mini-open rotator cuff repair: a cohort comparison study. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2005;21(3):328-332.
- 172. Wilson F, Hinov V, Adams G. Arthroscopic repair of full-thickness tears of the rotator cuff: 2- to 14-year follow-up. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2002;18(2):136-144.
- 173. Youm T, Murray DH, Kubiak EN, et al. Arthroscopic vs. mini-open rotator cuff repair: a comparison of clinical outcomes and patient satisfaction. J Shoulder Elbow Surg 2005;14(5):455-459.
- 174. Zumstein MA, Jost B, Hempel J, et al. The clinical and structural long-term results of open repair of massive tears of the rotator cuff. J Bone Joint Surg Am 2008;90(11):2423-2431.
- 175. Boissonnault WG, Badke MB, Wooden MJ, et al. Patient outcome following rehabilitation for rotator cuff repair surgery: the impact of selected medical comorbidities. J Orthop Sports Phys Ther 2007;37(6):312-319.
- 176. Brady B, Redfern J, MacDougal G, et al. The addition of aquatic therapy to rehabilitation following surgical rotator cuff repair: a feasibility study. Physiother Res Int 2008;13(3):153-161.

- 177. Delbrouck C, Dauty M, Huguet D, et al. Rehabilitation after shoulder rotator cuff surgery: in-patient or day-hospitalization (about 76 cases). [French]. Ann Readapt Med Phys 2003;46(4):207-213.
- 178. Hayes K, Ginn KA, Walton JR, et al. A randomised clinical trial evaluating the efficacy of physiotherapy after rotator cuff repair. Australian Journal of Physiotherapy 2004;50(2):77-83.
- 179. Klintberg Hultenheim I, Gunnarsson A-C, Svantesson U, et al. Early loading in physiotherapy treatment after full-thickness rotator cuff repair: A prospective randomized pilot-study with a two-year follow-up. Clin Rehabil 2009;23(7):622-638.
- 180. LaStayo PC, Wright T, Jaffe R, et al. Continuous passive motion after repair of the rotator cuff. A prospective outcome study. J Bone Joint Surg Am 1998;80(7):1002-1011.
- 181. Marc T, Gaudin T, Teissier J. Rehabilitation after rotator cuff repairs: factors influencing functional outcome at two years [French]. Kinesitherapie Revue 2009;(89):36-44.
- 182. Michael JWP, Konig DP, Imhoff AB, et al. Efficiency of a postoperative treatment after rotator cuff repair with a continuous passive motion device (CPM). [German]. Z Orthop Ihre 2005;143(4):438-445.
- 183. Milroy DR, Marland JD, Parent EC, et al. Rotator cuff repair: the effect of a standardized post-operative physical therapy protocol vs. a non-standardized postoperative protocol. Nashville, Tennessee, February 6-9, 2008. J Orthop Sports Phys Ther 2008;38(1):A17-A18.
- 184. Raab MG, Rzeszutko D, O'Connor W, et al. Early results of continuous passive motion after rotator cuff repair: a prospective, randomized, blinded, controlled study. Am J Orthop 1996;25(3):214-220.
- 185. Roddey TS, Olson SL, Gartsman GM, et al. A randomized controlled trial comparing 2 instructional approaches to home exercise instruction following arthroscopic fullthickness rotator cuff repair surgery. J Orthop Sports Phys Ther 2002;32(11):548-559.
- 186. Ghroubi S, Chaari M, Elleuch H, et al. Functional and quality of life outcome of none operated rotator cuff tears. [French]. Annales de Readaptation et de Medecine Physique 2008;(9):714-721.

- 187. Hawkins RH, Dunlop R. Nonoperative treatment of rotator cuff tears. Clin Orthop Related Res 1995;(321):178-188.
- 188. Heers G, Anders S, Werther M, et al. Efficacy of home exercises for symptomatic rotator cuff tears in correlation to the size of the defect. [German]. Sportverletz Sportschaden 2005;19(1):22-27.
- 189. Kane TP, Rogers P, Hazelgrove J, et al. Pulsed radiofrequency applied to the suprascapular nerve in painful cuff tear arthropathy. J Shoulder Elbow Surg 2008;17(3):436-440.
- 190. Koubaa S, Ben Salah FZ, Lebib S, et al. Conservative management of full-thickness rotator cuff tears. A prospective study of 24 patients. [French]. Ann Readapt Med Phys 2006;49(2):62-67.
- 191. Leroux JL, Thomas E, Azema MJ, et al. Functional pattern of 115 rotator cuff tears. Eur J Phys Med Rehabil 1993;3(6):242-247.
- 192. Levy O, Mullett H, Roberts S, et al. The role of anterior deltoid reeducation in patients with massive irreparable degenerative rotator cuff tears. Journal of Shoulder and Elbow Surgery 2008;(6):863-870.
- 193. Scheuermann R, Behrens P, Egbers HJ, et al. The early functional physiotherapy of the shoulder backed up by an active shoulder support. [German]. Aktuelle Traumatologie 1991;(2):58-63.

- 194. Shibata Y, Midorikawa K, Emoto G, et al. Clinical evaluation of sodium hyaluronate for the treatment of patients with rotator cuff tear. J Shoulder Elbow Surg 2001;10(3):209-216.
- 195. De Carli A, Vulpiani M, Russo A, et al. Reparable Rotator Cuff Tears: Surgery vs Shock Wave Therapy. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- 196. Lunn JV, Castellanos-Rosas J, Tavernier T, et al. A novel lesion of the infraspinatus characterized by musculotendinous disruption, edema, and late fatty infiltration. J Shoulder Elbow Surg 2008;17(4):546-553.
- 197. Yamada N, Hamada K, Nakajima T, et al. Comparison of conservative and operative treatments of massive rotator cuff tears. Tokai Journal of Experimental & Clinical Medicine 2000;25(4-6):151-163.
- 198. Moher D, Schulz KF, Altman DG, et al. The CONSORT statement: Revised recommendations for improving the quality of reports of parallel group randomized trials. Ann Intern Med 2001;134(8):657-662.
- 199. von Elm E, Altman DG, Egger M, et al. The Strengthening of Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008;61(4):344-349.

Abbreviations

Abbreviation	Description
AHRQ	Agency of Healthcare Research and Quality
ASES	American Shoulder and Elbow Surgeons
BA	Before-and-after
EPC	Evidence-based Practice Center
CI	Confidence interval
CCT	Controlled clinical trial
CMS	Constant-Murley Score
СТ	Computed tomography
DASH	Disabilities of the Arm, Shoulder, and Hand
FSET	Shoulder Elevation Test
IQR	Inter-quartile range
JOA	Japanese Orthopaedic Association
LHB	Long head of biceps
MMLS	Modified mattress locking stitch
MRI	Magnetic resonance imaging
NOQAS	Newcastle-Ottawa Quality Assessment Scales
NSAID	Non-steroidal anti-inflammatory drugs
RC	Rotator cuff
RC-QOL	Rotator Cuff Quality of Life scale
RCR	Rotator cuff repair
RCT	Randomized controlled trial
SF-36	Short Form (36) Health Survey
SLAP	Superior labral from anterior to posterior
SMD	Standardized mean difference
SPADI	Shoulder Pain and Disability Index
SRQ	Shoulder Rating Questionnaire
SSI	Shoulder Strength Index
SSQ	Shoulder Service Questionnaire
SST	Simple Shoulder Test
TEP	Technical expert panel
UAEPC	University of Alberta Evidence-based Practice Center
UCLA	University of California, Los Angeles
PENN	University of Pennsylvania Shoulder Score
VAS	Visual analogue scale
WCB	Workers' compensation board
WMD	Weighted mean difference
WORC	Western Ontario Rotator Cuff Index

Comparative Effectiveness of Non-Operative and Operative Treatments for Rotator Cuff Tears

Appendixes

Appendix A. Expert Panel and Peer Reviewers

Technical Expert Panel Members

Judy Chepeha, M.Sc.P.T., Ph.D. (candidate) Assistant Professor Department of Physical Therapy Faculty of Rehabilitation Medicine University of Alberta Edmonton, AB

James Chesnutt, M.D. Assistant Professor Oregon Health Sciences University School of Medicine Department of Family Medicine Portland, OR

Philip McClure, P.T., Ph.D. Professor Arcadia University Department of Physical Therapy Glenside, PA

James Mold, M.D., M.P.H. Professor Director, Research Division Department of Family and Preventive Medicine University of Oklahoma Health Sciences Center Oklahoma City, OK

David Stutz, M.D., F.A.C.P. Clinical Assistant Professor of Medicine East Ann Arbor Health and Geriatrics Center Ann Arbor, MI

Amir Qaseem, M.D., Ph.D., M.H.A. Senior Medical Associate Medical Knowledge and Publishing Division American College of Physicians Philadelphia, PA

Ken Yamaguchi, M.D. Professor of Orthopaedic Surgery Barnes-Jewish Hospital Washington University School of Medicine St. Louis, MO

Peer Reviewers

Judy Chepeha, M.Sc.P.T., Ph.D. (candidate) Assistant Professor Department of Physical Therapy Faculty of Rehabilitation Medicine University of Alberta Edmonton, AB

Robert Haralson III, M.D., M.B.A Associate Clinical Professor of Orthopaedic Surgery University of Tennessee Center for the Health Sciences Knoxville, TN

Joseph Iannotti, M.D., Ph.D. Institute Chair Orthopaedic and Rheumatologic Institute Cleveland, OH

Philip McClure, P.T., Ph.D. Professor Department of Physical Therapy Arcadia University Glenside, PA

Lori Michener, Ph.D., P.T., S.C.S., A.T.C. Assistant Professor Department of Physical Therapy Virginia Commonwealth University Richmond, VA

Amir Qaseem, M.D., Ph.D., M.H.A. Senior Medical Associate Medical Knowledge and Publishing Division American College of Physicians Philadelphia, PA

Greg Samsa, Ph.D. Associate Professor Associate Director, Center for Health Policy Research and Education Duke University Medical Center Durham, NC

David Stutz, M.D., F.A.C.P. Clinical Assistant Professor of Medicine East Ann Arbor Health and Geriatrics Center Ann Arbor, MI

Appendix B. Literature Search Strings

- Table B-1.MEDLINE[®]-Ovid Version
- Table B-2.EMBASE–Ovid Version
- Table B-3.
 EBM Reviews—The Cochrane Library—Ovid Version
- Table B-4.
 AMED (Allied and Complementary Medicine) and Pascal—Ovid Version
- Table B-5.EBSCO Databases (CINAHL®, SPORTDiscus with Full Text, Academic
Search Elite, Health Source: Nursing and Academic Edition)
- Table B-6.Science Citation Index Expanded (via Web of Science®)—Institute for
Scientific Information—Thomson Corporation
- Table B-7.Scopus[®] Elsevier B.V.
- Table B-8.BIOSIS Previews®—Institute for Scientific Information—Thomson Corporation
- Table B-9. PubMed—National Library of Medicine
- Table B-10.Grey Literature Sources

Table B-1	. MEDLINE ^{®-}	⁻ Ovid	Version

OvidSP_UI02.01.02.102	Searched: 27Jan09 and 15Sep09
1950 to January Week 4 2009	Results: 2291
 exp rotator cuff/in ((rotator cuff* or rotator interval* or supraspin?tus or infraspin?tus or "teres minor" or subscapularis or anterosuperior or posterosuperior) adj5 (tear or tears or tore or torn or lesion* or rupture* or avuls* or injur* or repair* or debride*)).mp. exp Huscles/in ((tendon or tendons or muscle* or muscular) adj5 (tear or tears or tore or torn or lesion* or rupture* or avuls* or injur* or repair* or debride*)).mp. ((till or partial) adj4 (thick\$ or tear or tears)).ti,ab. or/3-6 exp Shoulder/ or exp Shoulder Joint/ (shoulder or glenohumeral).mp. (rotator cuff* or rotator interval* or supraspin?tus or infraspin?tus or "teres minor" or subscapularis or anterosuperior or posterosuperior).mp. or/a-6.11 or/1-2,12 r and 11 or/1-2,12 r andomized controlled trial.pt. controlled clinical trial.pt. exp Random Allocation/ exp Candomized controlled trials as topic/ exp Random Allocation/ exp Clinical trial.pt. exp Clinical trial.pt. exp Clinical trial.pt. exp Clinical trial.pt. exp Clinical trials as topic/ exp clinical trials or study or studies or design)).ti,ab. colinical trial.pt. exp clinical trials or tripl\$) adj25 (bind\$ or mask\$)).ti,ab. exp research design/ comparative study/ exp evaluation studies/ 	 30. exp follow-up studies/ 31. ((follow\$ or observational or compar\$) adj3 (trial\$ or study or studies or design)).ti,ab. 32. exp prospective studies/ 33. exp epidemiologic studies/ 34. exp causality/ 35. epidemiological factors/ 36. (effect\$ or outcome\$ or allocat\$ or control\$ or assign\$ or compar\$ or experiment\$ or analys\$ or analyz\$).mp. 37. ((control\$ or prospectiv\$ or volunteer\$ or participant\$) adj5 (trial\$ or study or studies or design)).mp. 38. (group or groups).ti,ab. 39. cohort\$.ti,ab. 40. case-control\$.ti,ab. 41. cross sectional.ti,ab. 42. (case adj (comparison or referent\$ or series)).ti,ab. 43. longitudinal.ti,ab. 44. (causation or causal\$).ti,ab. 45. (analytic adj (study or studies)).mp. 46. "single subject".ti,ab. 47. SSRD.ti,ab. 48. "n-of-1".ti,ab. 49. baseline.ti,ab. 50. "before after".ti,ab.* 51. or/14-50 52. animals/ not humans/ 53. 51 not 52 54. 13 and 53 55. limit 54 to ("all adult (19 plus years)" or "adult (19 to 44 years)" or "middle age (45 to 64 years)" or "middle aged (45 plus years)" or "all aged (65 and over)" or "aged (80 and over)")

*Line removed for Sept 2009 search

Table B-2. EMBASE—Ovid Version

OvidSP_UI02.01.02.102	Searched: 27Jan09 and 15Sep09
1988 to 2009 Week 3	Results: 2247
 exp rotator cuff rupture/ ((rotator cuff* or rotator interval* or supraspin?tus or infraspin?tus or "teres minor" or subscapularis or anterosuperior or posterosuperior) adj5 (tear or tears or tore or torn or lesion* or rupture* or avuls* or injur* or repair* or debride*)).mp. exp tendon injury/ or exp tendon rupture/ or exp ligament rupture/ exp Muscle injury/ ((tendon or tendons or muscle* or muscular) adj5 (tear or tears or tore or torn or lesion* or rupture* or avuls* or injur* or repair* or debride*)).mp. ((full or partial) adj4 (thick\$ or tear or tears)).ti,ab. or/3-6 exp Shoulder/ or exp Rotator Cuff/ or "teres minor muscle"/ (shoulder or glenohumeral).mp. (rotator cuff* or rotator interval* or supraspin?tus or infraspin?tus or "teres minor" or subscapularis or anterosuperior or posterosuperior).mp. or/1-2,12 exp Randomized controlled trial/ exp Randomization/ exp Randomization/ (clin\$ adj25 (trial\$ or study or studies or design)).ti,ab. ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj25 (blind\$ or mask\$)).ti,ab. exp placebo/ placebo\$,ti,ab. random\$,ti,ab. (a or co or ct or do or th).fs. 	 23. exp Methodology/ 24. exp Types of study/ 25. exp "evaluation and Follow-up"/ 26. ([follow\$ or observational or compar\$) adj3 (trial\$ or study or studies or design)).ti,ab. 27. (effect\$ or outcome\$ or allocat\$ or control\$ or assign\$ or compar\$ or experiment\$ or analys\$ or analyz\$).mp. 28. ((control\$ or prospectiv\$ or volunteer\$ or participant\$) adj5 (trial\$ or study or studies or design)).mp. 29. (group or groups).ti,ab. 30. cohort\$.ti,ab. 31. case-control\$.ti,ab. 32. cross sectional.ti,ab. 33. (case adj (comparison or referent\$ or series)).ti,ab. 34. longitudinal.ti,ab. 35. (causation or causal\$).ti,ab. 36. (analytic adj (study or studies)).mp. 37. (epidemiologic\$ adj (study or studies)).ti,ab. 38. "single subject".ti,ab. 39. SSRD.ti,ab. 40. "n-of-1".ti,ab. 41. baseline.ti,ab. 42. "before after".ti,ab.* 43. or/14-42 44. Nonhuman/ not human/ 45. 43 not 44 46. 13 and 45 47. limit 46 to (adult <18 to 64 years> or aged <65+ years>) 48. limit 47 to yr="1990 - 2009"

*Line removed for Sept 2009 search

Table B-3. EBM Reviews—Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effectiveness, Health Technology Assessment Database—Ovid Version

OvidSP_UI02.01.02.102	Searched: 28Jan00 and 15Sep09**
4th Quarter 2008	Results: 220
Central**: 165	DARE: 11
CDSR: 35	HTA: 9
 exp rotator cuff/in ((rotator cuff* or rotator interval* or supraspin?tus or infraspin?tus or "teres minor" or subscapularis or anterosuperior or posterosuperior) adj5 (tear or tears or tore or torn or lesion* or rupture* or avuls* or injur* or repair* or debride*)).mp. exp tendon injuries/ or exp tendon injury/ or exp tendon rupture/ or exp ligament rupture/ exp Muscles/in or exp Muscle Injury/ ((tendon or tendons or muscle* or muscular) adj5 (tear or tears or tore or torn or lesion* or rupture* or avuls* or injur* or repair* or debride*)).mp. 	 6. ((full or partial) adj4 (thick\$ or tear or tears)).ti,ab. 7. or/3-6 8. exp Shoulder/ or exp Shoulder Joint/ or exp Rotator Cuff/ or "teres minor muscle"/ 9. (shoulder or glenohumeral).mp. 10. (rotator cuff* or rotator interval* or supraspin?tus or infraspin?tus or "teres minor" or subscapularis or anterosuperior or posterosuperior).mp. 11. or/8-10 12. 7 and 11 13. or/1-2,12 14. limit 13 to yr="1990 - 2008"

Table B-4. AMED (Allied and Complementary Medicine) and Pascal—Ovid Version

OvidSP_UI02.01.02.102 AMED 1910 to January 2009 Searched: 28Jan09 Results: 131 Pascal 1987 to Jan 2009 Searched: 28Jan09 Results: 751

1. exp rotator cuff/in 14. limit 13 to yr="1990 - 2009" 2. ((rotator cuff* or rotator interval* or 15. child*.ti. supraspin?tus or infraspin?tus or "teres minor" or 16. 14 not 15 subscapularis or anterosuperior or posterosuperior) 17. remove duplicates from 16 adj5 (tear or tears or tore or torn or lesion* or 18. from 17 keep 1-1782 rupture* or avuls* or injur* or repair* or 19. limit 18 to (atlas or bibliography or case report debride*)).mp. clinical case or comments or correspondence 3. exp tendon injuries/ letters or deposited material or editorial or excerpt 4. exp Muscles/in or expert view or interview talk or legislation or 5. ((tendon or tendons or muscle* or muscular) letter to editor or "map" or numerical data or offprint or preliminary communication or short adi5 (tear or tears or tore or torn or lesion* or rupture* or avuls* or injur* or repair* or communication or standard or thoughts about debride*)).mp. synopsis or trade literature) 6. ((full or partial) adj4 (thick\$ or tear or 20. 18 not 19 tears)).ti.ab. 21. from 17 keep 1783-2049 22. limit 21 to (annotated bibliography or 7. or/3-6 8. exp Shoulder/ or exp Shoulder Joint/ bibliography or brief communication or clinical note 9. (shoulder or glenohumeral).mp. or commentary or editorial or equipment note or 10. (rotator cuff* or rotator interval* or "equipment review" or interview or lecture or letter supraspin?tus or infraspin?tus or "teres minor" or or monograph or news or notes or study guide or subscapularis or anterosuperior or technical note) posterosuperior).mp. 23. 21 not 22 11. or/8-10 24. 20 or 23 12. 7 and 11 13. or/1-2,12

Table B-5. EBSCO Databases

Searc	hed: 04Feb09 and 15Sep09**	Results: 895	
Datab	base	Years Searched	Number of Results
	HL® (Cumulative Index to Nursing & Allied https://www.com/actionships.co	1937 to 2008	93
SPOF	RTDiscus with Full Text	1800 to 2008	428
Acade	emic Search Elite	1985 to 2008	327
Health	h Source: Nursing and Academic Edition		47
S6	 S4 not S5 Limiters - Published Date from: 199001-200912; Publication Type: Periodical, Book, Primary Source Document; Document Type: Abstract, Article, Proceeding; Exclude MEDLINE records; Publication Type: Abstract, Book Chapter, Clinical Trial, Doctoral Dissertation, Journal Article, Masters Thesis, Nursing Interventions, Proceedings, Research, Review, Systematic Review; Ag Groups: Adult, 19-44 years, Middle Age, 45-64 years, Aged, 65+ years, Aged, 80 and over, All Adult; Clinical Queries: Therapy - High Sensitivity; Publication Type: Journal Article, Monograph or government document, Serial publication, Thesis or dissertation 		
S5	TI (child* or pediatr* or paediatr*) or SU (child* or pediatr* or paediatr*)		
~ ·			

S4 ((S1 or S2)) and S3

S3 tear or tears or tore or torn or lesion* or rupture* or avuls* or repair* or debride* or full-thickness or partial-thickness or thickness

S2 MH "Glenohumeral Joint/IN"

S1 "rotator cuff*" or DE "SHOULDER joint -- Rotator cuff" or supraspinatus or infraspinatus or "teres minor" or subscapularis or MH "Rotator Cuff+" or anterosuperior or posterosuperior

Versio			
	to 2009 Results: 3072		
Limit:	1990-2009		
#24	#23 OR #21 OR #19 OR #17 OR #15		
#23	#13 AND #22		
#22	TI=(evaluat* OR compar* OR versus OR study)		
#21	#13 AND #20		
#20	TS=(longitudinal OR cohort* OR baseline OR follow-up OR before-after OR case series OR observational OR participants OR patients)		
#19	#13 AND #18		
#18	TS=((control* or prospectiv* or volunteer* or participant*) SAME (trial* or study or studies or design))		
#17	#13 AND #16		
#16	TS=(effect\$ or outcome\$ or allocat\$ or control\$ or assign\$ or compar\$ or experiment\$ or analys\$ or analyz\$)		
#15	#13 AND #14		
#14	TS= clinical trial* OR TS=research design OR TS=comparative stud* OR TS=evaluation stud* OR		
	TS=controlled trial* OR TS=follow-up stud* OR TS=prospective stud* OR TS=random* OR		
	TS=placebo* OR TS=(single blind*) OR TS=(double blind*)		
#13	#11 NOT #12 AND Document Type=(Article OR Meeting Abstract OR Meeting-Abstract OR		
	Proceedings Paper OR Review)		
#12	SO=(child OR children OR paediatr* OR pediatr* OR peadiatr* OR adoles* OR teen OR teens OR teenage* OR infan* OR baby OR babies OR neonat*)		
#11	#9 NOT #10		
#10	TI=(child OR children OR paediatr* OR pediatr* OR peadiatr* OR adoles* OR teen OR teens OR teens or teenage* OR infan* OR baby OR babies)		
#9	#8 NOT #1		
#8	#7 OR #4		
#7	#6 AND #5		
#6	TS=(shoulder or glenohumer*)		
#5	TS=((tendon or tendons or muscle* or muscular) SAME (tear or tears or tore or torn or lesion* or		
	rupture* or avuls* or injur* or repair* or debride*))		
#4	#2 AND #3		
#3	TS=(tear OR tears OR tore OR torn or lesion* OR rupture* OR avuls* OR injur* OR repair* OR		
	debride* OR thickness OR full-thickness OR partial-thickness)		
#2	TS=(supraspinatus OR infraspinatus OR teres minor OR subscapularis OR rotator cuff* OR		
	anterosuperior OR posterosuperior)		
#1	TS=(veterinar* OR zoolog* OR rat OR rats OR rodent* OR mouse OR mice OR insect* OR		
	entomolog* OR mantis* or pigeon* OR sheep OR pig OR pigs OR cow* OR bovine OR animal* OR		
	primat* OR chimp* OR horse OR horses OR cat OR cats OR dog OR dogs OR canine OR feline)		

Table B-6. Science Citation Index Expanded (via Web of Science[®])—Institute for Scientific Information—Thomson Corporation

Table B-7. Scopus[®] Elsevier B.V.

1966 to 2009 Limit: 1990-2009	Searched: 05Feb09 Results: 804	

(TITLE-ABS-KEY(rotator cuff* OR rotator interval* OR supraspin?tus OR infraspin?tus OR "teres minor" OR subscapularis OR anterosuperior OR posterosuperior) AND TITLE-ABS-KEY(tear OR tears OR tore OR torn OR lesion* OR rupture* OR avuls* OR injur* OR repair* OR debride*)) AND PUBYEAR AFT 1989 AND (LIMIT-TO(DOCTYPE, "ar") OR LIMIT-TO(DOCTYPE, "cp") OR LIMIT-TO(DOCTYPE, "ip") OR LIMIT-TO(DOCTYPE, "er")) AND (LIMIT-TO(EXACTKEYWORD, "Controlled study") OR LIMIT-TO(EXACTKEYWORD, "Clinical article") OR LIMIT-TO(EXACTKEYWORD, "Major clinical study") OR LIMIT-TO(EXACTKEYWORD, "Treatment Outcome") OR LIMIT-TO(EXACTKEYWORD, "Follow-Up Studies") OR LIMIT-TO(EXACTKEYWORD, "Follow up") OR LIMIT-TO(EXACTKEYWORD, "Follow-Up Studies") OR LIMIT-TO(EXACTKEYWORD, "Clinical trial") OR LIMIT-TO(EXACTKEYWORD, "Prospective study") OR LIMIT-TO(EXACTKEYWORD, "Prospective study") OR LIMIT-TO(EXACTKEYWORD, "Clinical trial") OR LIMIT-TO(EXACTKEYWORD, "Prospective study") OR LIMIT-TO(EXACTKEYWORD, "Prospective study") OR LIMIT-TO(EXACTKEYWORD, "Clinical trial") OR LIMIT-TO(EXACTKEYWORD, "Prospective study") OR LIMIT-TO(EXACTKEYWORD, "Clinical trial") OR LIMIT-TO(EXACTKEYWORD, "Prospective study") OR LIMIT-TO(EXACTKEYWORD, "Clinical trial") OR LIMIT-TO(EXACTKEYWORD, "Prospective study") OR LIMIT-TO(EXACTKEYWORD, "Prospective study"))

	o 2009 Searched: 04Feb09 1990-2009 Results: 821
#14	#13 NOT #10
#13	#12 NOT #9
#12	#6 OR #3
#11	Refined by: Major Concepts=(EDUCATION OR SURGERY OR ORTHOPEDICS OR MUSCULAR SYSTEM OR MOVEMENT AND SUPPORT OR METHODS AND TECHNIQUES OR SPORTS MEDICINE OR NUTRITION OR FOODS OR OCCUPATIONAL HEALTH OR NURSING OR PHYSICAL MEDICINE AND REHABILITATION) AND Subject Areas=(SURGERY OR ORTHOPEDICS OR REHABILITATION OR SPORT SCIENCES OR PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH OR NUTRITION & DIETETICS OR PHARMACOLOGY & PHARMACY) #6 OR #3
	Refined by: Major Concepts=(EDUCATION OR SURGERY OR ORTHOPEDICS OR MUSCULAR SYSTEM OR MOVEMENT AND SUPPORT OR METHODS AND TECHNIQUES OR SPORTS MEDICINE OR NUTRITION OR FOODS OR OCCUPATIONAL HEALTH OR NURSING OR PHYSICAL MEDICINE AND REHABILITATION)
#10	SO=(child OR children OR paediatr* OR pediatr* OR peadiatr* OR adoles* OR teen OR teens OR teenage* OR infan* OR baby OR babies OR neonat*) AND Document Type=(Article OR Article Thesis Dissertation OR Book Chapter OR Meeting Paper OR Technical Report OR Thesis Dissertation) AND Taxa Notes=(Humans)
#9	TI=(child OR children OR paediatr* OR pediatr* OR peadiatr* OR adoles* OR teen OR teens OR teenage* OR infan* OR baby OR babies OR neonat*) AND Document Type=(Article OR Article Thesis Dissertation OR Book Chapter OR Meeting Paper OR Technical Report OR Thesis Dissertation) AND Taxa Notes=(Humans)
#8	#6 OR #3 AND Document Type=(Article OR Article Thesis Dissertation OR Book Chapter OR Meeting Paper OR Technical Report OR Thesis Dissertation) AND Taxa Notes=(Humans)
#7	#6 OR #3
#6	#5 AND #4
#5	TS=(shoulder or glenohumer*)
#4	TS=((tendon or tendons or muscle* or muscular) SAME (tear or tears or tore or torn or lesion* or rupture* or avuls* or injur* or repair* or debride*))
#3	
#2	TS=(tear OR tears OR tore OR torn or lesion* OR rupture* OR avuls* OR injur* OR repair* OR debride* OR thickness OR full-thickness OR partial-thickness)
#1	TS=(supraspinatus OR infraspinatus OR teres minor OR subscapularis OR rotator cuff* OR anterosuperior OR posterosuperior)

Table B-8. BIOSIS Previews[®]—Institute for Scientific Information—Thomson Corporation

Table B-9. PubMed—National Library of Medicine

1950-2009 Limits: added to PubMed in last 2 years or in process Searched: 16Sep09 Results: 298

#3 #1 0R #2

#2 ((rotator cuff* OR rotator interval* OR supraspinatus OR infraspinatus OR "teres minor" OR subscapularis OR anterosuperior OR posterosuperior) AND (tear OR tears OR tore or torn OR lesion* OR rupture* OR avuls* OR injur* OR repair* OR debride*)) AND ((randomized controlled trial [PTYP] OR drug therapy [SH] OR therapeutic use [SH:NOEXP]) OR random* OR (single blind*) OR (double blind*) OR (trial*) OR (placebo*) OR (research design*) OR (comparative stud*) OR (evaluation stud*) OR (follow up stud*) OR (prospective*) OR (cohort*) OR (case series)) Limits: added to PubMed in the last 2 years, Humans, English, French, German, All Adult: 19+ years

#1 ((rotator cuff* OR rotator interval* OR supraspinatus OR infraspinatus OR "teres minor" OR subscapularis OR anterosuperior OR posterosuperior) AND (tear OR tears OR tore or torn OR lesion* OR rupture* OR avuls* OR injur* OR repair* OR debride*)) AND (in process[sb])

Table B-10. Grey Literature Sources

Databases	Searched: 23Jun09	
Conference Papers index Computer Retrieval of Information on Scientific Projects (C Scopus	CRISP) database	
Websites	Searched: 23Jun09	
Health Canada U.S. Food and Drug Administration		
Conference Proceedings Hand Searched	Searched: 24Feb09	Searched: 22Oct09 **
Arthroscopy Association of North America (AANA) AAOS (American Academy of Orthopaedic Surgeons) American Physical Therapy Association (APTA) American Shoulder and Elbow Surgeons American Society of Shoulder and Elbow Therapists European Congress of Physical and Rehabilitation Medicine European Society for Surgery of the Shoulder and the Elbow** Mid-America Orthopaedic Association (MAOA)	2007-2009 2007-2009 2006-2008 2005-2008 2004-2008 2008 2009 2006-2008	
Clinical Trials Registers	Searched: 23Jun09	
ANZCTR (Austrialia NewZeland Clinical Trials Register) ClinicalStudyResults.org ClinicalTrials.Gov (National Institutes of Health) Current Controlled Trials (BioMed Central) ICTRP (International Clinical Trials Registry Platform Sear Nederlands Trial Register (Dutch Cochrane Centre)	ch Portal) (WHO)	

Appendix C. Review Forms

- C1. Eligibility Criteria
- C2. Methodological Quality Assessment: Randomized Controlled and Controlled Clinical Trials Cohort Studies Case-Control Studies Before-and-After Studies
- C3. Data Extraction

C1. Eligibility Criteria

Reviewer ID: Date:	/	/2009	Ref ID:			
CRITERIA				Yes	No	Unclear
1. PUBLICATION TYPE						
a. Report of primary research						
b. Published in 1990 or later						
c. English language, except for nonoperative or	posto	perative reh	abilitation			
2. STUDY DESIGN				,		
a. Enrolled ≥ 11 participants						
 b. One of the following designs (circle design) i. RCT ii. CCT iii. Cohort iv. Case control v. Cross sectional vi. <i>Prospective</i> before-and-after (baseling) 		a required)				
3. POPULATION						
 a. >80% adult patients (≥18 years) [exclude perfection of the second sec	ediatri	c, in vitro, ca	daver].			
 b. Partial- or full-thickness (including massive) (e.g. arthrography, ultrasound, MRI, etc) or diagnosis based on physical exam/ history of 	intrao					
c. Primary intention is treatment of RCT. Excluinflammatory arthritis† (not OA), or are under						
4. INTERVENTION (One of:)		· ·				
 a. Operative approaches: open, mini-open or a or decompression [Exclude tendon transfers b. Nonoperative intervention for treatment of R c. Postoperative rehabilitation following RC rep 	s, arth CT.					
5. OUTCOME						
 a. Numeric data reported on at least one of: que return to work / activities, shoulder pain, ran events. 						
b. Operative studies: Minimum 12 month follow interest [No restriction for nonoperative]	v-up f	or at least or	ne outcome of			

Comments:

FINAL DECISION: Include
Exclude
Unsure

NOTE: To exclude must have said "NO" for at least one of 1-5.

RELEVANT TO QUESTION(S):

1. Does early surgical repair compared to late surgical repair (i.e., nonoperative intervention followed by surgery) lead to improved patient-important outcomes? [check only if study directly compares early vs. late]

- 2. What is the comparative effectiveness of operative approaches?
 3. What is the comparative effectiveness of nonoperative interventions?
 4. Does operative repair vs. nonoperative treatment lead to improved outcomes?
 5. What are the associated adverse effects of operative and nonoperative therapies?
 6. Which prognostic factors predict better outcomes? (specify)

C2. Methodological Quality Assessment

Randomized Controlled Trials and Controlled Clinical Trials

The Cochrane Collaboration's tool for assessing risk of bias						
Domain	Description	Review authors' judgment	Consensus (circle)			
Sequence generation		Was the allocation sequence adequately generated? YES / NO / UNCLEAR	YES NO UNCLEAR			
Allocation concealment		Was allocation adequately concealed? YES / NO / UNCLEAR	YES NO UNCLEAR			
Blinding of participants, personnel and outcome assessors, <i>Outcome:</i>	Patient-rated scales (subjective) Clinical measures (objective)	Was knowledge of the allocated intervention adequately prevented during the study? YES / NO / UNCLEAR	YES NO UNCLEAR			
		YES / NO / UNCLEAR				
Incomplete outcome data, Outcome:	Patient-rated scales (subjective)	Were incomplete outcome data adequately addressed? YES / NO / UNCLEAR	YES NO UNCLEAR			
	Clinical measures (objective)	YES / NO / UNCLEAR				
Selective outcome reporting		Are reports of the study free of suggestion of selective outcome reporting?	YES NO UNCLEAR			
		YES / NO / UNCLEAR				
Other sources of bias		Was the study apparently free of other problems that could put it at a high risk of bias?	YES NO UNCLEAR			
		YES / NO / UNCLEAR				
Overall risk of bias	Patient-rated scales	HIGH / LOW / UNCLEAR	HIGH LOW			
	Clinical measures (objective)	HIGH / LOW / UNCLEAR	UNCLEAR			

Cohort Studies

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE COHORT STUDIES

Selection

1) Representativeness of the exposed cohort

a) Truly representative of the average <u>patient with a RCT</u> in the community *

b) Somewhat representative of the average patient with a RCT in the community *

c) Selected group of users (e.g., WCB, overhead workers / athletes, massive, irreparable tears, etc)

d) No description of the derivation of the cohort

2) Selection of the non exposed cohort

a) Drawn from the same community as the exposed cohort *

b) Drawn from a different source

c) No description of the derivation of the non exposed cohort

3) Ascertainment of exposure

a) Secure record (eg surgical records) *

b) Structured interview *****

c) Written self report

d) No description

Comparability

1) Comparability of cohorts on the basis of the design or analysis

a) Study controls for <u>age OR tear size</u> *

b) Study controls for any additional factor *

c) None

Outcome

1) Assessment of outcome

a) Independent blind assessment *****

b) Record linkage *

c) Self report

d) No description

e) Described as unblinded

2) Was follow-up long enough for outcomes to occur

a) Yes – follow-up for at least 12 months ₩

b) No

3) Adequacy of follow up of cohorts

a) Complete follow up - all subjects accounted for *****

b) Subjects lost to follow up unlikely to introduce bias - small number lost $- \ge 90\%$ follow up, or

description provided of those lost *

c) Follow up rate $\leq 90\%$ (select an adequate %) and no description of those lost

d) No statement

TOTAL: ____₩

<u>Note</u>: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability.

Case-Control Studies

NEWCASTLE - OTTAWA QUALITY ASSESSMENT SCALE CASE CONTROL STUDIES

Selection

- 1) Is the case definition adequate?
 - a) Yes, with independent validation *
 - b) Yes, e.g., record linkage or based on self reports
 - c) No description
- 2) Representativeness of the cases
 - a) Consecutive or obviously representative series of cases *
 - b) Potential for selection biases or not stated
- 3) Selection of Controls
 - a) Community controls / Unaffected shoulder *
 - b) Hospital controls
 - c) No description

Comparability

1) Comparability of cases and controls on the basis of the design or analysis

- a) Study controls for <u>age OR tear size</u> *
- b) Study controls for any additional factor *
- c.) None

Exposure

1) Ascertainment of exposure

- a) Secure record (e.g., surgical records) *
- b) Structured interview where blind to case/control status *
- c) Interview not blinded to case/control status
- d) Written self report or medical record only
- e) No description

2) Same method of ascertainment for cases and controls

- a) Yes 🟶
- b) No
- 3) Non-Response rate
 - a) Same rate for both groups *
 - b) Non respondents described
 - c) Rate different and no designation

TOTAL: *

<u>Note</u>: A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability.

Before-and-After Studies

Reviewer initials:	Date: Study	Study ID:			
. Were patients enrolled consecut	ivelv?				
Yes 'Consecutive enrolment" is explicitly tated; OR All, or a random sample, of patients reated within a given date range are included	 Unclear No information on the enrolment process is reported 	 No Patients are selected by the investigator 			
lotes:					
. Were incomplete outcome data a	adequately addressed?				
Yes ≤ 10% of enrolled patients withdrew lropped out of the study before the la outcome assessment; OR ≤ 25% of enrolled patients withdrew lropped out <i>and</i> reasons for withdraw re described and unrelated to reatment	Unclear Proportion of patients that withdrew from study is unclear; OR - 10% < x <25% of enrolled	 No 10% < x <25% of enrolled patients withdrew and reasons are related to treatment; OR >25% of enrolled patients withdrew 			
lotes:					
. Was a standardized approach us	sed to assess outcomes?				
Yes One or more key outcomes (e.g., ange of motion, strength, stability) w ssessed blindly, in duplicate, or by a ndependent observer		 No Outcomes were assessed by the investigator or treatment provider (e.g., surgeon, therapist, etc) All outcomes were patient self-reported 			
lotes:					

C3. Data Extraction

I. CODER INFORMATION	

1. Reviewer initials:		2. Data verifi	er initia	als:		
3. Time to extract (to nearest minute):		4. Applies to	questi	on: 1 2	3 4	5 🗌 6
II. PUBLICATION						
5. First Author:		6. Year of pu	Iblicatio	on:		
7. Country of corresponding author:		8. Language	of	(1)	English	
		publication:		$\Box(2)$	French	
	🗌 NR			(3)	German	
9. Funding: (1) Government (4) No	funding	10. Publication	on Typ	e: 🗌 (1) Journal article	
(2) Academic (5) Ott	her (describe)			(2) Abstract	
(3) Industry				(3) Dissertation	
(4) Foundation						
(5) Comp Board	🗌 NR					
III. STUDY CHARACTERISTICS						
11. Study (1) RCT (4) C	Case-control	12. Main		(1) Operative	(2)) Nonoperative
design: (2) CCT (5) E	Before-After	Intention:	a.	Approach	(3)) Post-op Rehab
(3) Cohort	prospective)		b.	Technique		
a. retrospective			С.	Augmentatior		
b. prospective			d.	Additional pro	ocedure	
13. Number of centers: (1) Single		□ NR 14	4. Con	secutive Enrollr	nent: (1) Yes	(2) No
(2) Multi centre (p	provide					
number of centers, if	given)					🗌 NR
15. Recruitment dates (X to Y):		16. Diagnost				
		\equiv \cdot \prime		ative finding	□(5) CT	
		(2) MR	RI		□(6) X-ray	
		(3) Artl			(7) Other (specify)
	□ NR	(4) Ultı				
17. Discrete time points for outcome assessmen	t specified?	18. Follow-up	o durat	ion <i>w/ units</i> [en	dpoint, mean (SD)	, range (IRQ)]:
(1) Yes (2) No						
19. Inclusion criteria:		20. Exclusion	n criter	ia:		
TRIALS ONLY:	· · · · · ·					
21. Trial Type: (1) Parallel		22. Trial		(1) Superiority		
(2) Cross-Over		Intention:		(2) Equivalence		
(3) Factorial				(3) Non-inferiori	ty	
23. Unit of Randomization:		24. Blinding:				
(1) Participants (2) Shoulders		(1) Op	en lab	el 🛛 (2) Single	e-blind	
† choose only in surgical studies that report no ot	ner pre-operative image	aging criteria				
IV. INTERVENTION						
*Circle or describe units	Group A	Group	В	Group C	Group D	Total
25. Brief label of study arms						
26. Page # describing intervention						

OPERATIVE / POST-OP REHAB ONLY:						
27. Did patients receive pre-op conservative inte	28. Duration of pre-op tx <i>w/ units</i> [min; mean(SD); median(range)]*					
29. Type of pre-op conservative tx:		30. Number of surgeons in study:				
(1) exercise (4) NSAIDs		31. Experience of surgeons / surgical volume				
(2)physical therapy NOS (5) Not spec	cified		U	0		
(3) cortisone injections (6) NA					🗌 NR	
*Circle or describe units	Group A	Group B	Group C	Group D	Total	
30. Surgical approach:		•				
1 -open 2 -mini-open 3 -all-arthroscopic						
31. Type of surgery:						
1 – repair 2 – debridement 3 – both 4-NA						
32. Additional surgical procedures:						
1 –acromioplasty/ 3 –biceps tenotomy/						
decompression tenodesis						
2 –labral repair 4 –manipulation						
5 –other (specify)						
33. Suture/anchor type, configuration (specify):						
34. Augmentation patch/graft? (Y or N)						
If yes, specify type						
37. Duration of immobilization (day, wk, mo) *						
38. Post-op rehab (specify time points):						
1-exercise - 2 - exercise -						
stretching (ROM) strengthening						
a) passive 3 – continuous						
b) active passive motion						
4 –other (specify)						
39. Modalities						
1 –heat / cold 3 –neuromuscular						
2 –therapeutic stimulation						
ultrasound 4 –other (specify)						
40. Physical therapist provider (Y or N)						
41. Duration of rehabilitation (day, wk, mo) *						
42. Frequency of rehabilitation activities (/wk)						
43. Intensity						
44. Additional info on surgery						
45. Additional info on post-op rehab						

NA= not applicable; NOS=not otherwise specified; NR= not reported; tx= treatment;

	Group A	Group B	Group C	Group D	Total
NONOPERATIVE ONLY					
46. Intervention (mark all that apply):					
1-exercise - 2 -corticosteroid					
a) stretching (ROM) injection					
i) passive 3 –NSAIDs					
ii) active 4 –acupuncture					
b) strengthening 5 –PT NOS (only if					
c) joint mobilization not described)					
d) soft-tissue 6 –other (specify)					
(manual/massage)					
47. Modalities					
1 –heat / cold 3 –neuromuscular					
2 –therapeutic stimulation					
ultrasound 4 –other (specify)					
48. Drug name (if applicable)					
49. Duration of treatment (wks)					
50. Frequency of treatment (/wk)					
51. Intensity of treatment					
52. Degree of supervision					
1 –direct (1:1) 2 –indirect 3 –unsupervised					
53. Type of tx provider					
1 – PT 2 – exercise therapist 3 – other (specify)					
54. Experience of tx provider					
55. Number of providers participating in study					
56. Additional info on intervention					

V. POPULATION / BASELINE CHARACTERISTICS

*Circle or describe units	Group A	Group B	Group C	Group D	Total
57. No. patients [shoulders] enrolled (n)					
58. No. patients [shoulders] analyzed (n)					
59. No. dropouts/withdrawals (n)					
60. Age (mean±SD / SE; median(range); IQR)*					
61. Males <i>n</i> (%)					
62. Duration since onset of symptoms (mo.) (mean±SD / SE; median(range); IQR)*					
63. Type of tear					
1 – partial tear <i>n</i> (%)					
2 – full tear <i>n</i> (%)					
64. Tear size					
1 –small, <1cm, <i>n</i> (%)					
2 –medium, 1-3cm, <i>n</i> (%)					
3 –large, 3-5cm, <i>n</i> (%)					
4 –massive, >5cm, <i>n</i> (%)					
65. Tendon torn					
1 –supraspinatus <i>n</i> (%)					
2 –infraspinatus <i>n</i> (%)					

0 with a second ratio of $(0/2)$			
3 –subscapularis n (%)			
4 –teres minor <i>n</i> (%)			
67. Dominant shoulder RCT n (%)			
68. Cause of tear			
1 –degenerative n (%)			
2 –traumatic n (%)			
69. Degree of fatty muscle infiltration (grades			
0-4)			
70. Recreational athlete <i>n</i> (%), specify sport			
71. Manual labour job <i>n</i> (%)			
72. Workers' Compensation claim n (%)			
73. Smoker <i>n</i> (%)			
74. Shoulder co-morbidities (describe),			
i.e., Labral (SLAP, Bankart), Hill-Sachs, biceps			
pathology, OA, stiffness, bursitis, frozen			
shoulder/ adhesive capsulitis, calcific tendinitis			
75. Other co-morbidities (e.g. diabetes)			
76. Ethnic distribution <i>n</i> (%)			
77. ROM – abduction (circle: active, passive,			
NR) [mean±SD/SE; med(range)]*			
78. ROM –flexion (circle: active, passive, NR)			
[mean±SD/SE; med(range)]*			
79. ROM –internal /medial rotation (circle:			
active, passive, NR) [mean±SD/SE;			
med(range)]*			
80. ROM –external /lateral rotation (circle:			
active, passive, NR) [mean±SD/SE;			
med(range)]*			
81. ROM –other (specify)			
[mean±SD/SE; med(range)]*			
81. Strength (gr; kg)* position:			
81. Strength (gr; kg)* position:			
81. Strength (gr; kg)* position:			
82. VAS pain (10-point scale)			
83. Constant-Murley (x/100); subscores			
84. UCLA (x/35); subscores		 	
85. ASES (x/100); subscores		 	
86. DASH (x/100)			
87. Western Ontario RC scale (WORC)			
88. Simple shoulder test (SST) (x/12)			
89. Japanese Orthopedic Assoc. scale (JOA)			
90. SF-36			
91. Other			
92. Other			
93. Other			

VI. REPORTED OUTCOMES (outcomes with data reported, either pre-post, or comparing 2 groups)

Primary outcome reported? (1) Yes (2) No Specifi	
a) Health-related quality of life	
94.	95.
96.	97.
b) Function / Disability	
98.	99.
100.	101.
102.	103.
c) Time to return to work / activities	
104.	105.
d) Pain	
106.	107.
e) Range of motion	
108.	109.
110.	111.
112.	113.
f) Strength	
114.	115.
g) Other reported outcomes	
116.	117.
118.	119.

Mark * if results are reported for questionnaire components/subscales

VII. COMPLICATIONS

(1) There were <u>no</u> complications / AEs. (page)	
(2) Complications / AEs reported: (page)	
a) infection b) postoperative stiffness/ adhesive capsulitis	C) anchor failure/removal
d) delayed wound healing e) retears	f) neurological injury
g) reflex sympathetic dystrophy h) reoperations NOS	i) other (specify):
(3) No information reported	
VIII. PROGNOSTIC FACTORS	

(1) Prognostic factors report	ed: (page)		
a) age	b) atrophy	C) biceps pathology	d) duration of symptoms
e) etiology of tear	f) fatty infiltration	g) number of torn tendons	h) glenohumeral arthritis / OA
☐i) pre-op pain	☐j) pre-op stiffness /pass. ROM	k) pre-op strength/ act. ROM	I) pre-op ROM (NOS)
m) sex	n) smoking	🔲 o) tear size	□ p) type of tear (FTT, PTT)
🗌 q) WCB	□r) other:	s) other:	
(2) No prognostic factors rep	ported		
Pass = passive: act = active:	NOS = not otherwise specified		

Pass. = passive; act = active; NOS = not otherwise specified

X. CONCLUSIONS

Describe conclusions: (*Please, also describe such as: "Compared to B and C, A-----was-superior/inferior in ----", or "There were no differences between A and B in -----, but B was superior/inferior to C"*)

Appendix D. Methodological Quality of Included Studies

Table D-1. Methodological quality of randomized controlled trials (RCTs) and controlled clinical trials (CCTs)

	<u> </u>	Sequence	Blind	ling	Selective outcome	Overall RoB –	
Author, year	Study design,	generation	Pt-rated outcomes	Clinical outcomes	reporting	Pt-rated outcomes	
Aution, year	ITT	Allocation concealment	Incomplete of Pt-rated outcomes	utcome data Clinical outcomes	Other sources of bias	Overall RoB – Clinical outcomes	
Bigoni M,	RCT	Unclear	No	No	Yes	High	
2009	No	Unclear	Unclear	Unclear	Unclear	High	
Boehm TD,	RCT	Yes	No	NA	Yes	High	
2005	No	No	Yes	NA	Yes	NA	
Brady B,	CCT	No	No	No	Yes	High	
2008	Yes	No	Unclear	Unclear	Unclear	High	
Burks RT,	RCT	Yes	No	No	Yes	High	
2009	No	Yes	Yes	Yes	No	High	
Charousset C,	RCT	Unclear	No	No	Yes	High	
2007	No	No	Yes	Yes	Unclear	High	
De Carli A,	RCT	Unclear	No	NA	No	High	
2006	No	Unclear	Unclear	NA	Unclear	NA	
Franceschi F,	RCT	Yes	No	No	Yes	High	
2008	Yes	Yes	No	No	Unclear	High	
Franceschi F,	RCT	Yes	No	No	Yes	High	
2007	No	Unclear	Yes	Yes	Yes	High	
Franceschi F,	RCT	Yes	No	No	Yes	High	
2007	Yes	Yes	No	No	Yes	High	
Gartsman GM,	RCT	Yes	No	NA	Yes	High	
2004	No	Unclear	Yes	NA	Unclear	NA	

CCT = controlled clinical trial; ITT = intention-to-treat analysis; pt = patient; NA = not applicable; Pt = patient; RCT = randomized controlled trial; RoB = risk of bias

		Sequence	Blind	ling	Selective outcome	Overall RoB –	
Author, year	Study design,	generation	Pt-rated outcomes	Clinical outcomes	reporting	Pt-rated outcomes	
Aution, year	ITT	Allocation	Incomplete o		Other sources of bias	Overall RoB –	
		concealment	Pt-rated outcomes	Clinical outcomes		Clinical outcomes	
Grasso A, 2009	RCT No	Yes	No	No	Yes	High	
		Yes	Yes	Yes	Yes	High	
Hayes K, 2004	RCT No	Yes	No	No	Yes	High	
2004	NO	No	No	No	Yes	High	
lannotti JP, 2006	RCT No	Yes	No	NA	Yes	High	
2000	NO	Unclear	Yes	NA	No	NA	
Kim SH, 2003	CCT No	No	No	No	Yes	High	
2003	NO	No	Yes	Yes	Unclear	High	
Klintberg IH, 2009	RCT No	Yes	No	No	Yes	High	
2009	NO	Yes	No	No	Yes	High	
Ko S, 2009	CCT No	No	No	NA	Yes	High	
2009	NO	No	Yes	NA	Yes	NA	
LaStayo PC, 1998	RCT No	Yes	No	No	Yes	High	
1990	NO	Unclear	Unclear	Unclear	Yes	High	
Michael JWP, 2005	RCT Yes	Yes	No	No	Yes	High	
2005	165	Unclear	Yes	Yes	No	High	
Milano G, 2007	RCT No	Yes	No	NA	Yes	High	
2007	INU	Yes	No	NA	Yes	NA	
Mohtadi NG, 2008	RCT Yes	Yes	No	No	No	High	
2000	165	Yes	Yes	Yes	No	High	
Montgomery TJ,	CCT	No	No	No	Yes	High	
1994	No	No	No	No	Unclear	High	

		Sequence generation	Blin	ding	Selective outcome	Overall RoB –
Author, year	uthor, year design,		Pt-rated outcomes	Clinical outcomes	reporting	Pt-rated outcomes
Aution, year	ITT	Allocation		Incomplete outcome data		Overall RoB –
		concealment	Pt-rated outcomes	Clinical outcomes	Other sources of bias	Clinical outcomes
Moosmayer S, 2010	RCT yes	Yes	No	NA	Yes	High
2010	,00	Yes	Yes	NA	Unclear	NA
Ogilvie-Harris DJ, 1993	CCT No	No	No	NA	Yes	High
1990	INU	No	Unclear	NA	Yes	High
Raab MG, 1996	RCT No	Unclear	No	NA	Yes	High
1990	NO	Unclear	No	NA	No	NA
Roddey TS, 2002	RCT No	Yes	No	NA	Yes	High
2002	NO	Unclear	No	NA	Yes	NA
Shibata Y, 2001	RCT No	Unclear	No	No	Yes	High
2001 NO	INU	Unclear	Yes	Yes	Unclear	High
Torrens C, 2003	CCT No	No	No	NA	Yes	High
2003	NU	No	Yes	NA	Unclear	NA

Table D-1. Methodological quality of randomized controlled trials (RCTs) and controlled clinical trials (CCTs) (continued)

Author, year	Study design	Representativeness of cohort	Ascertainment of exposure	Comparability of	Adequate duration of followup	Total Stars
Autior, year	olddy design	Selection of non- exposed cohort	Assessment of outcome	cohorts	Adequate followup of cohort	Total Stars
Baker CL,	Retrospective	B (1*)	A (1*)	C (0*)	A (1*)	5 *
1995		A (1*)	C (0*)		A (1*)	
Bennett WF,	Prospective	C (0*)	A (1*)	C (0*)	A (1*)	4 *
2003		A (1*)	E (0*)		A (1*)	
Bishop J,	Prospective	A (1*)	A (1*)	A (1*)	A (1*)	5 *
2006		A (1*)	C (0*)		C (0*)	
Boileau P,	Retrospective	C (0*)	A (1*)	A, B (2*)	A (1*)	6 *
2007	•	A (1*)	D (0*)		B (1*)	
Buess E,	Prospective	A (1*)	A (1*)	A (1*)	A (1*)	6 *
2005		A (1*)	C (0*)		A (1*)	
Colegate-Stone T,	Prospective	B (1*)	A (1*)	C (0*)	A (1*)	4 *
2009		A (1*)	C (0*)		D (0*)	
Costouros JG,	Retrospective	B (1*)	A (1*)	A (1*)	A (1*)	5 *
2006	·	A (1*)	C (0*)		D (0*)	
Cummins CA,	Prospective	A (1*)	A (1*)	C (0*)	A (1*)	5 *
2003		A (1*)	C (0*)		A (1*)	
Delbrouck C,	Prospective	D (0*)	A (1*)	C (0*)	B (0*)	2 *
2003		A (1*)	E (0*)		C (0*)	
Favard L,	Retrospective	C (0*)	A (1*)	C (0*)	A (1*)	2 *
2009	·	B (1*)	C (0*)		D (0*)	
Hata Y,	Retrospective	A (1*)	A (1*)	C (0*)	A (1*)	4 *
2004	·	A (1*)	E (0*)		D (0*)	
lde J,	Prospective	A (1*)	A (1*)	A (1*)	A (1*)	7 *
2005	,	A (1*)	A (1*)		B (1*)	
Ito J,	Retrospective	B (1*)	A (1*)	C (0*)	A (1*)	4 *
2003	•	A (1*)	C (0*)		C (0*)	
Klinger HM,	Retrospective	C (0*)	A (1*)	C (0*)	A (1*)	4 *
2005	•	A (1*)	C (0*)		A (1*)	
Ko SH,	Prospective	B (1*)	A (1*)	C (0*)	A (1*)	5 *
2008		A (1*)	C (0*)	· · /	A (1*)	
Kose KC,	Retrospective	A (1*)	A (1*)	A (1*)	A (1*)	5 *
2008	•	A (1*)	E (0*)		C (0*)	
Leroux JL,	Retrospective	B (0*)	A (1*)	C (0*)	B (0*)	3 *
1993	•	A (1*)	D (0*)	· · /	A (1*)	
Liem D,	Retrospective	A (1*)	A (1*)	A, B (2*)	A (1*)	7 *
2007		A (1*)	C (0*)	· 、 ·	A (1*)	
Lunn JV,	Prospective	C (0*)	A (1*)	B (1*)	A (1*)	5 *
2008		A (1*)	D (0*)	~ /	A (1*)	-

Table D-2. Methodological quality of cohort studies

Author, year	Study design	Representativeness of cohort Selection of non- exposed cohort	Ascertainment of exposure Assessment of outcome	Comparability of cohorts	Adequate duration of followup Adequate followup of cohort	Total stars
Marc T,	Retrospective	A (1*)	A (1*)	A (1*)	A (1*)	6 *
2009		A (1*)	D (0*)	, (, ,	A (1*)	C C
Matis N,	Prospective	A (1*)	A (1*)	C (0*)	A (1*)	4 *
2006		A (1*)	D (0*)	- (-)	C (0*)	
McIntyre LF,	Retrospective	A (1*)	A (1*)	C (0*)	A (1*)	4 *
2006		A (1*)	E (0*)		C (0*)	
Millar NL,	Retrospective	B (1*)	A (1*)	A, B (2*)	A (1*)	7 *
2009		A (1*)	A (1*)		C (0*)	
Milroy DR,	Retrospective	D (0*)	A (1*)	C (0*)	B (0*)	3 *
2008		A (1*)	D (0*)		A (1*)	
Moser M,	Retrospective	C (0*)	A (1*)	C (0*)	A (1*)	3 *
2007		A (1*)	E (0*)		D (0*)	
Motycka T,	Retrospective	A (1*)	A (1*)	C (0*)	A (1*)	4 *
2004		B (0*)	D (0*)		A (1*)	
Mullett H,	Prospective	B (1*)	A (1*)	C (0*)	A (1*)	6 *
2006		A (1*)	C (0*)		D (0*)	
Park JY,	Prospective	B (1*)	A (1*)	A (1*)	A (1*)	7 *
2008		A (1*)	A (1*)		A (1*)	
Pearsall AW,	Prospective	A (1*)	A (1*)	A, B (2*)	A (1*)	8 *
2007		A (1*)	A (1*)		B (1*)	
Sauerbrey AM,	Retrospective	A (1*)	A (1*)	A (1*)	A (1*)	6 *
2005		A (1*)	C (0*)		B (1*)	
Severud EL,	Retrospective	B (1*)	A (1*)	C (0*)	A (1*)	4 *
2003		A (1*)	D (0*)		C (0*)	
Sugaya H,	Retrospective	A (1*)	A (1*)	A (1*)	A (1*)	6 *
2005		A (1*)	C (0*)		B (1*)	
Vad VB,	Retrospective	C (0*)	A (1*)	A (1*)	A (1*)	5 *
2002		A (1*)	C (0*)		A (1*)	
Verma NN,	Retrospective	A (1*)	A (1*)	A, B (2*)	A (1*)	6 *
2006		A (1*)	C (0*)		C (0*)	
Walton JR,	Retrospective	C (0*)	A (1*)	A, B (2*)	A (1*)	6 *
2007		A (1*)	C (0*)		A (1*)	
Warner JJ,	Retrospective	B (1*)	A (1*)	C (0*)	A (1*)	5 *
2005		A (1*)	C (0*)		A (1*)	
Wilson F,	Retrospective	B (1*)	A (1*)	C (0*)	A (1*)	5 *
2002		A (1*)	D (0*)		A (1*)	
Yamada N,	Retrospective	C (0*)	A (1*)	C (0*)	A (1*)	3 *
2000		B (0*)	C (0*)		A (1*)	
Youm T,	Retrospective	A (1*)	A (1*)	A (1*)	A (1*)	6 *
2005		A (1*)	C (0*)		B (1*)	

Author, year	Study design	Patients enrolled consecutively	Incomplete outcome data adequately addressed	Standardized approach used to assess outcomes
Audenaert E, 2006	ВА	Yes	Yes	Yes
Baysal D, 2005	BA	Unclear	No	Yes
Bennett WF, 2003	BA	Yes	Yes	Unclear
Bennett WF, 2003	Cohort treated as BA	Yes	Yes	Unclear
Boileau P, 2005	BA	Yes	Yes	Yes
Boissonnault WG, 2007	BA	Unclear	No	No
Boszotta H, 2004	BA	No	Yes	Unclear
Caniggia M, 1995	BA	No	Yes	Unclear
Charousset C, 2008	BA	Yes	Yes	No
Checchia SL, 2005	BA	Unclear	Yes	Unclear
Cofield RH, 2001	BA	Yes	Yes	Unclear
Cole BJ, 2007	BA	Yes	Yes	Yes
Cools A, 2006	Cohort treated as BA	Unclear	Yes	Yes
Davidson PA, 2000	BA	Yes	Unclear	Unclear
DeFranco MJ, 2007	BA	Yes	Yes	No
Deutsch A, 2008	Cohort treated as BA	Yes	Yes	Yes
Deutsch A, 2007	ВА	Yes	Yes	Yes
Ellman H, 1993	ВА	No	Yes	No
Fenlin JM, 2002	ВА	Unclear	Yes	Yes
Fuchs B, 2006	BA	Yes	Yes	Unclear

*Cohort for which groups were combined in our analysis and, therefore, considered functionally equivalent to BA studies

Author, year	Study design	Patients enrolled consecutively	Incomplete outcome data adequately addressed	Standardized approach used to assess outcomes
Gartsman GM, 1998	ВА	Yes	Yes	No
Gartsman GM, 1997	BA	Yes	Yes	No
Gazielly DF, 1994	ВА	Yes	Yes	Yes
Ghroubi S, 2008	BA	Unclear	Unclear	Unclear
Gladstone JN, 2007	BA	Unclear	Yes	Yes
Hawkins RH, 1995	BA	Yes	No	Yes
Heers G, 2005	BA	Unclear	Yes	Unclear
Henn RF III, 2008	Cohort treated as BA	Unclear	Unclear	Unclear
Hsu SL, 2007	BA	Yes	Yes	Unclear
lannotti JP, 1996	ВА	Yes	Yes	Yes
lde J, 2007	ВА	Yes	Yes	Yes
lde J, 2005	ВА	Yes	Yes	Yes
Kane TP, 2008	BA	Yes	Unclear	Unclear
Kirschenbaum D, 1993	ВА	Unclear	Yes	Yes
Klepps S, 2004	BA	Yes	No	Yes
Klinger HM, 2005	ВА	Yes	Yes	Yes
Koubaa S, 2006	ВА	Unclear	Unclear	Unclear
Kreuz PC, 2005	ВА	Unclear	Yes	Unclear
Lafosse L, 2007	ВА	Yes	Yes	Unclear
Lafosse L, 2007	ВА	Yes	Yes	Yes
Levy O, 2008	ВА	Yes	Unclear	Unclear

Table D-3. Methodological quality of before-and-after (BA) studies and cohorts treated as BAs (continued)

Author, year	Study design	Patients enrolled consecutively	Incomplete outcome data adequately addressed	Standardized approach used to assess outcomes
Levy O, 2008	ВА	Unclear	Yes	Unclear
Lichtenberg S, 2006	ВА	Yes	Unclear	Unclear
Liem D, 2008	ВА	Yes	Yes	Unclear
Lim JT, 2005	Cohort treated as BA	Yes	Yes	Yes
Maier D, 2007	ВА	Unclear	Yes	Yes
Mallon WJ, 2004	Cohort treated as BA	Yes	Yes	Yes
McBirnie JM, 2005	ВА	Unclear	Yes	Unclear
McCallister WV, 2005	ВА	Yes	No	No
Misamore GW, 1995	Cohort treated as BA	Yes	Yes	Unclear
Nam SC, 2008	Cohort treated as BA	Unclear	Yes	Yes
Nho SJ, 2009	ВА	Yes	No	Unclear
Oh JH, 2008	Cohort treated as BA	Yes	Yes	Yes
Pai VS, 2001	BA	Yes	Yes	Yes
Park JY, 2004	Cohort treated as BA	Yes	Yes	Unclear
Pillay R, 1994	Cohort treated as BA	Unclear	Unclear	No
Porcellini G, 2006	Cohort treated as BA	Yes	Yes	Yes
Prasad N, 2005	BA	Yes	Yes	Yes
Randelli PS, 2008	BA	Unclear	Yes	Unclear
Rokito AS, 1999	ВА	Yes	Yes	Yes
Rokito AS, 1996	BA	Yes	Yes	Unclear

Table D-3. Methodological quality of before-and-after (BA) studies and cohorts treated as BAs (continued)

Author, year	Study design	Patients enrolled consecutively	Incomplete outcome data adequately addressed	Standardized approach used to assess outcomes
Scheibel M, 2007	ВА	Unclear	Yes	Unclear
Scheibel M, 2004	BA	Unclear	Yes	Unclear
Scheuermann R, 1991	ВА	Unclear	Yes	Unclear
Sugaya H, 2007	BA	Yes	Unclear	Unclear
Tashjian RZ, 2008	BA	Unclear	Unclear	No
Tashjian RZ, 2006	ВА	Yes	No	No
Tauro JC, 2006	Cohort treated as BA	Yes	Yes	Unclear
Tauro JC, 2004	ВА	Yes	Yes	No
Trenerry K, 2005	Case control treated as BA	Yes	Yes	Unclear
Vaz S, 2000	BA	Unclear	Yes	Yes
Vitale MA, 2007	ВА	Unclear	Yes	No
Waibl B, 2005	ВА	Yes	Yes	Unclear
Zumstein MA, 2008	ВА	Yes	Yes	Yes

Table D-3. Methodological quality of before-and-after (BA) studies and cohorts treated as BAs (continued)

Appendix E. Evidence Tables

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Audenaert E,	Recruitment dates:	Enrolled: 41	GROUP 1	HRQL: NR	Synthetic grafts for massive
2006	Dec 1996 to Aug 2002	Analyzed: 39	Surgical approach: open		RC tendon defect combined
		Withdrawals: 2	Type of surgery: repair and	Function:	with subacromial
Country:	Study design: before-		debridement	CMS	decompression can give
Belgium	and-after	Duration since symptom	Additional procedures (N):		significant pain relief and
		onset, mean (range):	acromioplasty (all); biceps	Pain: NR	improvement of ROM and
Treatment	Enrolled	11.5 mo (3 mo–4.5 yr)	tenodesis (4)		strength with few
category:	consecutively: yes			ROM: NR	complications for short term
Operative		Type of tear: FTT	Duration of immobilization: 6		periods.
	Followup duration,	Tendon(s) torn: SS+IS,	wk	Strength: NR	
Questions: Q2,	mean (range): 43 mo	SS+IS+SC, SS+SC	Duration of rehab: NR		
Q5	(24–86 mo)		Rehab components: NR	Other:	
		GROUP 1	Rehab regime: NR	 acromiohumeral interval 	
Funding: NR	Inclusion criteria:	N: 41		 mesh thickness 	
	Pre-op	Age, mean±SD (range):	PRE-OP TREATMENT: yes	 cuff integrity 	
BA Quality:	ultrasonographic	67 yr (51–80 yr)	Duration: 3 mo (min)		
Consecutive: Y	evidence of a primary	Males %: 56.1	Type of treatment: NR		
Followup: Y	mass FT-RC tear ≥ 2	Cause of tear: degenerative			
Outcome	tendons measuring > 4	(23), traumatic (16)			
assessment: Y	cm (max) thought to be	Tear size: lg			
	irreparable by simple	Dominant shoulder %: 63.4			
	suture	Comorbidities: partially torn			
		biceps tendon			
	Exclusion criteria:				
	Revision repairs				

AC = acromioclavicular; ADL = activities of daily living; ant = anterior; ASES =American Shoulder and Elbow Scale; cm = centimeter; CCT = controlled clinical trial; CMS = Constant-Murley score; CPM = continuous passive motion; DASH = Disabilities of the Arm, Shoulder, and Hand; DM = diabetes mellitus; dx = diagnosis; ER = external rotation; FT-RC tear = full-thickness rotator cuff tear; FTT = full-thickness tear; hr = hour; HRQL = health-related quality of life; hx = history; Insalata = L'Insalata Shoulder Rating Questionnaire; IR = internal rotation; IS = infraspinatus; Ig = large; JOA = Japanese Orthopaedic Association; LHB = long head of biceps; mass = massive; max = maximum; med = medium; min = minimum; mm = millimeter; MRI = magnetic resonance imaging; mo = month; N = number; NA = not applicable; NOS = not otherwise specified; NR = not reported; NSAID = non-steroidal anti-inflammatory drugs; OA = osteoarthritis; OSS = Oxford Shoulder Score; PENN = University of Pennsylvania Shoulder Score; pos = post-operative; pre-op = preoperative; pt(s) = patient(s); PT = physical therapy; PTT = partial thickness tear; QOL = quality of life; RA = rheumatoid arthritis; RC tear = rotator cuff tear; RCR = rotator cuff repair; RCT = randomized controlled trial; rep = repetition; ROM = range of motion; sm = small; SC = subscapularis; SD = standard deviation; SE = standard error; SF-12 = Short-Form (12) Health Survey; SF-36 = Short-Form (36) Health Survey; sec = second; shld = shoulder; SLAP = superior labral from anterior to posterior; SPADI = Shoulder Pain and Disability Index; SS = supraspinatus; SST = simple shoulder test; TM = teres minor; tx = treatment; UCLA = University of California Los Angeles Scale; VAS = visual analog scale; WCB = workers' compensation board; WORC Index = Western Ontario Rotator Cuff Index; yr = year

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Baker CL, 1995	Recruitment dates:	Enrolled: 36 (shld: 37)	GROUP 1	HRQL: NR	Arthroscopically assisted
	Jan 1987 to Jan 1990	Analyzed: 36 (shld: 37)	Surgical approach: open		RCR is as effective as open
Country: USA		Withdrawals: 0	Type of surgery: repair	Function:	repair in the surgical tx of
	Study design:		Additional procedures (N):	UCLA	symptomatic complete RC
Treatment	retrospective cohort	Duration since symptom	acromioplasty (all)		tears.
category:		onset, mean (range): NR	Duration of immobilization: NR	Pain:	
Operative	Enrolled		Duration of rehab: NR	• VAS	
approach	consecutively: NR	Type of tear: FTT	Rehab components: passive		
		Tendon(s) torn: NR	stretching (day 1–wk 3); active-	ROM:	
Questions: Q2,	Followup duration,		assisted stretching (wk. 3–6 or 8);	 flexion 	
Q5, Q6	(minimum): 2 yr	GROUP 1	strengthening (wk 6–8)	 abduction 	
		N: 20 (shld: 20)	Rehab regime: NR	 external rotation 	
Funding: No	Inclusion criteria:	Age, mean±SD (range):			
funding	(1) chronic RC tear +	62 yr. (38-81 yr.)	GROUP 2	Strength:	
	pain, weakness,	Males %: 60	Surgical approach: mini-open	 flexion 	
	disability not improved	Cause of tear: NR	Type of surgery: repair	 abduction 	
	by nonoperative tx	Tear size: sm, med, lg	Additional procedures (N): none	 external rotation 	
	>3mo, (2) FTT, (3) RC	Dominant shoulder %: 50			
	tear ≤5 cm that had	Comorbidities: NR	Duration of immobilization: NR	Other:	
	been repaired, (4)		Duration of rehab: NR	 time to return to work 	
	follow up ≥ 2 yr, (5)	GROUP 2	Rehab components: passive	 days of hospitalization 	
	surgical procedure:	N: 16 (shld: 17)	stretching (day 1–wk 3); active-	 cuff integrity 	
	open RCR,	Age, mean±SD (range):	assisted stretching (wk 3–6 or 8);		
	acromioplasty/mini-	59 yr. (41-71 yr.) Males %: 56.3	strengthening (wk 6–8)		
	open RCR and	Cause of tear: NR	Rehab regime: NR		
	subacromial decompression	Tear size: sm, med, lg	PRE-OP TREATMENT: yes		
	decompression	Dominant shoulder %: 81.3	Duration: 3 mo (min)		
	Exclusion criteria:	Comorbidities: NR	Type of treatment: NR		
	Mass tears		Type of treatment. NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Baysal D, 2005	Recruitment dates:	Enrolled: 84	GROUP 1	HRQL:	Mini-open RCR led to
	Apr 1997 to Jul 2000	Analyzed: 60	Surgical approach: mini-open	 WORC Index 	improved shoulder function
Country:		Withdrawals: 24	Type of surgery: repair		and health related quality of
Canada	Study design: before-		Additional procedures (N):	Function:	life up to 5 yr post surgery.
	and-after	Duration since symptom	acromioplasty (all); SLAP repair	ASES	
Treatment		onset, mean (range): NR	(NR); biceps tenotomy/tenodesis		
category:	Enrolled		(NR)	Pain: NR	
Operative	consecutively: NR	Type of tear: FTT			
		Tendon(s) torn: SS,	Duration of immobilization: 6	ROM:	
Questions: Q2	Followup duration,	SS+IS+TM	wk.	 flexion (standing) 	
	mean (endpoint):		Duration of rehab: 26 wk	flexion (supine)	
Funding: NR	1–5 yr	GROUP 1	Rehab components:	 external rotation (arm at 	
		N: 84	passive/active-assisted stretching	side)	
BA Quality:	Inclusion criteria:	Age, mean±SD (range):	(wk 1–6); active stretching and	 external rotation (arm 	
Consecutive: U	Symptomatic FTT	53.2±9.9 yr (22–82 yr)	strengthening (wk 6–10);	abducted)	
Followup: N	confirmed by MRI or	Males %: 72.6	strengthening and therapist-		
Outcome	arthrogram	Cause of tear: NR	assisted joint mobilization (wk 10-	Strength: NR	
assessment: Y		Tear size: all sizes	26)		
	Exclusion criteria:	Dominant shoulder %: NR	Rehab regime: NR	Other:	
	previous surgery of	Comorbidities: biceps, labral		 return to work status 	
	affected shld, (2) PTT,	and/or articular abnormalities	PRE-OP TREATMENT: NR	satisfaction	
	(3) SC involvement, (4)	in addition to tears (35)	Duration: NR		
	Bankart lesions or		Type of treatment: NR		
	severe glenohumeral				
	OA				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Bennett WF,	Recruitment dates:	Enrolled: 37	GROUP 1	HRQL: NR	The arthroscopic RCR of
2003	1997 to 1999	Analyzed: 37	Surgical approach: all-		massive RC tear is effective
		Withdrawals: 0	arthroscopic	Function:	for decreasing pain and
Country: USA	Study design:		Type of surgery: repair	ASES	improving the functional
	prospective cohort	Duration since symptom	Additional procedures (N):	 percent function 	status of the shld for most
Treatment	treated as before-and-	onset, mean (range): NR	inferolateral coracoplasty	CMS	patients.
category:	after				
Operative		Type of tear: FTT	Duration of immobilization: 3	Pain:	
	Enrolled	Tendon(s) torn: NR	wk	VAS	
Questions: Q2	consecutively: yes		Duration of rehab: NR		
		GROUP 1	Rehab components: passive	ROM: NR	
Funding: NR	Followup duration,	N: 29	stretching (wk 3); strengthening	-	
	mean (range): 3.2 yr	Age, mean±SD (range): 68.2	(wk 6)	Strength: NR	
BA Quality:	(2–4 yr)	yr (NR)	Rehab regime: NR	U	
Consecutive: Y		Males %: 58.6		Other:	
Followup: Y	Inclusion criteria:	Cause of tear: NR	GROUP 2	 satisfaction 	
Outcome	Mass RC tear	Tear size: mass	Surgical approach: all-		
assessment: U		Dominant shoulder %: 86.2	arthroscopic		
	Exclusion criteria:	Comorbidities: NR	Type of surgery: repair		
	(1) stage 4 fatty		Additional procedures:		
	degeneration, (2) loss	GROUP 2	inferolateral coracoplasty		
	of passive ROM, (3)	N: 8	Duration of immobilization: 3		
	arthroscope identified	Age, mean±SD (range):	wk		
	intra-articular lesion, (4)	63 yr (NR)	Duration of rehab: NR		
	RC tear + stiff shld, (5)	Males %: 75	Rehab components: passive		
	cartilage damage; (6)	Cause of tear: NR	stretching (wk 3); strengthening		
	SLAP lesion, (7)	Tear size: mass	(wk 6)		
	concomitant Bankart lesion, (8) labral tear	Dominant shoulder %: 100 Comorbidities: NR	Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Bennett WF,	Recruitment dates:	Enrolled: 24	GROUP 1	HRQL: NR	Arthroscopic RCR is
2003	1997 to 1999	Analyzed: 24	Surgical approach: all-		effective for improving the
		Withdrawals: 0	arthroscopic	Function:	functional status of the
Country: USA	Study design: before-		Type of surgery: repair and	CMS	shoulder.
	and-after	Duration since symptom	debridement	ASES	
Treatment		onset, mean (range): NR	Additional procedures (N):		
category:	Enrolled		acromioplasty (NR)	Pain:	
Operative	consecutively: yes	Type of tear: FTT		• VAS	
		Tendon(s) torn: SS	Duration of immobilization: 6		
Questions: Q2,	Followup duration,		wk.	ROM: NR	
Q5, Q6	mean (range): NR (2-4	GROUP 1	Duration of rehab: NR		
	yr.)	N: 24	Rehab components: passive	Strength: NR	
Funding: NR		Age, mean±SD (range): 59.9	stretching–wk. 1-6;	-	
	Inclusion criteria:	yr. (NR)	strengthening-wk. 6; active-	Other:	
BA Quality:	(1) FTT with	Males %: 58.3	assisted stretching-wk. 6; active	 percent function 	
Consecutive: Y	involvement of the SS	Cause of tear: NR	stretching–wk. 9;	•	
Followup: Y	tendon alone, (2)	Tear size: sm, med	Rehab regime: NR		
Outcome	positive Jobe test	Dominant shoulder %: 79.2			
assessment: U		Comorbidities: NR	PRE-OP TREATMENT: yes		
	Exclusion criteria:		Duration: 3 mo. (min)		
	(1) RC tear with		Type of treatment: physical		
	involvement of the SC,		therapy NOS; cortisone injection;		
	IS or either of the		NSAID		
	medial or lateral heads				
	of the coracohumeral				
	ligament; (2) PTT; (3)				
	pts with FTT and loss				
	of passive ROM or an				
	intra-articular lesion				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Bennett WF,	Recruitment dates:	Enrolled: 35	GROUP 1	HRQL: NR	Arthroscopic repair of
2003	1995 to 1999	Analyzed: 19	Surgical approach: all-arthroscopic		anterosuperior RC tear
		Withdrawals: 16	Type of surgery: repair and	Function:	provides improvement
Country: USA	Study design:		debridement	CMS	in function, decreases
	prospective cohort	Duration since symptom	Additional procedures (N): NR	ASES	in pain, decreases in
Treatment		onset, mean (range): NR	Technique: bioabsorbable tacs	 percent function 	clinical findings of
category:	Enrolled			·	biceps subluxation and
Operative	consecutively: NR	Type of tear: FTT	Duration of immobilization: 3 wk	Pain:	inflammation,
technique		Tendon(s) torn: SS, SC	(daytime); 6 wk (nighttime)	VAS	improvement in
	Followup duration,		Duration of rehab: NR		shoulder scores, and
Questions: Q2,	mean (range): NR (2–	GROUP 1	Rehab components: passive	ROM: NR	increased clinical
Q5, Q6	4 yr)	N: 9	stretching (wk 6); active-assisted		findings of
Funding: NR	Inclusion criteria:	Age, mean±SD (range): 58 yr (NR)	stretching (≥wk 6 wk; strengthening (≥wk 6); active stretching (≥wk 9)	Strength: NR	subscapularis insufficiency.
· · · · · · · · · · · · · · · · · · ·	(1) PTT and FTT of SC	Males %: 55.6	Rehab regime: NR	Other: NR	
NOS: 4*/8*	tendon, (2) FTT of SS	Cause of tear: NR		Other. NR	
	lesion	Tear size: NR	GROUP 2		
		Dominant shoulder %: 100	Surgical approach: all-arthroscopic		
	Exclusion criteria:	Comorbidities: biceps	Type of surgery: repair and		
	(1) involvement of any	pathology (total from both	debridement		
	other tendon of the	groups: 18)	Additional procedures (N): biceps		
	RC, (2) PTT of SS	9p,	tenotomy/tenodesis (NR)		
	tendon, (3) auto	GROUP 2	Technique: routine suture tying with		
	accidents, (4) pts with	N: 10	metal corkscrew		
	an intra-articular lesion	Age, mean±SD (range):			
		64 yr (NR)	Duration of immobilization: 4 wk		
		Males %: 70	(daytime); 6 wk (nighttime)		
		Cause of tear: NR	Duration of rehab: NR		
		Tear size: NR	Rehab components: passive		
		Dominant shoulder %: 100	stretching (wk 6); active-assisted		
		Comorbidities: NR	stretching (≥wk 6); strengthening (≥wk		
			6); active stretching (≥wk 9)		
			Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Bigoni M, 2009	Recruitment dates:	Enrolled: 50	GROUP 1	HRQL: NR	There was a significant
	Sept 2004 to Sept	Analyzed: NR	Surgical approach: all-arthroscopic		difference in strength
Country: Italy	2006	Withdrawals: NR	Type of surgery: repair and	Function:	between the groups,
			debridement	CMS	favouring the tendon-to-
Treatment	Study design: RCT	Duration since symptom	Additional procedures (N): NR		bone over the side-to-
category:	(parallel)	onset, mean (range): NR	Technique: side-to-side repair &	Pain: NR	side technique for
Operative			permanent sutures		arthroscopic repairs.
technique	Enrolled	Type of tear: FTT		ROM: NR	
	consecutively: yes	Tendon(s) torn: SS	Duration of immobilization: NR		
Questions: Q2,			Duration of rehab: >6 mo	Strength:	
Q6	Followup duration,	GROUP 1	Rehab components: neutral rotation in	 IR peak torque % 	
	mean (range): 12 mo	N: 25	sling (day 1-wk 4); passive stretching	 ER peak torque % 	
Funding: NR		Age, mean±SD (range): NR	with pool therapy (≥wk 3); active-		
	Inclusion criteria:	Males %: 40	assisted stretching (≥wk 6); isometric,		
ROB: High	(1) age 50–65 year, (2)	Cause of tear: NR	isotonic & isokinetic training after full		
	FTT of SS with an	Tear size: sm, med, lg			
	intact SC, (3) healthy	Dominant shoulder %: 84	Rehab regime: NR		
	contralateral shoulder,	Comorbidities: NR	GROUP 2		
	(4) concomitant pathology of LHB	GROUP 2	Surgical approach: all-arthroscopic		
	pathology of LHB	N: 25	Type of surgery: repair and		
	Exclusion criteria:	Age, mean±SD (range): NR	debridement		
	(1) PTT, (2) mass RC	Males %: 56	Additional procedures (N): NR		
	tears, (3) previous	Cause of tear: NR	Technique: tendon-to-bone fixation &		
	surgery on affected	Tear size: sm, med, lg	metal suture anchors (double sutures)		
	shoulder, (4)	Dominant shoulder %: 88			
	degenerative OA of	Comorbidities: NR	Duration of immobilization: NR		
	glenohumeral joint, (5)	Comorbiances. Mix	Duration of rehab: >6 mo		
	neurologic pathology,		Rehab components: neutral rotation in		
	(6) cervical slipped		sling (day 1–wk 4); passive stretching		
	disk, (7) WCB, (8)		with pool therapy (≥wk 3); active-		
	disease of opposite		assisted stretching (≥wk 6); isometric,		
	shoulder		isotonic & isokinetic training after full		
	0.100.000		ROM		
			Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		
			iype of treatment. NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Bishop J, 2006	Recruitment dates:	Enrolled: 102	GROUP 1	HRQL: NR	Open and arthroscopic
	1996 to 2002	Analyzed: 72	Surgical approach: open (24); mini-		RCR have similar
Country: USA		Withdrawals: 30	open (8)	Function:	clinical outcomes.
	Study design:		Type of surgery: repair	ASES	
Treatment	Prospective cohort	Duration since symptom	Additional procedures (N): distal	CMS	
category:		onset, mean (range): NR	clavical resection (4); revision surgery		
Operative	Enrolled		(2); capsular release (all)	Pain:	
approach	consecutively: yes	Type of tear: FTT		• VAS	
		Tendon(s) torn: NR	Duration of immobilization: 6 wk		
Questions: Q2, Q6	Followup duration, (endpoint): 1 yr	GROUP 1	Duration of rehab: 3–4 mo Rehab components: passive	ROM: NR	
QU		N: 47	stretching (wk 1–6); active stretching	Strength:	
Funding:	Inclusion criteria:	Age, mean±SD (range):	$(wk \ge 6)$; strengthening (wk 6–12 or 16)	 flexion 	
Government,	FTT confirmed by MRI	64 yr (NR)	Rehab regime: NR	 nexion external rotation 	
foundation		Males %: NR	······································	external rotation	
	Exclusion criteria:	Cause of tear: NR	GROUP 2	Other:	
NOS: 5*/8*	(1) glenohumeral	Tear size: sm,med, lg, mass	Surgical approach: all-arthroscopic	 cuff integrity 	
	arthritis, (2) fracture,	(mean: 2.6 cm)	Type of surgery: repair	• cun integrity	
	(3) osteonecrosis	Dominant shoulder %: NR	Additional procedures (N): distal		
	labral pathology; 4)	Comorbidities: NR	clavicle resection (11); revision (1)		
	unable/unwilling to undergo MRI	GROUP 2	Duration of immobilization: 6 wk		
		N: 55	Duration of rehab: 3–4 mo		
		Age, mean±SD (range):	Rehab components: passive		
		64 yr (NR)	stretching (wk 1–6); active stretching		
		Males %: NR	$(wk \ge 6)$; strengthening (wk 6–12 or 16)		
		Cause of tear: NR	Rehab regime: NR		
		Tear size: sm, med, lg, mass	Nonab regime. NN		
		(mean: 3.0 cm)	PRE-OP TREATMENT: NR		
		Dominant shoulder %: NR	Duration: NR		
		Comorbidities: NR	Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Boehm TD,	Recruitment dates:	Enrolled: 100	GROUP 1	HRQL: NR	The advantages of special
2005	NR	Analyzed: 93	Surgical approach: open		suture techniques and non-
		Withdrawals: 7	Type of surgery: repair and	Function:	absorbable materials are
Country:	Study design (trial		debridement	CMS	unproven in the clinical
Germany	type): RCT (parallel)	Duration since symptom	Additional procedures (N):		setting in terms of both
		onset, mean (range): NR	acromioplasty (all); biceps	Pain: NR	clinical outcome and rate of
Treatment	Enrolled		tenotomy/ tenodesis (9); lateral		recurrence. Absorbable
category:	consecutively: NR	Type of tear: FTT	clavicle resection (40)	ROM: NR	suture material may have
Operative		Tendon(s) torn: NR	Suture/anchor type: non-		advantages in repair of the
technique	Followup duration,		absorbable suture with Mason-	Strength: NR	RC when the quality of the
	mean (range): Group	GROUP 1	Allen technique; side-to-side		tendon is poor.
Questions: Q2,	1: 27 mo (24–30);	N: 50	sutures	Other:	
Q5, Q6	Group 2: 26 mo (24–	Age, mean±SD (range):		 pt satisfaction 	
	29)	56 yr (38–69 yr)	Duration of immobilization: 6	 pt willingness to have the 	
Funding: No		Males %: 72	wk	same surgery again	
funding	Inclusion criteria:	Cause of tear: degenerative	Duration of rehab: 6 wk	cuff integrity	
	(1) repairable,	(44), traumatic (5)	Rehab components: passive		
ROB: High	nontraumatic FTT (1–5	Tear size: sm, med, lg	stretching (day 1–wk 6); CPM		
	cm), (2) suitable for	Dominant shoulder %: NR	(day 1–wk 6); active stretching		
	direct tendon-to-bone	Comorbidities: rupture of	(wk ≥6)		
	repair	long head biceps (4)	Rehab regime: Frequency-		
			passive stretching, 3x/wk.; active		
	Exclusion criteria:	GROUP 2	stretching 2x daily; Intensity-		
	(1) previous shld	N: 50	CPM, 30 min		
	surgery, (2) presence	Age, mean±SD (range):			
	of os acromiale, (3)	57 yr (41–71 yr)	GROUP 2		
	neurological deficit in	Males %: 64	Surgical approach: open		
	upper limb, (4) cervical	Cause of tear: degenerative	Type of surgery: repair and		
	disc disease, (5)	(49), traumatic (1)	debridement		
	systemic locomotor	Tear size: sm, med, lg	Additional procedures (N):		
	disease, (6) metastatic	Dominant shoulder %: NR	acromioplasty (all); biceps		
	malignancy, (7) >grade	Comorbidities: rupture of	tenotomy/tenodesis (10); lateral		
	1 glenohumeral OA, (8)	LHB (2)	clavicle resection (34)		
	SC tear requiring		Suture/anchor type: absorbable		
	repair, (9) shld		suture with modified Kessler		
	instability		technique; side-to side sutures		
			Duration of immobilization: 6		
			wk		
			Duration of rehab: 6 wk		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Boehm TD,			Rehab components: passive		
2005			stretching (day 1–wk 6); CPM		
(continued)			(day 1-wk 6); active stretching		
			(wk ≥6)		
			Rehab regime: Frequency-		
			passive stretching, 3x/wk; active		
			stretching, 2x daily; Intensity-		
			CPM, 30 min		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Boileau P, 2007	Recruitment dates:	Enrolled: 78 (shld: 82)	GROUP 1	HRQL: NR	Both arthroscopic biceps
	Oct 1999 to Feb 2002	Analyzed: 68 (shld: 72)	Surgical approach: all-		tenotomy and tenodesis car
Country:		Withdrawals: 10	arthroscopic	Function:	effectively treat severe pain
France	Study design:		Type of surgery: NA	CMS	or dysfunction caused by
	retrospective cohort	Duration since symptom	Additional procedures (N):		irreparable RC tears
Treatment		onset, mean (range): NR	biceps tenotomy/tenodesis	Pain: NR	associated with biceps
category:	Enrolled		(39)/(36)		lesions.
Operative	consecutively: yes	Type of tear: FTT		ROM:	
approach		Tendon(s) torn: NR	Duration of immobilization: 2–3	 flexion (active) 	
	Followup duration,		wk	 external rotation (active) 	
Questions: Q2,	mean±SD (range):	GROUP 1	Duration of rehab: NR	internal rotation	
Q5, Q6	35±7 mo (24–76 mo)	N: shld: 39	Rehab components: passive	 external rotation (passive) 	
		Age, mean±SD (range): all	stretching (day 1); strengthening	flexion (passive)	
Funding: No	Inclusion criteria:	groups: 68 yr (52–85 yr)	(wk ≥6)		
funding	(1) mass, irreparable	Males %: NR	Rehab regime: Frequency-	Strength: NR	
	RC tear; (2) treated	Cause of tear: NR	5x/day; Intensity–5 min.		
NOS: 6*/8*	with tenotomy or	Tear size: mass		Other:	
	tenodesis	Dominant shoulder %: 80.8	GROUP 2	 number of pts satisfied with 	
		(all groups)	Surgical approach: all-	procedure	
	Exclusion criteria:	Comorbidities: lesion of LHB	arthroscopic	 post-op symptoms related 	
	(1) concomittant	(all groups)	Type of surgery: NA	to biceps	
	procedure (attempted		Additional procedures (N):		
	RCR, acromioplasty, or	GROUP 2	biceps tenotomy/tenodesis		
	other); (2) previous	N: shld: 33	(39)/(36)		
	surgery	Age, mean±SD (range): see			
		group 1	Duration of immobilization: 2-3		
		Males %: NR	wk.		
		Cause of tear: NR	Duration of rehab: NR		
		Tear size: mass	Rehab components: passive		
		Dominant shoulder %: see	stretching (day 1); strengthening		
		group 1	(wk ≥6)		
		Comorbidities: see group 1	Rehab regime: Frequency-		
			5x/day; Intensity–6 min.		
			PRE-OP TREATMENT: yes		
			Duration: 6 mo (min)		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Boileau P, 2005	Recruitment dates:	Enrolled: 65	GROUP 1	HRQL: NR	Arthroscopic RCR leads to
	May 1999 to Dec 2001	Analyzed: 65	Surgical approach: all-		complete tendon healing.
Country:		Withdrawals: 0	arthroscopic	Function:	Patients with associated
France	Study design: before-		Type of surgery: repair and	CMS	delamination of SC and/or
	and-after	Duration since symptom	debridement	UCLA	IS and >65 yr have
Treatment		onset, mean (range):	Additional procedures (N):	• SST	significantly lower healing.
category:	Enrolled	2.2 yr (7 mo–20 yr)	acromioplasty (61); biceps		
Operative	consecutively: yes		tenotomy/tenodesis (3)/(53);	Pain: NR	
		Type of tear: FTT	resection of distal clavicle (4)		
Questions: Q2,	Followup duration,	Tendon(s) torn: SS		ROM: NR	
Q5, Q6	mean (range): 29 mo		Duration of immobilization: 6		
	(24–46 mo)	GROUP 1	wk	Strength: NR	
Funding: No		N: 65	Duration of rehab: NR		
funding	Inclusion criteria:	Age, mean±SD (range):	Rehab components: passive	Other:	
	(1) chronic FTT limited	60 yr (29–79 yr)	stretching (day 1–wk 6); CPM (wk	 cuff integrity 	
BA Quality:	to SS tendon, (2)	Males %: 49.2	3); hydrotherapy encouraged		
Consecutive: Y	arthroscopic RCR, (3)	Cause of tear: degenerative	Rehab regime: Frequency-		
Followup: Y	evaluation of tendon	(36), traumatic (29)	5x/day; Intensity–5 min		
Outcome	healing and cuff	Tear size: sm, med, lg			
assessment: Y	integrity at least 6 mo	Dominant shoulder %: 76.9	PRE-OP TREATMENT: yes		
	after surgery, (4)	Comorbidities: biceps	Duration: 6 mo (min)		
	clinical exam ≥2 yr after	pathology (56)	Type of treatment: physical		
	surgery		therapy NOS, cortisone injection,		
			medication NOS		
	Exclusion criteria:				
	(1) PTT, (2) partial				
	repair, (3) previous				
	operation on involved				
	cuff				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Boissonnault	Recruitment dates:	Enrolled: 118	GROUP 1	HRQL:	The presence of medical
WG, 2007	May 2002 to Jun 2003	Analyzed: 86	Surgical approach: open (NR) or	• SF-36	comorbidities should not be
		Withdrawals: 32	all-arthroscopic (NR)		considered a negative factor
Country: USA	Study design: before-		Type of surgery: repair	Function:	for RCR and subsequent
	and-after	Duration since symptom	Additional procedures (N): NR	DASH	rehabilitation. However, the
Treatment		onset, mean (range): NR			impact of general health
category: Post-	Enrolled		Duration of immobilization: NR	Pain: NR	status should be considered
op rehabilitation	consecutively: NR	Type of tear: NR	Duration of rehab: 12 wk		by physical therapists for
		Tendon(s) torn: NR	Rehab components: passive	ROM: NR	postoperative progression.
Questions: Q2,	Followup duration,		stretching (wk 1–16); active		
Q6	mean±SD (range):	GROUP 1	stretching (wk 1–16); active-	Strength: NR	
	13±5.1 wk (3–28 wk)	N: 118	assisted stretching (wk 2/3–16);		
Funding:		Age, mean±SD (range):	strengthening (wk 2/3–16);	Other: NR	
Professional	Inclusion criteria:	67±8.6 yr (49–82 yr)	Modalities as needed for pain;		
association	(1) recent surgical	Males %: 31.4	cold; transcutaneous electrical		
	repair of RC tear +	Cause of tear: traumatic (86)	nerve stimulation		
BA Quality:	outpatient rehab, (2)	Tear size: NR	Rehab regime: Frequency– daily;		
Consecutive: U Followup: N	>45 yr	Dominant shoulder %: NR Comorbidities: BMI >25;	Intensity-2x/day (home program)		
Outcome	Exclusion criteria:	high blood pressure;	PRE-OP TREATMENT: yes		
assessment: N	(1) involved in litigation	degenerative OA; asthma;	Duration: NR		
	for shld condition, (2)	depression; headache;	Type of treatment: physical		
	previous shid surgery,	pneumonia; kidney disease;	therapy NOS		
	(3) concurrent	sinus infection			
	significant shld injuries				
	(fracture or dislocation),				
	(4) worker				
	compensation/				
	permanent disability of				
	shld				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Boszotta H,	Recruitment dates:	Enrolled: 84	GROUP 1	HRQL: NR	Arthroscopically assisted
2004	1997 to NR	Analyzed: 84	Surgical approach: mini-open		repair of the RC was shown
		Withdrawals: 0	Type of surgery: repair	Function:	to be an effective procedure
Country:	Study design: before-		Additional procedures (N):	CMS	with good clinical results for
Austria	and-after	Duration since symptom	acromioplasty (all); biceps	UCLA	medium and large tears with
		onset, mean (range): NR	tenotomy (7)		adequate mobility, including
Treatment	Enrolled			Pain: NR	primary stability comparable
category:	consecutively: No	Type of tear: NR	Duration of immobilization: 3–4		to that seen with open
Operative		Tendon(s) torn: NR	wk	ROM: NR	repair.
	Followup duration,		Duration of rehab: NR		
Questions: Q2,	mean (range): 35 mo	GROUP 1	Rehab components: passive	Strength: NR	
Q5, Q6	(28–44 mo)	N: 84	stretching (wk 1–3/4); active	C	
		Age, mean±SD (range): 54.8	stretching (wk ≥4)	Other: NR	
Funding: NR	Inclusion criteria:	yr (32–74 yr)	Rehab regime: NR		
	Failed nonoperative tx	Males %: NR			
BA Quality:		Cause of tear: NR	PRE-OP TREATMENT: yes		
Consecutive: N	Exclusion criteria:	Tear size: NR	Duration: 3–14 mo (range)		
Followup: Y	NR	Dominant shoulder %: NR	Type of treatment: physical		
Outcome		Comorbidities: biceps	therapy NOS, cortisone injection,		
assessment: U		pathology (32)	NSAID		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Brady B, 2008	Recruitment dates:	Enrolled: 18	GROUP 1	HRQL:	A combined aquatic and
-	Nov 2004 to Apr 2005	Analyzed: NR	Duration of immobilization: NR	 WORC index 	land-based physical therapy
Country:		Withdrawals: NR	Duration of rehab: 12 wk		program following surgical
Australia	Study design (trial		Rehab components: passive	Function: NR	RCR has comparable
	type): CCT (parallel)	Duration since symptom	stretching (wk 1–3); active-		outcomes with a
Treatment		onset, mean (range): NR	assisted stretching (wk 4–6);	Pain: NR	conventional land-based
category: Post-	Enrolled		strengthening (wk 10-12); aquatic		program.
op rehabilitation	consecutively: yes	Type of tear: NR	therapy (day 10–wk 6 or 10)	ROM:	
		Tendon(s) torn: NR	Rehab regime: Frequency- land,	flexion	
Questions: Q2,	Followup duration		5x/day; Intensity-land,10 reps;	 external rotation 	
Q5	(endpoint): 12 wk	GROUP 1	aqua, 3 sets of 5–10 reps		
		N: 12		Strength: NR	
Funding: NR	Inclusion criteria:	Age, mean±SD (range):	GROUP 2	C	
	(1) >18 yr, (2)	56.3±9 yr (41–67 yr)	Duration of immobilization: NR	Other: NR	
ROB: High	symptoms >3 mo and	Males %: 66.7	Duration of rehab: 12 wk		
	<12 mo, (3)	Cause of tear: NR	Rehab components: passive		
	transportation for	Tear size: sm, med, lg, mass	stretching (wk 1–3); active-		
	appointments, (4)	Dominant shoulder %: 50	assisted stretching (wk 4–6);		
	diagnostic evidence of	Comorbidities: NR	strengthening (wk 10–12)		
	RC tear		Rehab regime: Frequency-		
		GROUP 2	5x/day; Intensity–10 reps		
	Exclusion criteria:	N: 6			
	NR	Age, mean±SD (range):	PRE-OP TREATMENT: NR		
		53.5±16 yr (26–69 yr)	Duration: NR		
		Males %: 50	Type of treatment: NR		
		Cause of tear: NR			
		Tear size: sm, med, lg, mass			
		Dominant shoulder %: 66.7			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Buess E, 2005	Recruitment dates:	Enrolled: 95 (shld: 99)	GROUP 1	HRQL: NR	Equal or better results were
	Mar 1999 to Feb 2001	Analyzed: 92 (shld: 96)	Surgical approach: open (NR),		obtained by arthroscopic
Country:		Withdrawals: 3	mini-open (NR)	Function:	RCR than open RCR. Pain
Switzerland	Study design:		Type of surgery: repair and	• SST	decreased and a better
	prospective cohort	Duration since symptom	debridement		functional result concerning
Treatment		onset, mean (range): NR	Additional procedures (N):	Pain:	mobility in patients with
category:	Enrolled		biceps /tenodesis (9); SLAP	• VAS	arthroscopic RCR was
Operative	consecutively: yes	Type of tear: NR	repair (1); AC resection (5)		achieved. Arthroscopic
approach		Tendon(s) torn: Group 1: SS		ROM: NR	repair is successful for large
	Followup duration,	and/or IS, SC	Duration of immobilization: 6		and small tears.
Questions: Q2,	mean (range): 24.6 mo	Group 2: SS and/or IS	wk	Strength: NR	Biomechanically, large tears
Q5, Q6	(15–40 mo)		Duration of rehab: NR		might benefit more than
		GROUP 1	Rehab components: passive	Other:	small tears.
Funding: NR	Inclusion criteria:	N: 29 (shld: 30)	stretching; active stretching	 mean days free of pain 	
	(1) RCR with bony	Age, mean±SD (range): 48.3	Rehab regime: NR	 number of pts satisfied 	
NOS: 6*/8*	reattachment, (2)	yr (18–73 yr)		-	
	surgery performed by	Males %: 72.4	GROUP 2		
	the same surgeon	Cause of tear: degenerative	Surgical approach: all-		
		(11), traumatic (18)	arthroscopic		
	Exclusion criteria:	Tear size: all sizes	Type of surgery: repair and		
	(1) intratendinous	Dominant shoulder %: NR	debridement		
	sutures, (2) open repair	Comorbidities: NR	Additional procedures (N):		
	by a different surgeon		biceps tenodesis (10); SLAP		
		GROUP 2	repair (19) + AC resection (9)		
		N: 63 (shld: 66)			
		Age, mean±SD (range): 53.2	Duration of immobilization: 6		
		yr (20–77 yr)	wk		
		Males %: 69.8	Duration of rehab: NR		
		Cause of tear: degenerative	Rehab components: active-		
		(19), traumatic (44)	assisted stretching (wk 1–6)		
		Tear size: all sizes	Rehab regime: NR		
		Dominant shoulder %: NR			
		Comorbidities: NR	PRE-OP TREATMENT: yes		
			Duration: 3 mo (min)		
			Type of treatment: physical		
			thearpy NOS		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Burks RT, 2009	Recruitment dates:	Enrolled: 40	GROUP 1	HRQL:	No clinical or MRI
	NR	Analyzed: 40	Surgical approach: all-	 WORC Index 	differences were seen
Country: USA		Withdrawals: 0	arthroscopic		between patients repaired
	Study design: RCT		Type of surgery: repair and	Function:	with a single-row or double-
Treatment	(parallel)	Duration since symptom	debridement	ASES	row technique.
category:		onset, mean (range): NR	Additional procedures (N):	CMS	
Operative	Enrolled		acromioplasty (all); distal clavicle	Single Assessment Numeric	
technique	consecutively: NR	Type of tear: FTT	resection (8); debridement of	Evaluation	
		Tendon(s) torn: SS, SC	frayed upper SC (3); biceps	UCLA	
Questions: Q2,	Followup duration,	Cause of tear: degenerative	tenodesis/tenotomy (total: 7);		
Q5	mean (range): 12 mo	(15), traumatic (25)	debridement of SLAP lesion	Pain: NR	
			(total: 1)		
Funding:	Inclusion criteria:	GROUP 1	Technique: double-row repair	ROM: NR	
Industry	(1) FTT on MRI, (2)	N: 20			
	complete serial MRIs,	Age, mean±SD (range): 57	Duration of immobilization: <1	Strength:	
ROB: High	(3) willingness to	yr (41–81 yr)	wk	 internal rotation 	
	undergo standard RC	Males %: NR	Duration of rehab: >6 mo	external rotation	
	physical therapy, (4)	Tear size: med, lg	Rehab components: passive		
	willingness to be	Dominant shoulder %: NR	stretching (1 wk); active-assisted	Other:	
	randomized to single-	Comorbidities: NR	stretching (4–6 wk); active	Cuff integrity	
	row or double-row		stretching (6–8 wk); strengthening	e our megnty	
	repair, (5) repairable	GROUP 2	(10–12 wk)		
	tear when evaluated at	N: 20	Rehab regime: NR		
	the time of surgery	Age, mean±SD (range): 56			
		yr (43–74 yr)	GROUP 2		
	Exclusion criteria:	Males %: NR	Surgical approach: all-		
	active hx of	Tear size: med, lg	arthroscopic		
	smoking, (2)	Dominant shoulder %: NR	Type of surgery: repair and		
	autoimmune or	Comorbidities: NR	debridement		
	rheumatological		Additional procedures (N):		
	disease, (3) active use		acromioplasty (all); distal clavicle		
	of steroids, (4) previous		resection (4); debridement of		
	RC surgery on the		frayed upper SC (3); biceps		
	affected shoulder, (5)		tenodesis/tenotomy (total: 7);		
	irrepairable RC tear, (6)		debridement of SLAP lesion		
	WCB, (7) significant SC		(total: 1)		
	tear, (8) tear pattern		Technique: single-row repair		
	that required a				
	significant side-to-side		Duration of immobilization: <1		
	repair		wk		
	-		Duration of rehab: >6 mo		
			Rehab components: passive		
			stretching (1 wk); active-assisted		

Burks RT, 2009	stretching (4–6 wk); active
(continued)	stretching (6–8 wk); strengthening
	(10–12 wk)
	Rehab regime: NR
	PRE-OP TREATMENT: yes
	Duration: NR
	Type of treatment: NR

Cturdu /	Ctudu de cierr	Dertielment ekenesteristiss			
Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Caniggia M,	Recruitment dates:	Enrolled: 34	GROUP 1	HRQL: NR	The use of titanium anchors
1995	NR	Analyzed: 34	Surgical approach: open		shortens postoperative time
		Withdrawals: 0	Type of surgery: repair	Function:	and UCLA score is
Country: Italy	Study design: before-		Additional procedures (N):	UCLA	comparable with the
	and-after	Duration since symptom	acromioplasty (all)		traditional technique.
Treatment		onset, mean (range):		Pain: NR	Titanium anchors should not
category:	Enrolled	10.7 mo (1 mo–3 yr)	Duration of immobilization: NR		be used when bone quality
Operative	consecutively: No		Duration of rehab: NR	ROM: NR	is poor or good patient
	2	Type of tear: NR	Rehab components: sm to lg		compliance is doubtful.
Questions: Q2.	Followup duration,	Tendon(s) torn: NR	tears: passive stretching (day 4);	Strength: NR	•
Q6	mean (range): 17.5 mo		active stretching (day 20); mass	g	
	(6–24 mo)	GROUP 1	<i>tears:</i> passive stretching (day 20);	Other: NR	
Funding: NR	(0 _ 1))	N: 34	active stretching following	Olion Int	
r unung. mit	Inclusion criteria:	Age, mean±SD (range): 41.2	passtive stretching		
BA Quality:	(1) <60 yr; (2) no	yr (22–56 yr)	Rehab regime: NR		
Consecutive: N	history of DM or	Males %: 58.8	Rendo regime. NR		
Followup: Y	decreased heritable	Cause of tear: traumatic (34)	PRE-OP TREATMENT: NR		
Outcome		Tear size: all sizes	Duration: NR		
	connective tissue				
assessment: U	disorders; (3) no	Dominant shoulder %: 85.3	Type of treatment: NR		
	osteopenia,	Comorbidities: NR			
	osteoporosis, OA, bony				
	cysts, subacromial				
	sclerosis, acromial				
	spurs				
	Exclusion criteria: NR				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Charousset C,	Recruitment dates:	Enrolled: 114	GROUP 1	HRQL: NR	Good results in a terms of
2008	Jan 2001 to Dec 2003	Analyzed: 104	Surgical approach: all-		functional recovery can be
		Withdrawals: 10	arthroscopic	Function:	achieved by arthroscopic
Country:	Study design: before-		Type of surgery: repair and	CMS	RCR. Female sex, upper-
France	and-after	Duration since symptom	debridement		limb heavy work, and poo
		onset, mean (range):	Additional procedures (N):	Pain: NR	bone quality are negative
Treatment	Enrolled	15.2 mo (1 mo–10.2 yr)	acromioplasty (all); biceps		prognostic factors.
category:	consecutively: yes		tenotomy/tenodesis (60)/(2);	ROM: NR	
Operative		Type of tear: FTT	coplaning of AC joint (18)		
	Followup duration	Tendon(s) torn: SS, SS+IS,		Strength: NR	
Questions: Q2,	(maximum): 2 yr	SS+SC, SS+IS+SC	Duration of immobilization: 6		
Q5, Q6			wk	Other:	
	Inclusion criteria:	GROUP 1	Duration of rehab: 6 mo	 number of pts satisfied 	
Funding: No	(1) FTT and chronic	N: 114	Rehab components: passive	 cuff integrity 	
funding	shld pain, (2) min 6 mo	Age, mean±SD (range): 59.4	stretching (day 1–wk 6); active	0.1	
	nonoperative tx	yr (32–78 yr)	stretching (wk 6–3 mo)		
BA Quality:		Males %: 46.5	Rehab regime: NR		
Consecutive: Y	Exclusion criteria:	Cause of tear: degenerative			
Followup: Y	(1) PTT, (2) shld	(80), traumatic (34)	PRE-OP TREATMENT: yes		
Outcome	instability, (3) prior shld	Tear size: NR	Duration: 6 mo (min)		
assessment: N	surgery, (4) OA, (5)	Dominant shoulder %: 84.2	Type of treatment: physical		
	allergy to iodine, (6)	Comorbidities: degenerative	therapy NOS, cortisone injection		
	total rupture of the SC	disease (80)			
	tendon				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Charousset C,	Recruitment dates:	Enrolled: 66	GROUP 1	HRQL: NR	No significant difference in
2007	Oct 2001 to Mar 2003	Analyzed: 61	Surgical approach: all-arthroscopic		clinical results, but tendon
		Withdrawals: 5	Type of surgery: repair	Function:	healing rates were better
Country:	Study design (trial		Additional procedures (N):	CMS	with the double-row
France	type): RCT (parallel)	Duration since symptom	acromioplasty (all); biceps tenotomy		anchorage. Improvements
		onset, mean (range):	(9)	Pain: NR	in the double-row technique
Treatment	Enrolled	Group 1: 14.7 mo (1–73 mo);	Technique: double-row anchor;		might lead to better clinical
category:	consecutively: NR	Group 2: 11.9 mo (1–52 mo)	side-to-side suture	ROM: NR	and tendon healing results.
Operative					
technique	Followup duration,	Type of tear: NR	Duration of immobilization: 5 wk	Strength: NR	
	mean (range): 28.1	Tendon(s) torn: IS, SC, SS	Duration of rehab: NR	-	
Questions: Q2,	mo (24–40 mo)		Rehab components: passive	Other:	
Q5		GROUP 1	stretching (day 1–5 wk); active	 time to return to work 	
	Inclusion criteria:	N: 31	stretching (wk ≥6)	 number of pts back to work 	
Funding: NR	(1) no previous	Age, mean±SD (range):	Rehab regime: NR	cuff integrity	
•	surgery, (2) no sign of	60 yr (37–62 yr)	-	- our integrity	
ROB: High	adhesive capsulitis or	Males %: 51.6	GROUP 2		
C C	shld instability, (3)	Cause of tear: degenerative	Surgical approach: all-arthroscopic		
	complete SS tear	(22), traumatic (9)	Type of surgery: repair		
	·	Tear size: NR	Additional procedures (N):		
	Exclusion criteria:	Dominant shoulder %: 74.2	acromioplasty (all); biceps tenotomy		
	(1) irreparable tear, (2)	Comorbidities: NR	(5)		
	extension of SS tear to		Technique: single-row anchor; side-		
	more than 1/3 of SC or	GROUP 2	to-side suture		
	IS tendon	N: 35			
		Age, mean±SD (range):	Duration of immobilization: 5wk.		
		58 yr (32–74 yr)	Duration of rehab: NR		
		Males %: 42.9	Rehab components: passive		
		Cause of tear: degenerative	stretching (day 1-wk 6); active		
		(26), traumatic (9)	stretching (wk ≥6)		
		Tear size: NR	Rehab regime: NR		
		Dominant shoulder %: 77.1	·····		
		Comorbidities: NR	PRE-OP TREATMENT: yes		
			Duration: ≥6 mo (min)		
			Type of treatment: physical therapy		
			NOS; infiltrations, medication NOS		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Checchia SL,	Recruitment dates:	Enrolled: 15	GROUP 1	HRQL: NR	The suture involving the RC
2005	NR	Analyzed: 15	Surgical approach: all-		and the biceps tendon was
		Withdrawals: 0	arthroscopic	Function: NR	effective to correct both
Country: Brazil	Study design: before-		Type of surgery: repair		lesions.
	and-after	Duration since symptom	Additional procedures (N):	Pain: NR	
Treatment		onset, mean (range): NR (7	acromioplasty (all); labral repair		
category:	Enrolled	mo.)	(1); biceps tenodesis (all);	ROM:	
Operative	consecutively: NR		resection of distal clavicle (10)	 flexion 	
		Type of tear: FTT		 external rotation 	
Questions: Q2,	Followup duration,	Tendon(s) torn: SS , SS+IS,	Duration of immobilization: 4–6	 internal rotation 	
Q5	mean (range): 2.7 yr	SS+IS+SC, SS+SC	wk		
	(20 mo–5.6 mo)		Duration of rehab: NR	Strength: NR	
Funding: NR		GROUP 1	Rehab components: passive		
	Inclusion criteria:	N: 15	stretching (wk ≥6); active	Other: NR	
BA Quality:	1) RC tear associated	Age, mean±SD (range):	stretching (wk 6–8+)		
Consecutive: U	with severe biceps	62 yr (41–80 yr)	Rehab regime: NR		
Followup: Y	tendon lesions	Males %: 60			
Outcome		Cause of tear: NR	PRE-OP TREATMENT: NR		
assessment: U	Exclusion criteria:	Tear size: NR	Duration: NR		
	1) self-adherent rupture	Dominant shoulder %: 100	Type of treatment: NR		
	(no mobility of the	Comorbidities: SLAP lesion			
	biceps tendon)	(1); biceps tendon: dislocation			
	. ,	(6); subluxated (2); severe			
		incomplete tear (7)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Cofield RH,	Recruitment dates:	Enrolled: 97 (shld: 105)	GROUP 1	HRQL: NR	Standard tendon repair
2001	Jan 1975 to Dec 1983	Analyzed: 97 (shld: 105)	Surgical approach: open		techniques combined with
		Withdrawals: 0	Type of surgery: repair and	Function: NR	anterior acromioplasty,
Country: USA	Study design: before-		debridement		posterior operative limb
	and-after	Duration since symptom	Additional procedures (N):	Pain: NR	protection, and monitored
Treatment		onset, mean (range):	acromioplasty (all); biceps		physical therapy can
category:	Enrolled	2.5 yr (1 mo–15 yr)	tenotomy/tenodesis (3)	ROM:	produce consistent and
Operative	consecutively: yes			 abduction (active) 	lasting relief and
•	2 1	Type of tear: FTT	Duration of immobilization: 4–6	internal rotation	improvement in ROM.
Questions: Q2,	Followup duration,	Tendon(s) torn: SS, IS,	wk.	 external rotation 	-
Q5, Q6	mean (range): 13.4 yr	SS+SC, SS+IS+SC, SS+IS	Duration of rehab: NR		
	(2–22 yr)		Rehab components: passive	Strength:	
Funding: No		GROUP 1	stretching (day 2-wk 4/6); active-	abduction	
funding	Inclusion criteria:	N: 97 (shld: 105)	assisted stretching and	 flexion 	
C C	(1) ≥2 yr post	Age, mean±SD (range):	strengthening (wk 4/6);	 external roation 	
BA Quality:	operative, (2) open	58 yr (38–75 yr)	strengthening (≥3 mo)		
Consecutive: Y	surgical repair of	Males %: 74.2	Rehab regime: NR	Other:	
Followup: Y	chronic FTT	Cause of tear: degenerative	C		
Outcome		(43), traumatic (62)	PRE-OP TREATMENT: yes	 number pts return to work, 	
assessment: U	Exclusion criteria:	Tear size: all sizes	Duration: injections	sports	
	NR	Dominant shoulder %: NR	(mean/range): 2 (1–15)		
		Comorbidities: mild	Type of treatment: physical		
		glenohumeral arthritis (3);	therapy NOS, cortisone injection,		
		biceps pathology (44)	NSAID		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Cole BJ, 2007	Recruitment dates: 2001 to 2004	Enrolled: NR (shld: 55) Analyzed: 47 (shld: 49)	GROUP 1 Surgical approach: all-	HRQL: NR	All outcomes improved after a short term followup after
Country: USA	Study design: before-	Withdrawals: 6 shld	arthroscopic Type of surgery: repair	Function: • CMS	arthroscopic RCR. Significant differences were
Treatment category:	and-after	Duration since symptom onset, mean (range):	Additional procedures (N): biceps tenotomy/tenodesis	SSTASES	present in age, active ROM, and strength between intact
Operative	Enrolled consecutively: yes	17 mo (2 mo–16.4 yr)	(4)/(19)	Rowe testSF-12	and retear group.
Questions: Q2, Q5, Q6	Followup duration, mean (range): 2.7 yr	Type of tear: FTT Tendon(s) torn: SS, SS+IS	Duration of immobilization: 4 wk Duration of rehab: 4–6 mo	Pain:	
Funding: NR	(2–3.8 yr)	GROUP 1 N: 47 (shld: 49)	Rehab components: passive stretching (day 1–wk 4); active-	• VAS ROM:	
BA Quality: Consecutive: Y Followup: Y	Inclusion criteria: Symptomatic FTT	Age, mean±SD (range): 57 yr (34–80 yr) Males %: 59.6	assisted stretching (wk 4–6); strengthening (wk 6–12) Rehab regime: NR	 flexion external rotation abduction 	
Outcome assessment: Y	Exclusion criteria: (1) prior shld surgery; (2) ongoing litigation; (3) ipsilateral greater tuberosity or clavicle	Cause of tear: NR Tear size: all sizes Dominant shoulder %: 74.5 Comorbidities: biceps pathology (23)	PRE-OP TREATMENT: yes Duration: NR Type of treatment: NR	 abduction Strength: flexion external rotation 	
	fracture; (4) adhesive capulitis contaminant tear in the labrum; (5) SC, TM tear			Other: • cuff integrity	

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Colegate-Stone	Recruitment dates:	Enrolled: 123	GROUP 1	HRQL: NR	Arthroscopic RCR is
T, 2009	2003-2006	Analyzed: NR	Surgical approach: mini-open		comparable with the mini
		Withdrawals: NR	Type of surgery: repair	Function:	open repair with well
Country: UK	Study design:		Additional procedures (N): NR	CMS	correlated postoperative
	Prospective cohort	Duration since symptom		• DASH	recovery rates.
Treatment		onset, mean (range): NR	Duration of immobilization: 6	OSS	
category:	Enrolled		wk		
Operative	consecutively: yes	Type of tear: NR	Duration of rehab: NR	Pain: NR	
approach		Tendon(s) torn: NR	Rehab components: NR		
	Followup duration,		Rehab regime: NR	ROM: NR	
Questions: Q2	mean (range): 24 mo	GROUP 1			
		N: 31	GROUP 2	Strength: NR	
Funding: NR	Inclusion criteria:	Age, mean±SD (range): 62	Surgical approach: all-		
	(1) RC repair	yr	arthroscopic	Other: NR	
NOS: 4*/8*		Males %: 52	Type of surgery: repair		
	Exclusion criteria:	Cause of tear: NR	Additional procedures (N): NR		
	(1) other significant	Tear size: sm, med			
	glenohumeral pathology	Dominant shoulder %: NR Comorbidities: NR	Duration of immobilization: 6 wk		
			Duration of rehab: NR		
		GROUP 2	Rehab components: NR		
		N: 92	Rehab regime: NR		
		Age, mean±SD (range): 57			
		yr	PRE-OP TREATMENT: NR		
		Males %: 36	Duration: NR		
		Cause of tear: NR	Type of treatment: NR		
		Tear size: sm, med			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Cools A, 2006	Recruitment dates:	Enrolled: 53	GROUP 1	HRQL: NR	Shoulder function is not
	NR	Analyzed: 53	Surgical approach: open		completely normalised,
Country:		Withdrawals: 0	Type of surgery: repair	Function:	although significant strength
Belgium	Study design:		Additional procedures (N): NR	CMS	gains are present 18 mo
	prospective cohort	Duration since symptom			after RCR.
Treatment	treated as before-and-	onset, mean (range): NR	Duration of immobilization: NR	Pain: NR	
category:	after		Duration of rehab: >12 wk		
Operative		Type of tear: FTT	Rehab components:	ROM: NR	
•	Enrolled	Tendon(s) torn: NR	strengthening (wk 1–12)		
Questions: Q2,	consecutively: NR		Rehab regime: NR	Strength:	
Q6	-	GROUP 1	-	 internal rotation 60°/sec and 	
	Followup duration,	N: 24	GROUP 2	180°/sec	
Funding: NR	mean (range): 18 mo	Age, mean±SD (range):	Surgical approach: none	 external rotation 60°/sec 	
•	(12–20 mo)	57.2±9.8 yr	Type of surgery: NA	and 180°/sec	
BA Quality:	. ,	Males %: 45.8	Additional procedures (N): NR		
Consecutive: U	Inclusion criteria:	Cause of tear: NR		Other: NR	
Followup: Y	Group 1: FTT repaired	Tear size: sm, med, lg	Duration of immobilization: NR		
Outcome	in the same hospital by	Dominant shoulder %: all	Duration of rehab: NR		
assessment: Y	the same surgeon	groups: 79.2	Rehab components: NR		
	Group 2: healthy participants	Comorbidities: NR	Rehab regime: NR		
		GROUP 2	PRE-OP TREATMENT: NR		
	Exclusion criteria:	N: 29	Duration: NR		
	(1) prior surgery to the	Age, mean±SD (range):	Type of treatment: NR		
	shid, (2) neurologic	56.4±9.8 yr (NR)	<i></i>		
	pathology	Males %: 44.8			
	1	Cause of tear: NR			
		Tear size: NR			
		Dominant shoulder %: see			
		group 1			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Costouros JG,	Recruitment dates:	Enrolled: 37	GROUP 1	HRQL: NR	Isolated SS FTT can be
2006	NR	Analyzed: NR	Surgical approach: open RCR		treated with open or
		Withdrawals: NR	Type of surgery: repair	Function:	arthroscopic repair but open
Country: NR	Study design:		Additional procedures (N): NR	CMS	repair is associated with
	Retrospective cohort	Duration since symptom			increased progression of
Treatment		onset, mean (range): NR	Duration of immobilization: NR	Pain: NR	fatty degeneration.
category:	Enrolled		Duration of rehab: NR		
Operative	consecutively: NR	Type of tear: FTT	Rehab components: NR	ROM: NR	
approach		Tendon(s) torn: SS	Rehab regime: NR		
	Followup duration,			Strength: NR	
Questions: Q2	mean (range): G1: 24	GROUP 1	GROUP 2	-	
	mo (12 mo–4 yr) G2:	N: 19	Surgical approach: all-	Other:	
Funding: NR	18 mo (12 mo–3.5 yr)	Age, mean±SD (range): 57	arthroscopic	 fatty infiltration 	
		yr (40–75 yr)	Type of surgery: repair	,	
NOS: 5*/8*	Inclusion criteria:	Males %: 74	Additional procedures (N): NR		
	(1) isolated FTT of SS	Cause of tear: NR			
		Tear size: NR	Duration of immobilization: NR		
	Exclusion criteria:	Dominant shoulder %: NR	Duration of rehab: NR		
	NR	Comorbidities: NR	Rehab components: NR		
			Rehab regime: NR		
		GROUP 2			
		N: 18	PRE-OP TREATMENT: NR		
		Age, mean±SD (range): 54	Duration: NR		
		yr (34–65 yr)	Type of treatment: NR		
		Males %: 67			
		Cause of tear: NR			
		Tear size: NR			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Cummins CA,	Recruitment dates:	Enrolled: 27	GROUP 1	HRQL: NR	Found poorer early
2003	Sept 1999 to May 2000	Analyzed: 27	Surgical approach: open		outcomes and a lower
		Withdrawals: 0	Type of surgery: repair and	Function:	shoulder function score 1 yr
Country: USA	Study design:		debridement	CMS	after repair, and a higher
	Prospective cohort	Duration since symptom	Additional procedures (N):	 Shoulder overall function 	rate of repeat surgery in
Treatment		onset, mean (range): NR	acromioplasty (all)	rating	repair with a bioabsorbable
category:	Enrolled		Technique: Mitek metal RC		screw than with a standard
Operative	consecutively: yes	Type of tear: NR	suture anchors; mattress stitch	Pain: NR	metal suture anchors.
technique		Tendon(s) torn: SS	configuration		
	Followup duration			ROM:	
Questions: Q2,	(endpoint): 1 yr	GROUP 1	Duration of immobilization: NR	 abduction 	
Q5		N: 18	Duration of rehab: NR		
	Inclusion criteria:	Age, mean±SD (range):	Rehab components: NR	Strength: NR	
Funding: NR	(1) RC tear <4cm ² , (2)	63±8 yr (NR)	Rehab regime: NR		
···· ·	involved only SS	Males %: 66.7		Other: NR	
NOS: 5*/8*		Cause of tear: NR	GROUP 2		
	Exclusion criteria: NR	Tear size: mean: 1.9 cm ²	Surgical approach: open		
		Dominant shoulder %: NR	Type of surgery: repair and		
		Comorbidities: NR	debridement		
			Additional procedures (N):		
		GROUP 2	acromioplasty (all)		
		N: 9	Technique: headed bio-		
		Age, mean±SD (range):	corkscrews		
		58±10 yr (NR)			
		Males %: 77.8	Duration of immobilization: NR		
		Cause of tear: NR	Duration of rehab: NR		
		Tear size: mean: 1.1 cm ²	Rehab components: NR		
		Dominant shoulder %: NR Comorbidities: NR	Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Davidson PA,	Recruitment dates:	Enrolled: 63 (shld: 67)	GROUP 1	HRQL: NR	Increased tension repairs
2000	NR	Analyzed: 63 (shld: 67)	Surgical approach: lg / mass		are associated with poor
		Withdrawals: 0	tears: open; sm / med tears: all-	Function:	functional outcomes.
Country: USA	Study design: before-		arthroscopic	CMS	
-	and-after	Duration since symptom	Type of surgery: repair and		
Treatment		onset, mean (range): NR	debridement	Pain: NR	
category:	Enrolled		Additional procedures (N):		
Operative	consecutively: yes	Type of tear: FTT	acromioplasty-open (30), all-	ROM: NR	
		Tendon(s) torn: NR	arthroscopic (42); distal clavicle		
Questions: Q2,	Followup duration		resection (13)	Strength: NR	
Q6	(minimum): 24 mo	GROUP 1		C	
		N: 63 (shld: 67)	Duration of immobilization: NR	Other: NR	
Funding: NR	Inclusion criteria:	Age, mean±SD (range): 62.5	Duration of rehab: NR		
•	FTT	yr (41–83 yr)	Rehab components: NR		
BA Quality:		Males %: 61.9	Rehab regime: NR		
Consecutive: Y	Exclusion criteria:	Cause of tear: NR	-		
Followup: U	NR	Tear size: mean: 6.6 cm ² ;	PRE-OP TREATMENT: NR		
Outcome		range: 0.6–25 cm ²	Duration: NR		
assessment: U		Dominant shoulder %: 63.5	Type of treatment: NR		
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
De Carli A, 2006	Recruitment dates:	Enrolled: 30	GROUP 1	HRQL: NR	Surgical tx shows better
	Oct 2001 to Mar 2004	Analyzed: NR	Surgical approach: mini-open		overall results for strength
Country: Italy		Withdrawals: 0	Type of surgery: repair	Function:	and function than ESWT.
	Study design: RCT		Additional procedures (N): NR	ASES	
Treatment	(parallel)	Duration since symptom		CMS	
category:		onset, mean (range): NR	Duration of immobilization: NR	UCLA	
Nonoperative	Enrolled		Duration of rehab: NR		
vs. operative	consecutively: NR	Type of tear: FTT Tendon(s) torn: NR	Rehab components: NR Rehab regime: NR	Pain: NR	
Questions: Q4	Followup duration,		Kenab regime. NK	ROM: NR	
	mean (range): G1: 19	GROUP 1	GROUP 2	-	
Funding:	mo (12 mo-2.2 yr); G2:	N: 20	Intervention: electromagnetic	Strength: NR	
Industry	24 mo (12 mo–3 yr)	Age, mean±SD (range): 56	shock wave therapy	0	
		yr (43–74) yr	Drug name: NR	Other: NR	
ROB: High	Inclusion criteria:	Males %: NR	Duration of treatment: NR		
	 complete RCT 	Cause of tear: NR	Treatment Regime: NR		
		Tear size: med, lg	Degree of supervision: NR		
	Exclusion criteria: NR	Dominant shoulder %: NR Comorbidities: NR	Treatment provider: NR		
			PRE-OP TREATMENT: yes		
		GROUP 2	Duration: NR		
		N: 20	Type of treatment: NR		
		Age, mean±SD (range): 57			
		yr (41–81 yr)			
		Males %: NR			
		Cause of tear: NR			
		Tear size: med, lg			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
DeFranco MJ,	Recruitment dates:	Enrolled: 30	GROUP 1	HRQL:	Confirmed that RC integrity
2007	May 2000 to Mar 2003	Analyzed: 30	Surgical approach: all-	• SF-36	and functional outcomes
		Withdrawals: 0	arthroscopic		after repair of small and
Country: USA	Study design: before-		Type of surgery: repair	Function:	medium sized SS tendon
	and-after	Duration since symptom	Additional procedures (N):	PENN	tear are improved by single-
Treatment		onset, mean (range): NR	acromioplasty (29); biceps		row arthroscopic repair.
category:	Enrolled		tenotomy/tenodesis (4)	Pain: NR	
Operative	consecutively: yes	Type of tear: FTT (22); PTT			
		(8)	Duration of immobilization: NR	ROM: NR	
Questions: Q2,	Followup duration,	Tendon(s) torn: SS	Duration of rehab: 6 mo		
Q6	mean (range): 22.3 mo		Rehab components: passive	Strength: NR	
	(12 mo–3 yr)	GROUP 1	stretching (day 1-wk 6); active		
Funding: NR		N: 30	stretching and strengthening (wk	Other:	
	Inclusion criteria:	Age, mean±SD (range):	6–6 mo)	 actual physical activity 	
BA Quality:	(1) isolated SS tear, (2)	56.3±12.3 yr (30–78 yr)	Rehab regime: NR	 cuff integrity 	
Consecutive: Y	failure of nonoperative	Males %: 63.3			
Followup: Y	tx	Cause of tear: NR	PRE-OP TREATMENT: yes		
Outcome	Evolucion eritorio.	Tear size: sm, med, mean:	Duration: 6 mo (min)		
assessment: N	Exclusion criteria:	2.3 cm	Type of treatment: NR		
	(1) previous shld	Dominant shoulder %: NR			
	surgery, (2) instability,	Comorbidities: biceps			
	(3) symptomatic AC	pathology (4), SLAP lesion			
	joint pathology, (4)	(3), immobile mesoacromiale			
	glenohumeral OA, (5)	(1), coronary artery disease/heart attack/			
	active infection, (6) stiffness	cerebrovascular disease or a			
	sumess				
		stroke/ congestive heart failure/ peripheral vascular			
		disease/ dementia / chronic			
		obstructive pulmonary			
		disease/ connective tissue			
		disease			
		นเจธลงช			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Delbrouck C,	Recruitment dates:	Enrolled: 79 (shld: 84)	GROUP 1	HRQL: NR	Equivalent results were
2003	NR	Analyzed: 71 (shld: 76)	Surgical approach: open (20); mini-		achieved for post operative
		Withdrawals: 8	open (12); all-arthroscopic (21)	Function: NR	rehab in hospital compared
Country:	Study design:		Type of surgery: repair		to day patients. Choice of
France	Prospective cohort	Duration since symptom	Additional procedures (N):	Pain:	setting should be made
		onset, mean (range): NR	acromioplasty (53); labral repair (NR);	• VAS	based on other
Treatment	Enrolled		biceps tenotomy/tenodesis (23);		considerations such as
category: Post-	consecutively: NR	Type of tear: FTT (71)	manipulation (NR); clavicle resection,	ROM:	social context or patients
op rehabilitation		PTT (13)	coracoplasty (NR)	 abduction 	family needs.
	Followup duration	Tendon(s) torn: NR		 flexion 	
Questions: Q2,	(endpoint): 60 days		Duration of immobilization: mean	 external rotation 	
Q5, Q6		GROUP 1	22.8–29.6 days		
	Inclusion criteria:	N: shld: 53	Duration of rehab: NR	Strength: NR	
Funding: NR	(1) RC tear due to	Age, mean±SD (range):	Rehab components: passive		
	overuse, (2) surgical	52.7±8 yr (NR)	stretching; active-assisted stretching	Other: NR	
NOS: 2*/8*	RCR by simple suture	Males %: 47.2	(23.2±6 day); Modality–pool		
	or "systeme d'ancrape"	Cause of tear: Degenerative	Rehab regime: Frequency- 2x/day,		
		(53)	5x/wk; Intensity–NR		
	Exclusion criteria:	Tear size: all sizes			
	(1) non-operated RC	Dominant shoulder %: NR	GROUP 2		
	tear, (2) isolated	Comorbidities: NR	Surgical approach: open (14); mini-		
	acromioplasty, (3)		open (7); all-arthroscopic (2)		
	isolated ruptures of	GROUP 2	Type of surgery: repair		
	SC, (4) tendon	N: shld: 23	Additional procedures (N):		
	transfers or deltoid	Age, mean±SD (range):	acromioplasty (23); lalbral repair (NR);		
	flaps, (5) retractable	55±5 yr (NR)	biceps tenotomy/tenodesis (16);		
	capsularis	Males %: 69.6	manipulation (NR)		
	preoperative, (6)	Cause of tear: degenerative			
	previous shld surgry,	(23)	Duration of immobilization: mean		
	(7) associated surgical	Tear size: all sizes	22.8–29.6 days		
	procedures (prosthesis	Dominant shoulder %: NR	Duration of rehab: NR		
	Rx for instability), (8)	Comorbidities: NR	Rehab components: passive		
	RC tear associated		stretching; active-assisted stretching		
	with fractures		(23.2±6 day); Modality–pool		
			Rehab regime: Frequency- 2x/day,		
			5x/wk; Intensity—NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Deutsch A,	Recruitment dates:	Enrolled: 48	GROUP 1	HRQL: NR	Arthroscopic RCR using
2008	NR	Analyzed: 39	Surgical approach: all-arthroscopic		single-row fixation resulted
		Withdrawals: 9	Type of surgery: repair	Function:	in significant improvements
Country: USA	Study design:		Additional procedures (N):	ASES	in clinical outcomes and
	prospective cohort	Duration since symptom	acromioplasty (all); biceps		reliable repair integrity for
Treatment	treated as before-and-	onset, mean (range):	tenotomy/tenodesis (2); biceps	Pain:	both single tendon and two
category:	after	Group 1: 15 mo (3 mo–5 yr)	debridement (2)	• VAS	tendon tears.
Operative		Group 2: 11 mo (1 mo–5 yr)			
	Enrolled	Total: 15 mo (1 mo–5 yr)	Duration of immobilization: 6 wk	ROM:	
Questions: Q2,	consecutively: yes		Duration of rehab: NR	 forward flexion 	
Q5, Q6		Type of tear: FTT	Rehab components: passive	 external rotation 	
	Followup duration,	Tendon(s) torn:	stretching-post operative;	 internal rotation 	
Funding: NR	mean (range): 3.2 yr	Group 1: SS	strengthening (wk 6)		
	(2–5 yr)	Group 2: SS, IS, SS	Rehab regime: NR	Strength: NR	
BA Quality:				5	
Consecutive: Y	Inclusion criteria:	GROUP 1	GROUP 2	Other:	
Followup: Y	FTT involved at least	N: 21	Surgical approach: all-arthroscopic	 satisfaction 	
Outcome	the full width of the SS	Age, mean±SD (range):	Type of surgery: repair	 cuff integrity 	
assessment: Y	tendon insertion	54±9.7 yr (32–71 yr)	Additional procedures (N):		
		Males %: 71.4	acromioplasty (all); biceps		
	Exclusion criteria:	Cause of tear: NR	tenotomy/tenodesis (1)/(4); biceps		
	(1) mass tears, (2)	Tear size: mean: 2.0 cm;	debridement (3)		
	previous shld surgery,	range:1.8-2.2 cm			
	(3) glenohumeral OA,	Dominant shoulder %: 77	Duration of immobilization: 6 wk.		
	(4) adhesive capsulitis,	(all)	Duration of rehab: NR		
	(5) osacromidale	Comorbidities: NR	Rehab components: passive		
	requiring stabilization		stretching-post operative;		
		GROUP 2	strengthening (wk 8)		
		N : 18	Rehab regime: NR		
		Age, mean±SD (range):			
		51.8±8.6 yr (34–67 yr)	PRE-OP TREATMENT: yes		
		Males %: 61.1	Duration: NR		
		Cause of tear: NR	Type of treatment: physical therapy		
		Tear size: mean: 3.1 cm;	NOS, cortisone injection, NSAID		
		range: 2.5–4.0 cm			
		Dominant shoulder %: see			
		group 1			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Deutsch A,	Recruitment dates:	Enrolled: 46	GROUP 1	HRQL: NR	Arthroscopic RCR resulted
2007	NR	Analyzed: 41	Surgical approach: all-arthroscopic		in excellent pain relief,
		Withdrawals: 5	Type of surgery: repair and	Function:	strength, ROM, return of
Country: USA	Study design: before-		debridement	ASES	shoulder function and a
	and-after	Duration since symptom	Additional procedures (N):		high degree of pt
Treatment		onset, mean (range):	acromioplasty (39); SLAP repair (5);	Pain:	satisfaction.
category:	Enrolled	Group 1: 10 mo (6 mo–3 yr)	biceps tenodesis (3); AC joint	• VAS	
Operative	consecutively: yes		resection (18)		
		Type of tear: PTT		ROM:	
Questions: Q2,	Followup duration,	Tendon(s) torn: SS	Duration of immobilization: 6 wk	 flexion 	
Q5	mean (range): 3.2 yr		Duration of rehab: NR	 internal rotation 	
	(2–4.2 yr)	GROUP 1	Rehab components: passive	 external rotation 	
Funding: NR		N: 46	stretching (day 1-wk 6); active		
	Inclusion criteria:	Age, mean±SD (range):	stretching and strengthening (wk 6-	Strength:	
BA Quality:	Arthroscopic repair for	49 yr (23–70 yr)	3 mo); strengthening (abduction,	 strength 	
Consecutive: Y	PTT of SS that	Males %: 56.5	flexion) (3–6 mo)	0	
Followup: Y	involved >50% of	Cause of tear: degenerative	Rehab regime: NR	Other: NR	
Outcome	tendon thickness	(29), traumatic (12)			
assessment: Y		Tear size: mean: 0.9 cm	PRE-OP TREATMENT: yes		
	Exclusion criteria:	Dominant shoulder %: 54.3	Duration: 6 mo (min)		
	(1) previous surgery,	Comorbidities: NR	Type of treatment: physical therapy		
	(2) adhesive capsulitis,		NOS, cortisone injection, NSAID		
	(3) concomitant				
	glenohumeral				
	instability				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Ellman H, 1993	Recruitment dates:	Enrolled: 80	GROUP 1	HRQL: NR	Proper patient selection is
	Nov 1983 to Jul	Analyzed: 80	Surgical approach: all-arthroscopic		needed for arthroscopic tx
Country: USA	1989	Withdrawals: 0	Type of surgery: repair and debridement	Function:	of FTT as it influences
			Additional procedures (N): acromioplasty	UCLA	outcomes.
Treatment	Study design:	Duration since symptom	(all)		
category:	prospective cohort	onset, mean (range):		Pain: NR	
Operative	treated as before-	Group 1: 4.5 yr (NR)	Duration of immobilization: NR		
	and-after	Group 2: 16.8 yr (NR)	Duration of rehab: NR	ROM:	
Questions: Q2,		Group 3: 3.7 yr (NR)	Rehab components: NR	 flexion 	
Q5, Q6	Enrolled consecutively: No	Group 4: 5.2 yr (NR)	Rehab regime: NR	 external rotation 	
Funding: NR		Type of tear: FTT	GROUP 2	Strength:	
	Followup duration,	Tendon(s) torn: SS, IS	Surgical approach: all-arthroscopic	 flexion (grade) 	
BA Quality:	mean (range): 3.6		Type of surgery: repair and debridement	• external rotation (grade)	
Consecutive: N	yr (2–7.3 yr)	GROUP 1	Additional procedures (N): acromioplasty	(3)	
Followup: Y		N: 40	(all)	Other: NR	
Outcome	Inclusion criteria:	Age, mean±SD (range):			
assessment: N	FTT	67.9 yr (41–89 yr)	Duration of immobilization: NR		
		Males %: 60	Duration of rehab: NR		
	Exclusion criteria:	Cause of tear: NR	Rehab components: NR		
	Pts not ideal for	Tear size: all sizes	Rehab regime: NR		
	arthroscopic	Dominant shoulder %: 50			
	subacromial	Comorbidities: NR	GROUP 3		
	decompression as		Surgical approach: all-arthroscopic		
	determined by	GROUP 2 N: 10	Type of surgery: repair and debridement Additional procedures (N): acromioplasty		
	investigator	Age, mean±SD (range):	• • • • • •		
		63 yr (41–89 yr)	(all)		
		Males %: 60	Duration of immobilization: NR		
		Cause of tear: NR	Duration of rehab: NR		
		Tear size: sm, med	Rehab components: NR		
		Dominant shoulder %: 60	Rehab regime: NR		
		Comorbidities: NR			
			GROUP 4		
		GROUP 3	Surgical approach: all-arthroscopic		
		N: 8	Type of surgery: repair and debridement		
		Age, mean±SD (range):	Additional procedures (N): acromioplasty		
		66.7 yr (41–89 yr)	(all)		
		Males %: 87.5	· · /		
		Cause of tear: NR			
		Tear size: med, lg			
		Dominant shoulder %: 50			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Ellman H, 1993		Comorbidities: NR	Duration of immobilization: NR		
(continued)			Duration of rehab: NR		
		GROUP 4	Rehab components: NR		
		N: 22	Rehab regime: NR		
		Age, mean±SD (range):			
		73.9 yr (41–89 yr)	PRE-OP TREATMENT: NR		
		Males %: 50	Duration: NR		
		Cause of tear: NR	Type of treatment: NR		
		Tear size: lg, mass			
		Dominant shoulder %:			
		77.3			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Favard L, 2009	Recruitment dates:	Enrolled: 192	GROUP 1	HRQL: NR	In patients younger than 65
	NR	Analyzed: NR	Surgical approach: open (68), all-		years with large or massive
Country:		Withdrawals: NR	arthroscopic (34)	Function:	tears, the most appropriate
France	Study design:		Type of surgery: repair	CMS	surgical treatment option
	Retrospective cohort	Duration since symptom	Additional procedures (N): NR		depends on patient
Treatment		onset, mean (range): NR		Pain: NR	functional status, height of
category:	Enrolled		Duration of immobilization: NR		subacromial space, fatty
Operative	consecutively: no	Type of tear: NR	Duration of rehab: NR	ROM: NR	muscle infiltration, and
approach		Tendon(s) torn: NR	Rehab components: NR		presence of the long head
	Followup duration,		Rehab regime: NR	Strength: NR	of the biceps.
Questions: Q2,	mean (range):	GROUP 1	-	-	
Q5	5.6±3.5 yr	N: 103	GROUP 2	Other: NR	
		Age, mean±SD (range):	Surgical approach: open (50), all-		
Funding: No	Inclusion criteria:	55.2±6.2 yr	arthroscopic (39)		
funding	(1) <65 years, (2)	Males %: NR	Type of surgery: repair		
C C	massive RC tear, (3)	Cause of tear: NR	Additional procedures (N): biceps		
NOS: 2*/8*	minimum 2 year	Tear size: mass	tenotomy (89)		
	clinical and	Dominant shoulder %: NR			
	radiographic	Comorbidities: NR	Duration of immobilization: NR		
	followup		Duration of rehab: NR		
	·	GROUP 2	Rehab components: NR		
	Exclusion criteria:	N: 89	Rehab regime: NR		
	(1) ≥ stage III	Age, mean±SD (range):	0		
	glenohumeral or	57.1±5.5 yr	PRE-OP TREATMENT: yes		
	acromiohumeral	Males %: NR	Duration: NR		
	arthritis	Cause of tear: NR	Type of treatment: NR		
		Tear size: mass			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Fenlin JM Jr,	Recruitment dates:	Enrolled: 20	GROUP 1	HRQL: NR	In the short term,
2002	NR	Analyzed: 19	Surgical approach: open		tuberoplasty can provide
		Withdrawals: 1	Type of surgery: debidement	Function:	pain relief and improved
Country: USA	Study design:		Additional procedures (N):	 modified UCLA 	function in patients with
	before-and-after	Duration since symptom	bursectomy/tuberoplasty (all)		massive irreparable RC
Treatment		onset, mean (range):		Pain: NR	tears.
category:	Enrolled	Group 1: 15 mo (2 mo–6 yr)	Duration of immobilization: NR		
Operative	consecutively: NR		Duration of rehab: 10–12 mo	ROM: NR	
		Type of tear: FTT	Rehab components: passive stretching		
Questions: Q2,	Followup duration,	Tendon(s) torn: SS+IS,	(day 1); strengthening (wk 2/4–10/12 mo)	Strength: NR	
Q5	mean (range): 3.4	SS+IS+SC	Rehab regime: NR		
	yr (7 mo–4.8 yr)			Other: NR	
Funding: NR		GROUP 1	PRE-OP TREATMENT: yes		
	Inclusion criteria:	N: 20	Duration: 6 wk (min)		
BA Quality:	Mass, irreparable	Age, mean±SD (range):	Type of treatment: physical therapy NOS		
Consecutive: U	RC tear with	63 yr (44–82 yr)			
Followup: Y	superior humeral	Males %: 75			
Outcome	head migration	Cause of tear: degenerative			
assessment: Y		(7), traumatic (12)			
	Exclusion criteria:	Tear size: mass			
	(1) glenohumeral	Dominant shoulder %:			
	arthritis, (2) ability to	63.2			
	re-establish	Comorbidities: NR			
	functional rotator				
	cable, (3) RC tear				
	arthropathy				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Franceschi F,	Recruitment dates:	Enrolled: 63	GROUP 1	HRQL: NR	Repairing a type 2 SLAP
2008	Jan 1999 to Dec 2003	Analyzed: 63	Surgical approach: all-arthroscopic		lesion when associated with
		Withdrawals: 7	Type of surgery: repair and	Function:	a RC tear has no
Country: UK	Study design (trial		debridement	UCLA	advantages. RCR and
	type): RCT (parallel)	Duration since symptom	Additional procedures (N):		biceps tenotomy provides
Treatment		onset, mean (range):	acromioplasty (7); labral repair (NR)	Pain: NR	better clinical outcomes in
category:	Enrolled	≥ 3 mo (NR)			comparison with repair of
Operative	consecutively: NR		Duration of immobilization: 6 wk	ROM:	type 2 SLAP lesion and the
approach		Type of tear: NR	Duration of rehab: 6 mo.	flexion	RC tears.
	Followup duration,	Tendon(s) torn: SS, SS+IS	Rehab components: passive	 internal rotation 	
Questions: Q2,	mean (range): 5.2 yr		stretching (day 1–6 wk); active-	 external rotation 	
Q5	(2.9–7.8 yr)	GROUP 1	assisted stretching (wk 6);		
		N: 31	strengthening (wk 10/12–6 mo)	Strength: NR	
Funding: NR	Inclusion criteria:	Age, mean±SD (range):	Rehab regime: NR	-	
	(1) symptoms ≥3 mo,	61.8 yr (51–79 yr)		Other: NR	
ROB: High	(2) RC tear dx	Males %: 58.1	GROUP 2		
	clinically, 3) ≥50 yr, (4)	Cause of tear: NR	Surgical approach: all-arthroscopic		
	no shld instability, (5)	Tear size: sm, med, lg	Type of surgery: repair and		
	no signs of fracture of	Dominant shoulder %: 80.6	debridement		
	glenoid or the greater	Comorbidities: NR	Additional procedures (N):		
	or lesser tuberoscity,		acromioplasty (9); biceps tenotomy		
	(6) failure of	GROUP 2	(NR)		
	nonoperative tx, (7)	N: 32			
	RC tear and type II	Age, mean±SD (range):	Duration of immobilization: 6 wk		
	SLAP lesion	64.7 yr (53–81 yr)	Duration of rehab: 6 mo		
		Males %: 46.9	Rehab components: passive		
	Exclusion criteria:	Cause of tear: NR	stretching (day 1); active-assisted		
	(1) <50 yr, (2)	Tear size: sm, med, lg	stretching (wk 6); strengthening (wk		
	inflammatory joint	Dominant shoulder %: 71.9	10/12–6 mo)		
	disease, (3) prior shld	Comorbidities: NR	Rehab regime: NR		
	surgery, (4) SC tendon				
	tear, (5) pt inability to		PRE-OP TREATMENT: yes		
	complete		Duration: NR		
	questionnaires		Type of treatment: physical therapy		
			NOS, cortisone injection, NSAID,		
			rest		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Franceschi F,	Recruitment dates:	Enrolled: 60	GROUP 1	HRQL: NR	Comparable clinical
2007	Feb to Sep 2004	Analyzed: 52	Surgical approach: all-arthroscopic		outcomes were present at 2
		Withdrawals: 8	Type of surgery: repair and	Function:	yr for single and double-row
Country: Italy	Study design (trial		debridement	UCLA	techniques.
	type): RCT (parallel)	Duration since symptom	Additional procedures (N): NR		
Treatment		onset, mean (range):	Technique: double-row mattress	Pain: NR	
category:	Enrolled	≥ 3 mo (NR)	suture, anchors, side-to-side sutures		
Operative	consecutively: NR			ROM:	
technique		Type of tear: FTT	Duration of immobilization: 6 wk	flexion	
	Followup duration,	Tendon(s) torn: SS, SS+IS,	Duration of rehab: 6 mo	 external rotation 	
Questions: Q2, Q5	mean (range): 22.5 mo (18 mo–2.1 yr)	SS+SC	Rehab components: passive stretching (wk 1–10); strengthening	 internal rotation 	
			(wk 10/12–6 mo)	Strength: NR	
Funding: NR	Inclusion criteria:	GROUP 1	Rehab regime: NR		
	(1) RC tears, (2) no	N: 30		Other:	
ROB: High	shld instability, (3) no	Age, mean (range):	GROUP 2	 cuff integrity 	
	fracture of glenoid or	59.6 yr (45–80 yr)	Surgical approach: all-arthroscopic	ean integrity	
	greater/lesser	Males %: 53.3	Type of surgery: repair and		
	tuberosity, (4)	Cause of tear: NR	debridement		
	symptoms >3mo, (5)	Tear size: lg, mass	Additional procedures (N): NR		
	failure of conservative	Dominant shoulder %: 63.3	Technique: single-row mattress		
	tx, (6) unretracted and mobile FTT	Comorbidities: NR	suture, anchors		
		GROUP 2	Duration of immobilization: 6 wk		
	Exclusion criteria:	N: 30	Duration of rehab: 6 mo		
	(1) inablilty to complete	Age, mean±SD (range):	Rehab components: passive		
	questionnaire, (2)	63.5 yr (43–76 yr)	stretching (wk 1–10); strengthening		
	inflammatory joint	Males %: 40	(wk 10 or 12–26)		
	disease, (3) retracted	Cause of tear: NR	Rehab regime: NR		
	and insufficient mobile	Tear size: lg, mass	•		
	lesion to allow double-	Dominant shoulder %: 66.7	PRE-OP TREATMENT: yes		
	row technique, (4) prior	Comorbidities: NR	Duration: NR		
	surgery on affected		Type of treatment: physical therapy		
	shld		NOS, cortisone injection, NSAID		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Franceschi F,	Recruitment dates:	Enrolled: 22	GROUP 1	HRQL: NR	No difference was found
2007	1999 to 2001	Analyzed: 22	Surgical approach: all-arthroscopic		between detaching and not
		Withdrawals: 0	Type of surgery: repair	Function:	detaching the biceps after
Country: Italy	Study design (trial		Additional procedures (N):	UCLA	including it in the RCR.
	type): RCT (parallel)	Duration since symptom	acromioplasty (all); biceps tenodesis		
Treatment		onset, mean (range): NR	(all)	Pain: NR	
category:	Enrolled				
Operative	consecutively: NR	Type of tear: FTT	Duration of immobilization: 6 wk	ROM:	
approach		Tendon(s) torn: SS, IS, SC	Duration of rehab: 6 mo	 flexion 	
	Followup duration,		Rehab components: passive	 internal rotation 	
Questions: Q2,	mean (range): 3.9 yr	GROUP 1	stretching (day 1-wk 6); active-	 external rotation 	
Q5	(3–4.9 yr)	N: 11	assisted stretching (wk 6–10/12);		
		Age, mean±SD (range):	strengthening (wk 10/12–6 mo)	Strength: NR	
Funding: NR	Inclusion criteria:	60.3±12.4 yr (41–79 yr)	Rehab regime: NR	3	
	RC repair with	Males %: 54.5		Other: NR	
ROB: High	severe associated	Cause of tear: degenerative	GROUP 2		
	bicep tendon lesion,	(6), traumatic (5)	Surgical approach: all-arthroscopic		
	(2) failure of	Tear size: mass	Type of surgery: repair		
	nonoperative tx	Dominant shoulder %: 63.6	Additional procedures (N):		
		Comorbidities: biceps	acromioplasty (all); biceps		
	Exclusion criteria: NR	pathology: dislocation (4), unstable (3), tear ≥50% (4)	tenotomy/tenodesis (all)		
			Duration of immobilization: 6 wk		
		GROUP 2	Duration of rehab: 6 mo		
		N: 11	Rehab components: passive		
		Age, mean±SD (range):	stretching (day 1-wk 6); active-		
		58.1±14.5 yr (40–81 yr)	assisted stretching (wk 6-10/12);		
		Males %: 45.5	strengthening (wk 10/12–6 mo)		
		Cause of tear: degenerative	Rehab regime: NR		
		(6), traumatic (5)	-		
		Tear size: mass	PRE-OP TREATMENT: yes		
		Dominant shoulder %: 72.7	Duration: NR		
		Comorbidities: biceps	Type of treatment: physical therapy		
		pathology: dislocation (3),	NOS, cortisone injection, NSAID,		
		unstable (4), tear ≥50%	rest		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Fuchs B, 2006	Recruitment dates:	Enrolled: 32	GROUP 1	HRQL: NR	Direct, open repair of a
	NR	Analyzed: 32	Surgical approach: open		complete isolated tear of
Country:		Withdrawals: 0	Type of surgery: repair	Function:	one tendon resulted in
Switzerland	Study design: before-		Additional procedures (N):	CMS	significant improvement in
_	and-after	Duration since symptom	capsulectomy (all)		clinical and structural
Treatment		onset, mean (range): NR		Pain:	measures.
category:	Enrolled		Duration of immobilization: 6 wk.	 VAS (15 points) 	
Operative	consecutively: yes	Type of tear: FTT	Duration of rehab: NR		
		Tendon(s) torn: SS, SC	Rehab components: passive	ROM:	
Questions: Q2,	Followup duration,		stretching immediately post	 flexion (active) 	
Q5, Q6	mean (range): 3.2 yr	GROUP 1	operative; active stretching (wk 6)	 abduction (active) 	
	(2–4.4 yr)	N: 32	Rehab regime: NR	 internal rotation (active) 	
Funding: No		Age, mean±SD (range):		 external rotation (active) 	
funding	Inclusion criteria:	59 yr (40–75 yr)	PRE-OP TREATMENT: yes		
	(1) single RC tendon	Males %: 65.6	Duration: 3 mo (min)	Strength:	
BA Quality:	FTT, (2) pain and/or	Cause of tear: NR	Type of treatment: NR	 abduction strength (kilos) 	
Consecutive: Y	disability following ≥3	Tear size: NR		 abduction strength (points) 	
Followup: Y	mo nonoperative tx, (3)	Dominant shoulder %: 71.9		5 (i)	
Outcome	used of arm at or	Comorbidities: NR		Other:	
assessment: U	above head level, (4)			 activities of daily living 	
	use of an abduction			 cuff integrity 	
	brace for 6 wk				
	postoperative				
	Exclusion criteria:				
	(1) FTT involving 2				
	tendons, (2) prior				
	RCR, (3) moderate-				
	severe OA of				
	glenohumeral joint, (4)				
	history of infection, (5)				
	glenohumeral stiffness				
	with loss of 20° of				
	passive elevation and				
	10° of passive external				
	rotation compared to				
	contra-lateral side				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Gartsman GM,	Recruitment dates:	Enrolled: 93	GROUP 1	HRQL: NR	Arthroscopic subacromial
2004	NR	Analyzed: 93	Surgical approach: all-arthroscopic		decompression does not
		Withdrawals: 0	Type of surgery: repair	Function:	appear to change the
Country: USA	Study design (trial		Additional procedures (N):	ASES	functional outcome after
	type): RCT (parallel)	Duration since symptom	acromioplasty (all)		arthroscopic RCR.
Treatment		onset, mean (range): NR		Pain: NR	
category:	Enrolled		Duration of immobilization: 6 wk		
Operative	consecutively: yes	Type of tear: FTT	Duration of rehab: NR	ROM: NR	
approach		Tendon(s) torn: SS	Rehab components: CPM (day 1–		
	Followup duration,		wk 2); passive stretching (wk 2–6);	Strength: NR	
Questions: Q2	mean±SD (range):	GROUP 1	active stretching (wk 6–12);		
	15.6±3.3 mo (NR)	N: 47	strengthening (wk12 onward)	Other: NR	
Funding: NR		Age, mean±SD (range):	Rehab regime: NR		
	Inclusion criteria:	59.3 yr (39–81 yr)			
ROB: High	(1) isolated, repairable	Males %: 57.4	GROUP 2		
	SS tendon FTT, (2)	Cause of tear: mean: 2.1 cm	Surgical approach: all-arthroscopic		
	type 2 acromion	Dominant shoulder %: NR	Type of surgery: repair		
		Comorbidities: NR	Additional procedures (N): none		
	Exclusion criteria:				
	(1) type 1/3 acromion,	GROUP 2	Duration of immobilization: 6 wk		
	(2) two-tendon tears	N: 46	Duration of rehab: NR		
	(3) PTT, (4)	Age, mean±SD (range):	Rehab components: CPM (day 1–		
	irrepairable tears, (5)	60 yr (37–79 yr)	wk 2); passive stretching (wk 2–6);		
	concomittant	Males %: 52.2	active stretching (wk 6–12);		
	procedure, (6) WCB	Cause of tear: NR	strengthening (wk 12 onward)		
	claim, (7) prior surgery	Tear size: mean: 2.3 cm	Rehab regime: NR		
		Dominant shoulder %: NR			
		Comorbidities: NR	PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Gartsman GM,	Recruitment dates:	Enrolled: 50	GROUP 1	HRQL:	Comparison of pre-
1998	Jan to Dec 1994	Analyzed: 50	Surgical approach: all-arthroscopic	• SF-36	operative and postoperative
		Withdrawals: 0	Type of surgery: repair		responses demonstrated
Country: USA	Study design: before-		Additional procedures:	Function:	highly significant
	and-after	Duration since symptom	acromioplasty (NR)	CMS	improvements in patient
Treatment		onset, mean (range):		UCLA	assessment of general
category:	Enrolled	20.4 mo (6 mo–12 yr)	Duration of immobilization: NR	ASES	health and shld function.
Operative	consecutively: yes		Duration of rehab: 1 yr		
		Type of tear: FTT	Rehab components: passive	Pain: NR	
Questions: Q2,	Followup duration,	Tendon(s) torn: SS, SS+IS,	stretching (wk 1–6); active stretching		
Q6	mean (range): 12.7	SS+IS+TM, SS+IS+SC,	(wk 6–1 yr); strengthening (wk 12–1	ROM: NR	
	mo (11–21 mo)	SS+SC	yr)		
Funding: No			Rehab regime: NR	Strength: NR	
funding	Inclusion criteria:	GROUP 1		-	
	 reparable FTT of 	N: 50	PRE-OP TREATMENT: yes	Other: NR	
BA Quality:	one or more tendons;	Age, mean±SD (range):	Duration: 6 mo (min)		
Consecutive: Y	verified at operation	61 yr (37–78 yr)	Type of treatment: physical		
Followup: Y		Males %: 52	therapy, cortisone injection, NSAID		
Outcome	Exclusion criteria:	Cause of tear: NR			
assessment: N	 previous shld 	Tear size mean (range):			
	operation; 2) PTT; 3)	length: 28.2 mm (0–55 mm);			
	irreparable tears; 4)	width:12.5 mm, (5–30 mm);			
	WCB claim; 5) acute	area: 406 mm² (50–1500			
	tear repaired <3 mo	mm²)			
	after injury	Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Gartsman GM,	Recruitment dates:	Enrolled: 33	GROUP 1	HRQL: NR	Open operative
1997	1984 to 1991	Analyzed: 33	Surgical approach: open		debridement and
		Withdrawals: 0	Type of surgery: debidement	Function:	decompression of
Country: USA	Study design: before-		Additional procedures (N):	UCLA	irreparable tears of RC
	and-after	Duration since symptom	acromioplasty (all); biceps	ASES	showed improvements in
Treatment		onset, mean (range):	tenotomy/tenodesis (1)/(1);	CMS	functional scores.
category:	Enrolled	17 mo (6 mo–8 yr)	resection of greater tuberosity (7)		
Operative	consecutively: yes			Pain:	
		Type of tear: FTT	Duration of immobilization: NR	• VAS	
Questions: Q2,	Followup duration,	Tendon(s) torn: SS+IS,	Duration of rehab: NR		
Q5, Q6	mean (range): 5.3 yr (4–9.8 yr)	SS+SC	Rehab components: passive stretching (day 1 until max	ROM: NR	
Funding: NR	Inclusion criteria:	GROUP 1 N: 33	movement achieved); active stretching (wk 3); strengthening (wk	Strength: NR	
BA Quality:	(1) mass RC tear	Age, mean±SD (range):	6 until pain absent)	Other: NR	
Consecutive: Y	involving 2–4 tendons,	62 yr (42–77 yr)	Rehab regime: NR		
Followup: Y	could not be closed	Males %: 90.9	-		
Outcome	without excessive	Cause of tear: NR	PRE-OP TREATMENT: yes		
assessment: N	tension after lysis of	Tear size: mass	Duration: NR		
	intra and extra articular	Dominant shoulder %: 75.8	Type of treatment: physical therapy		
	adhesions; (2) release	Comorbidities: biceps	NOS, cortisone injection, NSAID		
	of the coracohumeral	pathology: (absent (12);			
	ligament and rotator	frayed but intact (14);			
	interval and incision of	hypertrophied (4));			
	the superior and	osteoarthrosis (10); AC joint;			
	posterior aspects of	OA of glenohumeral (4)			
	the capsule				
	Exclusion criteria:				
	(1) reparable tear, (2)				
	partial tendon repair or				
	previous RC operation				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Gazielly DF,	Recruitment dates:	Enrolled: 98	GROUP 1	HRQL: NR	Predictive clinical factors fo
1994	Sep 1985 to Nov 1989	Analyzed: 98	Surgical approach: open		recurrence included overall
		Withdrawals: 0	Type of surgery: repair	Function:	CMS, reduce ability to do
Country:	Study design: Before-		Additional procedures (N):	CMS	daily activities, decreased
France	and-after	Duration since symptom	acromioplasty (all)		ROM and muscle strength.
		onset, mean±SE (range):		Pain: NR	CMS reflected accurate,
Treatment	Enrolled	24.19±3.05 mo (1 mo–10 yr)	Duration of immobilization: 6 wk.		reliable and reproducible
category:	consecutively: yes		Duration of rehab: NR	ROM: NR	results.
Operative		Type of tear: FTT	Rehab components: passive		
	Followup duration,	Tendon(s) torn: SS, SS+IS,	stretching (wk 1–6); active-assisted	Strength: NR	
Questions: Q2,	mean (range): 4 yr (2–	SS+IS+SC	stretching (wk 6–8); strengthening		
Q5, Q6	6 yr)		(wk 12)	Other:	
		GROUP 1	Rehab regime: NR	 cuff integrity 	
Funding: NR	Inclusion criteria:	N: 98			
	(1) no previous cuff	Age, mean±SD (range):	PRE-OP TREATMENT: yes		
BA Quality:	surgery, (2) FTT, (3)	56 yr (35–77 yr)	Duration: NR		
Consecutive: Y	follow up ≥2 yr	Males %: 63.3	Type of treatment: exercise		
Followup: Y		Cause of tear: degenerative			
Outcome	Exclusion criteria:	(31), traumatic (67)			
assessment: Y	(1) PTT, (2) stiff shld	Tear size: NR			
		Dominant shoulder %: 73.5			
		Comorbidities:			
		degeneration of LHB (21);			
		torn LHB (6)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Ghroubi S,	Recruitment dates:	Enrolled: 59	GROUP 1	HRQL:	Study results demonstrate
2008	Jan 1995 to Dec 2004	Analyzed: NR	Intervention: strengthening, soft	• SF-36	benefits of individualized
		Withdrawals: NR	tissue massage, corticosteroid		rehab program combined
Country:	Study design: before-		injection, NSAIDs, analgesics,	Function:	with medical tx.
Tunisia	and-after	Duration since symptom	movement awareness	CMS	
		onset, mean (range):	Drug name: NR		
Treatment	Enrolled	NR	Duration of treatment: varied by	Pain:	
category:	consecutively: NR	Type of tear: FTT (39); PTT	PT	• VAS	
Nonoperative		(20)	Treatment regime: varied by PT		
•	Followup duration,	Tendon(s) torn: SS, SS+IS	Degree of supervision: NR	ROM:	
Questions: Q3,	mean (range): 7 yr (4–		Treatment provider: PT	 abduction (active) 	
Q5	12 yr)	GROUP 1		 flexion (active) 	
	Inclusion exiterio.	N: 59		 external rotation (active) 	
Funding: NR	Inclusion criteria:	Age, mean±SD (range):		 internal rotation (active) 	
BA Quality:	(1) RC tear, (2) complete baseline	61 yr (46–75 yr) Males %: 35.6			
Consecutive: U	evaluation, (3) ≥4 yr	Cause of tear: degenerative		Strength: NR	
Followup: U	followup, (4) adhere to	(59)			
Outcome	rehab program	Tear size: NR		Other:	
assessment: U	renab program	Dominant shoulder %: 72.9		 return to work 	
assessment. U	Exclusion criteria:	Comorbidities: NR		 pt compliance 	
	(1) traumatic rupture;			 pt satisfaction 	
	(2) infections,			 required surgery 	
	inflammation, tumor or				
	neurological				
	symptoms; (3) severe				
	psychological				
	problems; (4) refuse				
	examination or				
	interview				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Gladstone JN,	Recruitment dates:	Enrolled: 38	GROUP 1	HRQL: NR	Fatty infiltration and muscle
2007	NR	Analyzed: 38	Surgical approach: open		atrophy of the IS and SS
		Withdrawals: 0	Type of surgery: repair	Function:	significantly affect the
Country: USA	Study design: before-		Additional procedures (N): tendon	CMS	functional outcome after
	and-after	Duration since symptom	mobilization	ASES	RCR even if pain is
Treatment		onset, mean (range):			consistently relieved. Tear
category:	Enrolled	10.5 mo (2 wk–4.3 yr)	Duration of immobilization: 6 wk	Pain:	size appears to have the
Operative	consecutively: NR		Duration of rehab: 3–4 mo	VAS	most influential effect on
		Type of tear: FTT	Rehab components: passive		repair integrity. Repairs
Questions: Q2,	Followup duration,	Tendon(s) torn: SS, IS	stretching (wk 1–6); active stretching	ROM: NR	should be performed prior
Q6	mean (range): 1 yr	GROUP 1	(wk 6); strengthening (wk 6–12 or		to more significant
	(12–15 mo)	N: 15	16)	Strength:	deterioration of cuff muscle
Funding: NR		Age, mean±SD (range): all	Rehab regime: NR	 flexion 	to optimize outcomes.
	Inclusion criteria:	groups: 62 yr (3–6.5 yr)		 external rotation 	
BA Quality:	pre- and postoperative	Males %: NR	GROUP 2		
Consecutive: U	MRI permitted	Cause of tear: NR	Surgical approach: all-arthroscopic	Other:	
Followup: Y	evaluation of fatty	Tear size: NR	Type of surgery: repair	 cuff integrity 	
Outcome	infiltration		Additional procedures (N): NR		
assessment: Y		Dominant shoulder %: NR			
	Exclusion criteria:	Comorbidities: NR	Duration of immobilization: 6 wk		
	(1) glenohumeral		Duration of rehab: 3–4 mo		
	arthritis, (2) fracture,	GROUP 2	Rehab components: passive		
	(3) osteonecrosis	N: 23	stretching (wk 1–6); active stretching		
		Age, mean±SD (range): see	(wk 6); strengthening (wk 6–12 or		
		group 1 Males %: NR	16) Bobob rogimo: NP		
		Cause of tear: NR	Rehab regime: NR		
		Tear size: NR	PRE-OP TREATMENT: NR		
		Dominant shoulder %: NR	Duration: NR		
		Comorbidities: NR	Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Grasso A, 2009	Recruitment dates:	Enrolled: 80	GROUP 1	HRQL: NR	At short-term followup,
	NR	Analyzed: 72	Surgical approach: all-arthroscopic		there was no significant
Country: Italy		Withdrawals: 8	Type of surgery: repair and	Function:	difference in clinical or
	Study design: RCT		debridement	CMS	functional outcomes
Treatment	(parallel)	Duration since symptom	Additional procedures (N):	• DASH	between single-row and
category: Operative	Enrolled	onset, mean (range): NR	acromioplasty (all); tenotomy (12); tenodesis (8)	Work-DASH	double-row repair.
technique	consecutively: NR	Type of tear: FTT Tendon(s) torn: SS	Technique: single-row repair	Pain: NR	
Questions: Q2,	Followup duration,		Duration of immobilization: 3 wk	ROM: NR	
Q6	mean (range):	GROUP 1	Duration of rehab: NR		
	24.8±1.4 mo	N: 37	Rehab components: passive,	Strength:	
Funding: No		Age, mean±SD (range):	active and active-assisted stretching	 Strength (lbs) 	
funding	Inclusion criteria:	58.3±10.3 yr	(4–8 wk); strengthening exercises		
-	(1) repairable FTT of	Males %: 43	(10–12 wk); open kinetic chain	Other: NR	
ROB: High	SS or the posterior-	Cause of tear: NR	exercises (13–16 wk)		
	superior RC ± biceps	Tear size: NR	Rehab regime: NR		
	pathology or rotator	Dominant shoulder %: 73			
	interval involvement	Comorbidities: NR	GROUP 2		
			Surgical approach: all-arthroscopic		
	Exclusion criteria:	GROUP 2	Type of surgery: repair and		
	(1) PTT, (2) irreparable	N: 35	debridement		
	FTT, (3) extension of	Age, mean±SD (range):	Additional procedures (N):		
	tear to SC, (4) isolated	55.2±6.5 yr	acromioplasty (all); tenotomy (13);		
	SC tear, (5) reparable	Males %: 51	tenodesis (7)		
	labral pathology,	Cause of tear: NR	Technique: double-row repair		
	degenerative OA of	Tear size: NR Dominant shoulder %: 83	Duration of immobilization: 3 wk		
	glenohumeral joint, symptomatic OA of AC	Comorbidities: NR	Duration of rehab: NR		
	joint, RC arthropathy,	Comorbidities. NR	Rehab components: passive,		
			active and active-assisted stretching		
	previous surgery on the same shoulder,		(4–8 wk); strengthening exercises		
	WCB		(10–12 wk); open kinetic chain		
	WCB		exercises (13–16 wk)		
			Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Hata Y, 2004	Recruitment dates:	Enrolled: 78	GROUP 1	HRQL: NR	Less postoperative atrophy
	1994 to 1997	Analyzed: 78	Surgical approach: open		of the deltoid muscle and
Country: Japan		Withdrawals: 0	Type of surgery: repair	Function: NR	quick recovery of pts, were
	Study design:		Additional procedures (N):	UCLA	obtained by the mini-open
Treatment	retrospective cohort	Duration since symptom	acromioplasty (all)		repair of RC tears than
category:		onset, mean (range): NR		Pain: NR	conventional open repair.
Operative	Enrolled		Duration of immobilization: 3 wk.		
approach	consecutively: yes	Type of tear: NR	Duration of rehab: NR	ROM: NR	
		Tendon(s) torn: NR	Rehab components: passive and		
Questions: Q2	Followup duration,		active stretching (day 1–wk 6);	Strength: NR	
	mean (range): all: 4 yr	GROUP 1	strengthening (wk 4); active-assisted		
Funding: No	(2–6.8 yr); group 1: 2.6	N: 43	stretching (wk 4); active stretching	Other:	
funding	yr (2–3.1 yr); group 2:	Age, mean±SD (range):	and strengthening (wk 6); strenuous	 time to return to work 	
NOC. 4*/0*	5.1 yr (3.8–6.8 yr)	58.1 yr (31–78 yr)	muscle training (intrinsic or extrinsic)	 cuff integrity 	
NOS: 4*/8*	Inclusion criteria:	Males %: 58.1 Cause of tear: NR	(2 mo) Rehab regime: NR		
	RC		Reliab regime. NR		
	RC	Tear size: sm, med, lg Dominant shoulder %: NR	GROUP 2		
	Exclusion criteria:	Comorbidities: NR	Surgical approach: mini-open		
	(1) tears >3 tendons,	comorbiances. Mix	Type of surgery: repair and		
	(2) tendon retraction	GROUP 2	debridement		
	>5cm	N: 35	Additional procedures (N):		
	20011	Age, mean±SD (range):	acromioplasty (all)		
		60.6 yr (39–71 yr)			
		Males %: 60	Duration of immobilization: 3 wk.		
		Cause of tear: NR	Duration of rehab: NR		
		Tear size: sm, med, lg	Rehab components: passive and		
		Dominant shoulder %: NR	active stretching (day 1–wk 6);		
		Comorbidities: NR	strengthening (wk 4); active-assisted		
			stretching (wk 4); active stretching		
			and strengthening (wk 6); strenuous		
			muscle training (intrinsic or extrinsic)		
			(2 mo)		
			Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Hawkins RH,	Recruitment dates:	Enrolled: 50	GROUP 1	HRQL: NR	Pts who have insurance
1995	NR	Analyzed: 33	Intervention: active ROM,		claims or are experiencing
		Withdrawals: 17	strengthening	Function:	significant sleep loss due to
Country:	Study design: before-		Drug name: NR	CMS	pain are unlikely to be
Canada	and-after	Duration since symptom	Duration of treatment: >10 wk		satisfied with nonoperative
		onset, mean±SD (range):	Treatment regime: Frequency-	Pain:	tx.
Treatment	Enrolled	59.8±116.7 mo (1 mo–25 yr)	daily for 10 wk, 3x/wk.; Intensity–3	VAS	
category:	consecutively: yes		sets x 10 reps of 6 exercises		
Nonoperative		Type of tear: FTT	Degree of supervision:	ROM: NR	
	Followup duration,	Tendon(s) torn: NR	unsupervised		
Questions: Q3,	mean (range): 3.8 yr		Treatment provider: PT	Strength: NR	
Q6	(2.6–4.6 yr)	GROUP 1	Additional comments: exercises at	•	
		N: 50	home; PT taught and reinforced	Other:	
Funding:	Inclusion criteria:	Age, mean±SD (range):	technique at visits	 work and recreation status 	
Foundation	(1) FTT, (2) within	59.6±10.5 yr (NR)		 satisfaction scale 	
	geographic area, (3)	Males %: 54		 sleep loss 	
Other: German	symptomatic, non-	Cause of tear: degenerative			
	acute	(12), traumatic (21)			
BA Quality:		Tear size: all sizes			
Consecutive: Y	Exclusion criteria:	Dominant shoulder %: 52			
Followup: N	NR	Comorbidities: NR			
Outcome					
assessment: Y					

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Hayes K, 2004	Recruitment dates:	Enrolled: 58	GROUP 1	HRQL: NR	Outcomes for patients
	Feb 1999 to Mar 2001	Analyzed: 42	Surgical approach: mini-open		allocated to individualized
Country:		Withdrawals: 16	Type of surgery: repair	Function:	PT tx after RCR were no
Australia	Study design (trial		Additional procedures (N):	 Insalata 	better than for patients
	type): RCT (parallel)	Duration since symptom	acromioplasty (all)		receiving standardized
Treatment		onset, mean±SD (range):		Pain: NR	home exercise regime.
category:	Enrolled	Group 1: 12±16 mo (0 mo–4	Duration of immobilization: 1 day		
Post-op	consecutively: NR	yr); Group 2: 19±27 mo (1	Duration of rehab: 24 wk	ROM:	
rehabilitation		mo–8 yr)	Rehab components: active	 flexion (passive) 	
	Followup duration		stretching (day 2–wk 6); active	• external rotation (passive)	
Questions: Q2	(endpoint): 24 wk	Type of tear: FTT (50); PTT (8)	stretching and strengthening (wk 6– 24); Modality–heat/cold, day 2–7	abduction (passive)	
Funding:	Inclusion criteria:	Tendon(s) torn: SS, SS+IS,	Rehab regime: Frequency-1-	Strength:	
Government	RCR	SS+SC, SS+IS+SC	5x/day; Intensity–5-10 reps per position	 internal rotation 	
ROB: High	Exclusion criteria:	GROUP 1	F	external rotation	
- 0	(1) irreparable tear; (2)	N: 26	GROUP 2	 flexion 	
	(1) previous shld surgery; (3) additional	Age, mean±SD (range): 58±10 yr (41–81 yr)	Surgical approach: mini-open Type of surgery: repair	Other: NR	
	procedure: humeral/	Males %: 76.9	Additional procedures (N):		
	clavical/ scapula fracture; (4) RA, DM	Cause of tear: degenerative (7), traumatic (19)	acromioplasty (all)		
		Tear size: mean: 5 cm ²	Duration of immobilization: 1 day		
		Dominant shoulder %: 76.9	Duration of rehab: 24 wk.		
		Comorbidities: NR	Rehab components: active therapy (day 2–wk 6); active stretching and		
		GROUP 2	strengthening (wk 6–24); Modality–		
		N: 32	heat/cold, day 2–7		
		Age, mean±SD (range):	Rehab regime: Frequency-1-		
		$62\pm11 \text{ yr} (42-83 \text{ yr})$	5x/day; Intensity–5-10 reps per		
		Males %: 62.5	position		
		Cause of tear: degenerative	position		
		(18), traumatic (14)	PRE-OP TREATMENT: NR		
		Tear size: mean: 6 cm ²	Duration: NR		
		Dominant shoulder %: 59.4	Type of treatment: NR		
		Comorbidities: NR	Type of treatment. Nix		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Heers G, 2005	Recruitment dates:	Enrolled: 34	All GROUPS	HRQL: NR	Patients with RC defects
	NR	Analyzed: 30 (shld: 38)	Intervention: passive and active		benefit from simple home
Country:		Withdrawals: 4	ROM, strengthening	Function:	exercises independent from
Germany	Study design:		Drug name: NR	CMS	the size of the defect.
	prospective cohort	Duration since symptom	Duration of treatment: 12 wk.		
Treatment	treated as before-and-	onset, mean±SD (range):	Treatment Regime: Frequency-	Pain:	
category:	after	Group 1: 2.5±2.9 yr;	daily; Intensity-40 min/day, 5 sets of	 night pain (15-point VAS) 	
Nonoperative		Group 2: 2.4±2.0 yr;	10 reps for 11 exercises		
•	Enrolled	Group 3: 5.9±4 yr;	Degree of supervision: indirect	ROM:	
Questions: Q3	consecutively: NR	All: 3.4±3.3 yr	Treatment provider: physician	 external rotation 	
Funding: ND	Followup duration	Tune of teers FTT (24), DTT		 abduction 	
Funding: NR	Followup duration	Type of tear: FTT (24); PTT		 anteversion 	
BA Quality:	(endpoint): 12 wk	(14) Tendon(s) torn:			
Consecutive: U	Inclusion criteria:	Group 1–2: SS; Group 3: SS,		Strength: NR	
Followup: Y	(1) RC tear, (2) 40–70	IS			
Outcome	yr	10		Other: NR	
assessment: U	y.	ALL GROUPS			
	Exclusion criteria:	N: Group 1, shld: 14; Group			
	(1) abnormal	2, shld: 14; Group 3, shld: 10			
	subacromial spur, (2)	Age, mean±SD (range): all			
	previous shid surgery	groups: 60.4 yr (44–69 yr)			
	1	Males %: NR			
		Cause of tear: NR			
		Tear size: NR			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Henn RF III,	Recruitment dates:	Enrolled: 125	GROUP 1	HRQL:	Pts with worker's compensation
2008	Jan 1998 to Sep	Analyzed: 125	Surgical approach: open (7); mini-open	 VAS-QOL 	claims reported worse
	2001	Withdrawals: 0	(19); all-arthoscopic (13)	• SF-36	outcomes, even after
Country: USA			Type of surgery: repair		controlling for confounding
	Study design:	Duration since symptom	Additional procedures (N):	Function:	factors.
Treatment	prospective cohort	onset, mean±SD (range):	acromioplasty (all); biceps	 VAS shid function 	
category:	treated as before-	Group 1: 13.0±13.9 mo (3	tenotomy/tenodesis (1)/(2); bicep	• STT	
Operative	and-after	mo–5.3 mo); Group 2: 17.5±29.9 mo (13 mo–18 yr)	relocation (2); clavicular resection (14)	• DASH	
Questions:	Enrolled	All: 16.0±25.9 mo (3 mo-18	Duration of immobilization: 5 wk	Pain:	
Q2, Q5	consecutively: NR	vr)	Duration of rehab: 5 wk	• VAS	
	-		Rehab components: mini open/open	• • • • • • • •	
Funding: No funding	Followup duration, mean±SD (range):	Type of tear: FTT Tendon(s) torn: NR	surgery: passive stretching; all- arthroscopic repair: passive stretching	ROM: NR	
C C	54.1±7.6 wk (32.7–		Rehab regime: NR	Strength: NR	
BA Quality:	88.7 wk)	GROUP 1			
Consecutive: U		N: 39	GROUP 2	Other: NR	
Followup: U	Inclusion criteria:	Age, mean±SD (range):	Surgical approach: open (19); mini-open		
Outcome	(1) primary repair of	52.5±1.6 yr (32–79 yr)	(43); all-arthoscopic (24)		
assessment: U	a unilateral	Males %: 61.5	Type of surgery: repair		
	symptomatic chronic	Cause of tear: NR	Additional procedures (N):		
	FTT, (2) failed	Tear size: NR	acromioplasty (all); biceps		
	nonoperative tx	Dominant shoulder %: 59	tenotomy/tenodesis (1)/(3); bicep		
		Comorbidities, mean±SD	relocation (3); clavicular resection (34);		
	Exclusion criteria:	(range): number of			
	(1) previous shld	comorbidities: 1.8±1.5 (0–5)	Duration of immobilization: 5 wk		
	surgery (2)		Duration of rehab: 5 wk		
	partial/incomplete	GROUP 2	Rehab components: mini open/open		
	repair of a mass	N: 86	surgery: passive stretching; <u>all-</u>		
	tear, (3)	Age, mean±SD (range):	arthroscopic repair: passive stretching		
	glenohumeral	57.8±1.3 yr (35–84 yr)	Rehab regime: NR		
	arthritis	Males %: 55.8			
		Cause of tear: NR	PRE-OP TREATMENT: yes Duration: NR		
		Tear size: NR Dominant shoulder %: 68.6			
		Comorbidities, mean±SD	Type of treatment: physical therapy NOS, cortisone injection		
		(range): number of	NOS, consone injection		
		comorbidities: 2.0±1.5 (0–6)			

Hsu SL, 2007	D			Outcomes reported	Author conclusions
	Recruitment	Enrolled: shld: 47	GROUP 1	HRQL: NR	Gentle manipulation,
	dates: NR	Analyzed: shld: 47	Surgical approach: open		extensive lysis of
Country:		Withdrawals: 0	Type of surgery: repair	Function:	adhesions, and
Taiwan	Study design:		Additional procedures: acromioplasty (all);	CMS	acromioplasty with
	before-and-	Duration since symptom onset, mean	manipulation (all); surgical lysis of the adhesive		RCR is a satisfactory
Treatment	after	(range): NR	tissue (all)	Pain: NR	procedure for pts with
category:					RC tear and
Operative	Enrolled	Type of tear: FTT (20); PTT (27)	Duration of immobilization: NR	ROM:	associated shld
-	consecutively:	Tendon(s) torn:	Duration of rehab: NR	 abduction 	stiffness.
Questions:	yes	Group 1 and 3: NR; Group 2: SS	Rehab components: passive stretching (day 2);	 flexion 	
Q2, Q5, Q6	•		active-assisted stretching (day 3/4); active-	 external rotation 	
	Followup	GROUP 1	stretching (day 7/10)		
Funding: NR	duration,	N: shld: 27	Rehab regime: NR	Strength: NR	
-	mean (range):	Age, mean±SD (range): 54±7 yr (NR)	-	en ongan an	
BA Quality:	48.6 mo (24–85	Males %: NR	GROUP 2	Other: NR	
Consecutive: Y	mo)	Cause of tear: NR	Surgical approach: open		
Followup: Y	,	Tear size: NR	Type of surgery: repair		
Outcome	Inclusion	Dominant shoulder %: NR	Additional procedures (N): acromioplasty (all);		
assessment: U	criteria:	Comorbidities: shld stiffness (all); DM -	manipulation (all); surgical lysis of the adhesive		
	(1) RC tear with	10 (11 shlds); rectal carcinoma (2);	tissue (all)		
	associated shld	thalassemia (1); hypertension (1);	Duration of immobilization: NR		
	stiffness, (2)	cervical carcinoma (1); bronchietasis (1)	Duration of rehab: NR		
	≥2yr followup		Rehab components: passive stretching (day 2);		
	, ,	GROUP 2	active-assisted stretching (day 3/4); active		
	Exclusion	N: shld: 15	stretching (day 7/10)		
	criteria:	Age, mean±SD (range): 52±10 yr(NR)	Rehab regime: NR		
	(1) previous	Males %: NR	5		
	operations, (2)	Cause of tear: NR	GROUP 3		
	traumatic	Tear size: NR	Surgical approach: open		
	fracture on the	Dominant shoulder %: NR	Type of surgery: repair		
	involved shld	Comorbidities: see group 1	Additional procedures (N): acromioplasty (all);		
		5	manipulation (all); surgical lysis of the adhesive		
		GROUP 3	tissue (all); deltoid flap transfer (1)		
		N: shld: 5			
		Age, mean±SD (range): 62±11 yr (NR)	Duration of immobilization: 3 day		
		Males %: NR	Duration of rehab: NR		
		Cause of tear: NR	Rehab components: passive stretching (day 3/4);		
		Tear size: NR	active-assisted stretching (wk 2)		
		Dominant shoulder %: NR	Rehab regime: NR		
		Comorbidities: see group 1			
		group -	PRE-OP TREATMENT: yes		
			Duration: 3 mo (min)		
			Type of treatment: physical therapy		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
lannotti JP, 2006	Recruitment dates:	Enrolled: 32	GROUP 1	HRQL: NR	Augmentation of the
	Jan 2002 to Jan 2004	Analyzed: 30	Surgical approach: open		surgical repair of large
Country: USA		Withdrawals: 2	Type of surgery: repair	Function:	and massive chronic
	Study design (trial		Additional procedures (N): acromioplasty (all);	PENN	RC tears with porcine
Treatment	type): RCT (parallel)	Duration since symptom	biceps tenotomy/tenodesis (4); osacromiale repair (3)		small intestine
category:		onset, mean (range):		Pain: NR	submucosa did not
Operative	Enrolled	≥ 3 mo (NR)	Technique: polyester tape through bone tunnels;		improve the rate of
augmentation	consecutively: NR		Mason-Allen and horizonal matterness sutures; simple	ROM: NR	tendon healing or the
Questions: Q2,	Followup duration	Type of tear: FTT	or figure 8 suture configuration (convergence repairs)	Ctromethe ND	clinical outcome
Q5, Q6	Followup duration, mean (range): 14 mo	Tendon(s) torn: SS+IS	Augmentation: circular restore path (10 cm diameter)	Strength: NR	scores.
Q5, Q0	(12–26.5 mo)	GROUP 1	Duration of immobilization: 1 wk	Other:	
Funding:	(12-20.3 110)	N : 16	Duration of rehab: NR	 cuff integrity 	
Government,	Inclusion criteria:	Age, mean±SD (range):	Rehab components: passive stretching (wk 1–8);		
industry	(1) a tear of both SS	58 yr (NR)	active stretching (wk ≥ 8); strengthening (wk $\geq 10/12$)		
	and IS tendons (MRI),	Males %: 68.8	Rehab regime: NR		
ROB: High	(2) >18 yrs old, (3)	Cause of tear: NR	U		
Ū	tear of 3 mo duration,	Tear size: lg, mass	GROUP 2		
	(4) fully reparable tear	Dominant shoulder %:	Surgical approach: open		
		NR	Type of surgery: repair		
	Exclusion criteria:	Comorbidities: NR	Additional procedures (N): acromioplasty (all);		
	(1) prior shld surgery,		biceps tenotomy/tenodesis (5); os acromiale repair (1)		
	(2) cervical spine	GROUP 2			
	disease, (3) adhesive	N: 16	Technique: polyester tape through bone tunnels;		
	capsulitis, (4)	Age, mean±SD (range):	Mason-Allen and horizonal matterness sutures; simple		
	glenohumeral arthritis	57 yr (NR) Males %: 75	or figure 8 suture configuration (convergence repairs)		
		Cause of tear: NR	Augmentation: NR		
		Tear size: lg, mass	Duration of immobilization: 1 wk		
		Dominant shoulder %:	Duration of rehab: NR		
		NR	Rehab components: passive stretching (wk 1–8);		
		Comorbidities: NR	active stretching (wk ≥ 8); strengthening (wk $\geq 10/12$)		
			Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
lannotti JP,	Recruitment dates:	Enrolled: 46	GROUP 1	HRQL: NR	Normalized CMS show a
1996 (10-year	Jun 1988 to Jun	Analyzed: 40 (shld: 41)	Surgical approach: open		significant correlation between
followup in	1990	Withdrawals: 6	Type of surgery: repair	Function:	functional outcomes and tear
Galatz LM,			Additional procedures (N):	CMS	size.
2001)	Study design:	Duration since symptom	acromioplasty (all); tendon transfer (2)		
	before-and-after	onset, mean (range):		Pain: NR	
Country: USA		8.9±7.4 mo. (3-36 mo.)	Duration of immobilization: NR		
	Enrolled		Duration of rehab: NR	ROM: NR	
Treatment	consecutively: yes	Type of tear: FTT	Rehab components: active-assisted		
category:		Tendon(s) torn: NR	stretching–wk. 1-6; stretching–wk. ≥6;	Strength: NR	
Operative	Followup duration,		strengthening–wk. ≥8/12		
	mean (range): 10 yr	GROUP 1	Rehab regime: NR	Other:	
Questions:		N: 40 (shld: 41)		 time to return to work 	
Q2, Q6	Inclusion criteria:	Age, mean±SD (range):	PRE-OP TREATMENT: yes		
	FTT	55±11 yr. (39-71 yr.)	Duration: NR		
Funding: NR		Males %: 77.5	Type of treatment: exercise, cortisone		
	Exclusion criteria:	Cause of tear:	injection		
BA Quality:	(1) operation within	degenerative (13), traumatic			
Consecutive: Y	3 mo. of injury, (2)	(27)			
Followup: Y	previous shld	Tear size: all sizes			
Outcome	surgery	Dominant shoulder %:			
assessment: Y		72.5			
		Comorbidities: rupture of			
		LHB (7)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
lde J, 2007	Recruitment dates:	Enrolled: 20	GROUP 1	HRQL: NR	For the Tx of combined RC
	Apr 2001 to Oct 2004	Analyzed: 20	Surgical approach: all-arthroscopic		tears involving SC tendon,
Country:		Withdrawals: 0	Type of surgery: repair and	Function:	arthroscopic RCR with use of
Japan	Study design:		debridement	 JOA 	the suture anchor technique is
	before-and-after	Duration since symptom	Additional procedures (N): biceps	UCLA	a safe and effective procedure.
Treatment		onset, mean (range):	tenotomy/tenodesis (5)/(7);		It can reduce shoulder pain or
category:	Enrolled	2.7 mo. (1-6 mo.)	coracoplasty (6)	Pain: NR	improve function and ROM.
Operative	consecutively: yes				Integrity of the repair can be
		Type of tear: FTT	Duration of immobilization: 6 wk.	ROM:	affected by patients age and
Questions:	Followup duration,	Tendon(s) torn: SS+SC,	Duration of rehab: 3-6 mo.	 flexion 	degree of tendon retraction.
Q2, Q5, Q6	mean (range): 36.1	SS+IS+SC	Rehab components: passive	 external rotation 	
_	mo. (24-60 mo.)		stretching and active-assisted	 internal rotation 	
Funding: No		GROUP 1	stretching-day 1-wk. 4; active		
funding	Inclusion criteria:	N: 20	stretching–wk. ≥6; strengthening–wk.	Strength: NR	
	(1) arthroscopic repair	Age, mean±SD (range):	9-12 Bakak na niman NB		
BA Quality:	of FTT, (2) MRI of	61.7 yr. (45-79 yr.)	Rehab regime: NR	Other:	
Consecutive: Y	involved shid pre- or	Males %: 85	DDE OD TDE ATMENT. ND	 cuff integrity 	
Followup: Y	post-op, (3) followup	Cause of tear: traumatic	PRE-OP TREATMENT: NR Duration: NR		
Outcome	>2 yr	(20) Tear size: med			
assessment: Y	Exclusion criteria:	Dominant shoulder %: 75	Type of treatment: NR		
	(1) irreparable RC	Comorbidities: biceps			
	tears, (2) partial RC	tendon complete tear (5);			
	repair, (3) stage 3 or	biceps tendon			
	4 fatty infiltration, (4)	dislocated/subluxated (6);			
	pre-operative cuff tear	biceps tendon partial tear			
	arthropathy, (5) failed	(3); subluxation and partial			
	RC repair, (6) WCB	tear of biceps tendon (3)			
	claim				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
lde J, 2005	Recruitment dates:	Enrolled: 21	GROUP 1	HRQL: NR	Arthroscopic transtendon repair
	1999 to 2002	Analyzed: 17	Surgical approach: all-arthroscopic		is a safe, reliable procedure in
Country:		Withdrawals: 4 excluded	Type of surgery: repair	Function:	patients with grade III PTT.
Japan	Study design:	(SLAP repair [3]; Bankart	Additional procedures (N): NR	UCLA	
	before-and-after	repair [1])		• JOA	
Treatment			Duration of immobilization: 4 wk		
category:	Enrolled	Duration since symptom	Duration of rehab: 3 mo	Pain: NR	
Operative	consecutively: yes	onset, mean (range):	Rehab components: CPM (day 1–3		
		11 mo (7–24 mo)	mo); active-assisted stretching (wk 2-3	ROM: NR	
Questions:	Followup duration,		mo); strengthening (wk 4/6–3 mo)		
Q2	mean (range): 39	Type of tear: PTT	Rehab regime: Frequency–NR;	Strength: NR	
-	mo (25–57 mo)	Tendon(s) torn: SS	Intensity–CPM, 2 hr/day		
Funding: No				Other:	
funding	Inclusion criteria:	GROUP 1	PRE-OP TREATMENT: NR	 Number of pts returning 	
BA Quality	articular side SS	N: 21	Duration: NR	to original level of sport	
BA Quality: Consecutive: Y	PTT involving ≥6 mm of the tendon,	Age, mean \pm SD (range):	Type of treatment: NR		
	treated with	42 yr (17–51 yr) Males %: 66.7			
Followup: Y Outcome	arthroscopic	Cause of tear:			
assessment: Y	transtendon repair	degenerative (10), traumatic			
assessinent. 1	transtendon repair	(7)			
	Exclusion criteria:	Tear size: NR			
	(1) arthroscopic	Dominant shoulder %:			
	SLAP repair, (2)	66.7			
	arthroscopic Bankart	Comorbidities: NR			
	repair				
	Topun				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
lde J, 2005	Recruitment dates:	Enrolled: NR	GROUP 1	HRQL: NR	Equivalent outcomes obtained
	1996 to 2001	Analyzed: 100	Surgical approach: open		by open and arthroscopic RCR
Country:		Withdrawals: NR	Type of surgery: repair and	Function:	of small to massive RC tears.
Japan	Study design:		debridement	UCLA	Regardless of repair methods,
	prospective cohort	Duration since symptom	Additional procedures (N):	• JOA	outcomes in pts with large to
Treatment		onset, mean (range):	acromioplasty (all)		massive tears were inferior to
category:	Enrolled	Group 1: 8 mo (2–24 mo);		Pain: NR	those in patients with small to
Operative	consecutively: yes	Group 2: 6.4 mo (2–36 mo)	Duration of immobilization: 3 wk		medium tears.
approach			Duration of rehab: 3 mo	ROM: NR	
	Followup duration,	Type of tear: FTT	Rehab components: passive stretching		
Questions: Q2, Q5, Q6	mean (range): 49 mo (25–83 mo)	Tendon(s) torn: NR	and CPM (day 1–wk 6/9); strengthening (wk 6–9); active-assisted stretching (wk	Strength: NR	
,,		GROUP 1	2–4)	Other:	
Funding:	Inclusion criteria:	N: 50	Rehab regime: NR	 pt satisfaction 	
NR	FTT including mass	Age, mean±SD (range):		• production	
	tears	57.1 yr (24–72 yr)	GROUP 2		
NOS: 7*/8*		Males %: 78	Surgical approach: all-arthroscopic		
	Exclusion criteria:	Cause of tear:	Type of surgery: repair and		
	(1) PTT, (2)	degenerative (18), traumatic	debridement		
	irreparable RC tear	(32)	Additional procedures (N):		
	reconstructed with	Tear size: all sizes	acromioplasty (all)		
	implatation of fascia	Dominant shoulder %: 78			
	lata, (3) SC repair/	Comorbidities: NR	Duration of immobilization: 3 wk		
	prior surgery on		Duration of rehab: 3 mo		
	shld, (4) other	GROUP 2	Rehab components: passive stretching		
	significant	N: 50	and CPM (day 1-wk 6/9); active-		
	intraarticular	Age, mean±SD (range):	assisted stretching (wk 2-4);		
	pathology, (5) WCB	57 yr (25–78 yr)	strengthening (wk 6–9)		
	claim	Males %: 82	Rehab regime: NR		
		Cause of tear:			
		degenerative (24), traumatic	PRE-OP TREATMENT: NR		
		(26)	Duration: NR		
		Tear size: all sizes	Type of treatment: NR		
		Dominant shoulder %: 62			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Ito J, 2003	Recruitment dates:	Enrolled: 28 (shld: 30)	GROUP 1	HRQL: NR	Based on this study, patch
	1983 to 1987	Analyzed: 21 (shld: 21)	Surgical approach: open		grafts are considered to have
Country:		Withdrawals: 7	Type of surgery: repair	Function:	the advantages of achieving
Japan	Study design:		Additional procedures (N):	• JOA	anatomical repair with minimal
	retrospective cohort	Duration since symptom	acromioplasty (all)		restriction of ROM and minimal
Treatment		onset, mean±SD (range):	Augmentation: Patch graft placed	Pain: NR	occurrence of retearing.
category:	Enrolled	Group 1: 5.8±4.7 mo (NR);	between the margin of the RC and the		
Operative	consecutively: NR	Group 2: 4.1±2.9 mo (NR)	anatomical insertion at the humeral head	ROM:	
augmentation			in order to avoid excessive tension	 abduction 	
	Followup duration,	Type of tear: NR		 external rotation 	
Questions:	mean (range): 3.7	Tendon(s) torn: NR	Duration of immobilization: 5 wk	 flexion 	
Q2, Q5	yr (2–8.4 yr)		Duration of rehab: NR		
Funding: NR	Inclusion criteria:		Rehab components: passive stretching (day 1–wk 5); active stretching (wk 5)	Strength: NR	
runung. m	(1) surgical tx for RC	GROUP 1	Rehab regime: NR	Others ND	
NOS: 4*/8*	tear between 1983–	N: 9	Rendb regime. NR	Other: NR	
100. 470	1997, (2) lg or mass	Age, mean±SD (range):	GROUP 2		
	tear	62.8±6.9 yr (49–70 yr)	Surgical approach: open		
		Males %: 66.7	Type of surgery: repair		
	Exclusion criteria:	Cause of tear: NR	Additional procedures (N):		
	NR	Tear size: lq, mass	acromioplasty (all)		
		Dominant shoulder %: NR	Augmentation: McLaughlin procedure,		
		Comorbidities: NR	the margin of the RC was attached to		
			the 'anatomical insertion' at the humeral		
		GROUP 2	head		
		N: 12			
		Age, mean±SD (range):	Duration of immobilization: 5 wk		
		52.3±8.6 yr (36–66 yr)	Duration of rehab: NR		
		Males %: 83.3	Rehab components: passive stretching		
		Cause of tear: NR	(day 1-wk 5); active stretching (wk 5)		
		Tear size: lg, mass	Rehab regime: NR		
		Dominant shoulder %: NR	5		
		Comorbidities: NR	PRE-OP TREATMENT: yes		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Kane TP, 2008	Recruitment dates:	Enrolled: 12	GROUP 1	HRQL: NR	In patients with painful,
	NR	Analyzed: NR	Intervention: pulsed radio frequency		endstage RC tear arthropathy
Country:		Withdrawals: NR	ablation	Function:	who are not fit for surgery,
England	Study design:		Drug name: NR	CMS	pulsed radio frequency may be
	before-and-after	Duration since symptom	Duration of treatment: NR	OSS	a useful therapeutic adjunct.
Treatment		onset, mean (range):	Treatment Regime: Frequency-once		
category:	Enrolled	NR	in study duration; Intensity–6–8 min.	Pain:	
Nonoperative	consecutively: yes		Degree of supervision: direct one-to-	• VAS	
		Type of tear: NR	one		
Questions: Q3,	Followup duration,	Tendon(s) torn: NR	Treatment provider: NR	ROM: NR	
Q5	mean (range):				
	6 mo (NR)	GROUP 1		Strength: NR	
Funding: NR	la charles cultures	N: 12			
DA Oursliter	Inclusion criteria:	Age, mean±SD (range):		Other: NR	
BA Quality:	(1) painful endstage	68 yr (60–83 yr)			
Consecutive: Y	RC tear arthropathy,	Males %: 25			
Followup: U	(2) medically unfit for	Cause of tear: NR			
Outcome	surgery, (3) failure of	Tear size: NR Dominant shoulder %: NR			
assessment: U	nonoperative tx				
	Exclusion criteria:	Comorbidities: OA (11); RA (1); renal failure; DM; chronic			
	(1) previous surgery,	obstructive pulmonary			
	(1) previous surgery, (2) nerve block	disease; heart failure			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Kim SH,	Recruitment dates:	Enrolled: NR	GROUP 1	HRQL: NR	For repair of medium and large
2003	1995 to 1998	Analyzed: 76	Surgical approach: mini-open		RC tears there are equal
		Withdrawals: NR	Type of surgery: repair and	Function:	outcomes between all
Country:	Study design (trial		debridement	UCLA	arthroscopic repairs and
South Korea	type): CCT (parallel)	Duration since symptom	Additional procedures (N):	 VAS-function 	unsuccessful arthroscopic
		onset, mean (range):	acromioplasty (all); manipulation (NR)	ASES	repair converted to mini-open
Treatment	Enrolled	NR			repair.
category:	consecutively: yes		Duration of immobilization: 3 wk	Pain:	
Operative		Type of tear: FTT	Duration of rehab (N): <6 mo (18); 6-	• VAS	
approach	Followup duration,	Tendon(s) torn: NR	12 mo (12); >12 mo (4)		
	mean (range): 39		Rehab components: CPM (day 1-3);	ROM:	
Questions:	mo (24–64 mo)	GROUP 1	passive stretching (day 3-wk 3); active-	flexion	
Q2, Q5, Q6		N: 34	assisted stretching (wk 3-6/9);	 internal rotation 	
	Inclusion criteria:	Age, mean±SD (range):	strengthening (wk 6/9–6 mo)		
Funding:	med/lg RC tears	58±9 yr (42–68 yr)	Rehab regime: Frequency-CPM, daily;	 external rotation 	
NR	0	Males %: 64.7	Intensity-2 hr	Strongth .	
	Exclusion criteria:	Cause of tear:	,	Strength:	
ROB: High	(1) bilateral RC tear,	degenerative (28), traumatic	GROUP 2	 manual muscle testing 	
Ũ	(2) sm and mass	(6)	Surgical approach: all-arthroscopic		
	tears, (3) advanced	Tear size: med, lg	Type of surgery: repair and	Other: NR	
	glenohumeral OA,	Dominant shoulder %:	debridement		
	(4) AC arthritis, (5)	88.2	Additional procedures (N):		
	SLAP lesion, (6)	Comorbidities (all	acromioplasty (all); manipulation (NR)		
	previous surgery of	groups): fraying of biceps			
	shld, (7) tenodesis of	tendons (6); early	Duration of immobilization: 3 wk		
	biceps tendon, (8)	degenerative arthritis	Duration of rehab (N): <6 mo (21); 6-		
	anterior	changes of glenoid articular	12 mo (14); >12 mo (7)		
	glenohumeral	surface (4)	Rehab components: CPM (day 1–3);		
	instability, (9) post		passive stretching (day 3-wk 3); active-		
	traumatic stiff shld,	GROUP 2	assisted stretching (wk 3-wk 6/9);		
	(10) neurological	N: 42	strengthening (wk 6/9–6 mo)		
	deficit	Age, mean±SD (range):	Rehab regime: Frequency– CPM, daily;		
		55±10.5 yr (42–75 yr)	Intensity—2 hr		
		Males %: 64.3	,		
		Cause of tear:	PRE-OP TREATMENT: NR		
		degenerative (33), traumatic	Duration: NR		
		(9)	Type of treatment: NR		
		Tear size: med, lg	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		Dominant shoulder %:			
		88.1			
		Comorbidities: see group			
		1			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Kirschen-baum	Recruitment dates:	Enrolled: 25	GROUP 1	HRQL: NR	Shoulder strength is
D, 1993	NR	Analyzed: 22	Surgical approach: open		significantly improved by RC
		Withdrawals: 3	Type of surgery: repair	Function: NR	repair.
Country: USA	Study design:		Additional procedures (N):		
•	before-and-after	Duration since symptom	acromioplasty (23); excision of distal	Pain:	
Treatment		onset, mean (range):	clavicle (14)	• NR	
category:	Enrolled	10 mo (2 mo-5 yr)			
Operative	consecutively: NR	(),	Duration of immobilization: 2 wk	ROM: NR	
•	2	Type of tear: NR	Duration of rehab: NR	-	
Questions: Q2,	Followup duration,	Tendon(s) torn: SS, IS, TM	Rehab components: passive stretching	Strength:	
Q6	(endpoint): 12 mo		(wk 2); active stretching (wk 6);	 isokinetic shld strength 	
	,	GROUP 1	strengthening (wk 8–12)	(abduction, flexion,	
Funding: NR	Inclusion criteria:	N: 25	Rehab regime: Frequency- daily;	external rotation)	
U	1) positive	Age, mean±SD (range):	Intensity–NR		
BA Quality:	arthrogram of RC	62 yr (27–76 yr)		Other: NR	
Consecutive: U	tears and shld pain	Males %: 64	PRE-OP TREATMENT: NR	•	
Followup: Y	limiting everyday	Cause of tear:	Duration: NR		
Outcome	activity	degenerative (4), traumatic	Type of treatment: NR		
assessment: Y		(21)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Exclusion criteria:	Tear size: all sizes			
	1) shid pain on the	Dominant shoulder %: 56			
	nonoperative side	Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Klepps S, 2004	Recruitment dates: NR	Enrolled: 47 Analyzed: 32	GROUP 1 Surgical approach: open (24); mini-	HRQL: NR	Open and mini-open RCR restores RC function,
Country: USA	Study design:	Withdrawals: 15	open (8) Type of surgery: repair	Function: • ASES	regardless of RC integrity.
Treatment category:	before-and-after	Duration since symptom onset, mean (range): NR	Additional procedures (N): acromioplasty (NR); capsular release	CMSUCLA	
Operative	Enrolled consecutively: yes	Type of tear: FTT	(13); distal clavicle resection (4)	Pain:	
Questions: Q2, Q5, Q6	Followup duration,	Tendon(s) torn: NR	Duration of immobilization: 6 wk Duration of rehab: 3–4 mo	• VAS	
Funding:	(minimum): 1 yr	GROUP 1 N: 47	Rehab components: passive stretching (wk 1–6); active stretching (wk 6–3/4	ROM: NR	
Foundation	Inclusion criteria: (1) 40–80 yr, (2)	Age, mean±SD (range): 64 yr (NR)	mo); strengthening (wk 6–3/4 mo) Rehab regime: NR	Strength: • flexion (lb)	
BA Quality: Consecutive: Y	able to communicate and give informed	Males %: NR Cause of tear: NR	PRE-OP TREATMENT: NR	• external rotation (lb)	
Followup: N Outcome	consent	Tear size: all sizes Dominant shoulder %: NR	Duration: NR Type of treatment: NR	Other: • cuff integrity	
assessment: Y	Exclusion criteria: (1) medically	Comorbidities: NR			
	unstable for surgery; (2) concomitant				
	disease: glenohumeral				
	arthritis, fracture or osteonecrosis; (3)				
	unable or unwilling to undergo MRI				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Klinger HM,	Recruitment dates:	Enrolled: 33	GROUP 1	HRQL: NR	Arthroscopic debridement early
2005	1997 to 1999	Analyzed: 33	Surgical approach: all-arthroscopic		results suggest it is an
		Withdrawals: 0	Type of surgery: debidement	Function:	acceptable tx for elderly pts
Country:	Study design:		Additional procedures: acromioplasty	CMS	with modest functional
Germany	before-and-after	Duration since symptom	(28); labral repair (NR); biceps tenotomy		demands.
		onset, mean (range):	(6); resection of distal clavicle (1)	Pain: NR	
Treatment	Enrolled	11 mo (6–23 mo)			
category:	consecutively: yes		Duration of immobilization: 0	ROM: NR	
Operative		Type of tear: FTT	Duration of rehab: NR		
	Followup duration,	Tendon(s) torn: SS+IS,	Rehab components: active stretching-	Strength: NR	
Questions:	mean (range): 31	SS+SC, SS+IS+SC	immediately post operative; stretching-NR		
Q2, Q5, Q6	mo (24–46 mo)		Rehab regime: NR	Other: NR	
		GROUP 1			
Funding: NR	Inclusion criteria:	N: 33	PRE-OP TREATMENT: yes		
	irreparable mass	Age, mean±SD (range):	Duration: 6 mo (min)		
BA Quality:	tear	69 yr (62–79 yr)	Type of treatment: NR		
Consecutive: Y		Males %: 69.7			
Followup: Y	Exclusion criteria:	Cause of tear: NR			
Outcome	reparable tears or	Tear size: lg			
assessment: Y	previous procedures	Dominant shoulder %: 69.7			
	involving the shld	Comorbidities: biceps			
		pathology (23); degenerative			
		OA (24%)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Klinger HM,	Recruitment dates:	Enrolled: 41	GROUP 1	HRQL: NR	Arthroscopic RCR improves
2005	1998 to 2000	Analyzed: 41	Surgical approach: all-arthroscopic		function, decreases pain, and
		Withdrawals: 0	Type of surgery: debidement	Function:	improves shoulder score for
Country:	Study design:		Additional procedures (N):	CMS	most patients who underwent
Germany	retrospective cohort	Duration since symptom	acromioplasty (all); labral repair (NR)		arthroscopic debridement of
		onset, mean (range):		Pain: NR	massive irreparable RC tears.
Treatment	Enrolled	Group 1: 11 mo (6–23 mo);	Duration of immobilization: NR		Additional LHB tenotomy did
category:	consecutively: NR	Group 2: 10 mo (6–18 mo)	Duration of rehab: NR	ROM: NR	not significantly influence the
Operative			Rehab components: active stretching		postoperative results at the
approach	Followup duration,	Type of tear: FTT	(≥day 1); strengthening (NR)	Strength: NR	latest followup.
	mean (range): 2.6		Rehab regime: NR		
Questions:	yr (2–4 yr)	GROUP 1		Other: NR	
Q2, Q5		N: 24	GROUP 2		
	Inclusion criteria:	Age, mean±SD (range):	Surgical approach: all-arthroscopic		
Funding:	(1) mass irreparable	66 yr (61–79 yr)	Type of surgery: debidement		
NR	RC tears, (2)	Males %: 62.5	Additional procedures (N):		
	persisting pain and	Cause of tear: NR	acromioplasty (alll); labral repair (NR);		
NOS: 4*/8*	functional disability	Tear size: mass	biceps tenotomy (17)		
	after nonoperative	Tendon(s) torn: NR			
	Tx, (3) >6 mo	Dominant shoulder %: 58.3	Duration of immobilization: NR		
	arthroscopic dx of	Comorbidities: superior	Duration of rehab: NR		
	LHB pathology	migration of humeral head	Rehab components: active stretching		
		(1); glenohumeral OA (1)	(≥day 1); strengthening (NR)		
	Exclusion criteria:		Rehab regime: NR		
	(1) reparable RC	GROUP 2			
	tears, (2) previous	N: 17	PRE-OP TREATMENT: yes		
	shld surgery	Age, mean±SD (range):	Duration: 6 mo (min)		
		68 yr (63–82 yr)	Type of treatment: NR		
		Males %: 58.8			
		Cause of tear: NR			
		Tear size: mass			
		Tendon(s) torn: NR			
		Dominant shoulder %: 58.8			
		Comorbidities: LHB:			
		tendinosis (3); subluxation			
		(5); prerupture (3); dislocation			
		(6)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Klintberg IH,	Recruitment dates:	Enrolled: 18	GROUP 1	HRQL: NR	The progressive rehabilitation
2009	NR	Analyzed: 14	Surgical approach: NR		protocol has no adverse effects
		Withdrawals: 4	Type of surgery: repair & debridement	Function:	compared with the traditional
Country:	Study design: RCT		Additional procedures (N): NR	CMS	protocol.
Sweden	(parallel)	Duration since symptom		 Functional Score Index 	
		onset, mean (range): NR	Duration of immobilization: 4 wk		
Treatment	Enrolled		Duration of rehab: >12 mo	Pain: NR	
category:	consecutively: yes	Type of tear: FTT	Rehab components: passive stretching		
Post-op		Tendon(s) torn: NR	(1-4 wk); active-assisted stretching with	ROM:	
rehabilitation	Followup duration,		aquatic training program (4-6 wk); active	 adduction 	
	mean (range): 2 yr	GROUP 1	stretching (6–8 wk); strengthening	 external rotation in 	
Questions:		N: 7	exercises (8–10 wk); aquatic training	adduction	
Q2, Q5	Inclusion criteria:	Age, mean±SD (range):	program (10–12 wk); eccentric load on	 external rotation in 	
	(1) FTT of RC	NR	RC (12–24 wk)	abduction	
Funding:		Males %: NR	Rehab regime: supervised PT 2-3	 internal rotation 	
Academic	Exclusion criteria:	Cause of tear:	times/wk; active-assisted stretching-	 extension 	
	(1) No previous RC	degenerative (NR);	3x/day; aquatic training 1 (1x/week);	flexion	
ROB: High	repair to the involved	traumatic (4)	strengthening exercises- 2x/day; aquatic		
C C	shoulder (2)	Tear size: med, lg	training 2 (2x/wk)	Strongth	
	interfering disease	Dominant shoulder %: NR	Treatment provider: PT	Strength:	
	with treatment or	Comorbidities: NR		 external rotation 	
	shoulder function		GROUP 2	 internal rotation 	
	(e.g. RA, DM,	GROUP 2	Surgical approach: NR	 elevation 	
	neurological or	N: 7	Type of surgery: repair & debridement		
	psychological	Age, mean±SD (range):	Additional procedures (N): NR	Other: NR	
	disease), (3)	NR			
	difficulties in reading	Males %: NR	Duration of immobilization: 6 wk		
	& writing in Swedish	Cause of tear:	Duration of rehab: >24 mo		
	-	degenerative (NR);	Rehab components: passive stretching		
		traumatic (5)	(1–6 wk); active and active-assisted		
		Tear size: med, lg, mass	stretching (6–10 wk); active-assisted		
		Dominant shoulder %: NR	stretching with aquatic training program		
		Comorbidities: NR	(10–16 wk); strengthening exercises with		
			aquatic program (16–24 wk); eccentric		
			load on RC (24 wk)		
			Rehab regime: supervised PT 2-3		
			times/wk; aquatic training 1 (1x/week);		
			aquatic training 2 (2x/wk)		
			Treatment provider: PT		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Ko SH, 2009	Recruitment dates:	Enrolled: 77	GROUP 1	HRQL: NR	No difference in clinical
	Dec 2004 to Jun	Analyzed: 71	Surgical approach: all-arthroscopic		outcomes between massive
Country:	2006	Withdrawals: 6	Type of surgery: repair and	Function:	cuff stitch or simple stitch, but
South Korea			debridement	 ASES (ADL) 	massive cuff stitch was superior
	Study design:	Duration since symptom	Additional procedures (N):	UCLA	to simple stitch in repair
Treatment	Prospective cohort	onset, mean (range): NR	acromioplasty (7)		integrity.
category:			Technique: massive cuff stitch repair	Pain:	
Operative	Enrolled	Type of tear: FTT		• VAS	
technique	consecutively: no	Tendon(s) torn: SS	Duration of immobilization: NR		
•			Duration of rehab: >12 mo	ROM:	
Questions:	Followup duration,	GROUP 1	Rehab components: passive stretching	 Forward motion 	
Q2, Q5, Q6	mean (range): 2.8	N: 35	(1–4 wk); active-assisted stretching (4		
Funding	yr (2–3.4 yr)	Age, mean±SD (range):	wk); active stretching (6 wk);	Strength: NR	
Funding:	Inclusion criteria:	53.6 yr (39–68) Males %: 51	strengthening exercises (10–12 wk) Rehab regime: NR		
No funding	(1) SS tear (0.5 - 1.5	Cause of tear: NR	Reliab regime. NR	Other:	
ROB: High	(1) 33 tear (0.5 - 1.5 cm) (2) fail at least 6	Tear size: sm, med	GROUP 2	 Cuff integrity 	
NOB. High	mo conservative tx,	Dominant shoulder %: NR	Surgical approach: all-arthroscopic		
	(3) subscapularis	Comorbidities: NR	Type of surgery: repair and		
	tears involving less	Comorbiances. The	debridement		
	than 0.5 mm, (4)	GROUP 2	Additional procedures (N):		
	stable biceps	N: 36	acromioplasty (7)		
		Age, mean±SD (range):	Technique: simple stitch repair		
	Exclusion criteria:	52.4 yr (15–68 yr)			
	(1) AC arthritis (2)	Males %: 47	Duration of immobilization: NR		
	biceps subluxation	Cause of tear: NR	Duration of rehab: >24 mo		
	and dislocation, (3)	Tear size: sm, med	Rehab components: passive stretching		
	SC tears that require	Dominant shoulder %: NR	(1-4 wk); active-assisted stretching (4		
	repair, (4) stiffness	Comorbidities: NR	wk); active stretching (6 wk);		
	requiring		strengthening exercises (10–12 wk)		
	capsulatomy, (5)		Rehab regime: NR		
	fractures around				
	shoulder, (6)		PRE-OP TREATMENT: yes		
	flexion<120 degrees,		Duration, min, mean (range): 6 mo,		
	abduction <120		19.1 mo (6 mo–2.8 yr)		
	degrees, external		Type of treatment: exercise		
	rotation<0 degrees				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Ko SH, 2008	Recruitment dates:	Enrolled: 78	GROUP 1	HRQL: NR	Arthroscopic repair of med
	Dec 2004 to Jan	Analyzed: NR	Surgical approach: all-arthroscopic		sized FTT by use of modified
Country:	2006	Withdrawals: NR	Type of surgery: repair	Function:	mattress lock stitch improves
South Korea			Additional procedures (N): lateral	ASES	patient satisfaction rates and
	Study design:	Duration since symptom	clavical excision (for AC arthritis) (4)	UCLA	radiographic repair integrity
Treatment	prospective cohort	onset, mean (range): NR	Technique: modified mattress locking		compared to simple stitch
category:			stitch (mean/ range: 1.7/ 1–3 suture	Pain:	repair.
Operative	Enrolled	Type of tear: FTT	anchors; 3.3/ 2-6 sutures)	• VAS	
technique	consecutively: yes	Tendon(s) torn: SS, SC			
			Duration of immobilization: NR	ROM: NR	
Questions:	Followup duration,	GROUP 1	Duration of rehab: NR		
Q2, Q5	mean (range): 2.6	N: NR	Rehab components: NR	Strength: NR	
	yr (2–3.1 yr)	Age, mean±SD (range):	Rehab regime: NR	g	
Funding:		NR	-	Other:	
NR	Inclusion criteria:	Males %: NR	GROUP 2	 cuff integrity 	
	med FTT	Cause of tear: NR	Surgical approach: all-arthroscopic		
NOS: 5*/8*		Tear size: med	Type of surgery: repair		
	Exclusion criteria:	Dominant shoulder %: NR	Additional procedures (N): lateral		
	(1) sm, lg or mass	Comorbidities: arthritis of	clavical excision (for AC arthritis) (3)		
	RC tear, PTT; (2)	AC joint (4); hypertrophied	Technique: simple stitch (mean/range:		
	impingement	membrane	1.8/ 1–3) suture anchors; (mean/range:		
	syndrome; (3)		3.3/ 2-sutures)		
	severe stiffness; (4)	GROUP 2			
	biceps subluxation	N: NR	Duration of immobilization: NR		
	tear; (5) mini-	Age, mean±SD (range):	Duration of rehab: NR		
	open/open repair;	NR	Rehab components: NR		
	(6) double-row repair	Males %: NR	Rehab regime: NR		
		Cause of tear: NR	-		
		Tear size: med	PRE-OP TREATMENT: yes		
		Dominant shoulder %: NR	Duration (mean/range): 12 mo/ 3-33		
		Comorbidities: arthritis of	mo		
		AC joint (3); synovial around	Type of treatment: exercise		
		cuff			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Köse KC,	Recruitment dates:	Enrolled: 57	GROUP 1	HRQL: NR	Clinical results are similar but
2008	2001 to 2005	Analyzed: 50	Surgical approach: mini-open		have a higher cost for
		Withdrawals: 7	Type of surgery: repair	Function:	arthroscopic RCR compared
Country:	Study design:		Additional procedures (N):	CMS	with mini-open RCR.
Turkey	retrospective cohort	Duration since symptom onset, mean (range): NR	acromioplasty (all)	• UCLA	
Treatment	Enrolled		Duration of immobilization: 3 wk	Pain: NR	
category:	consecutively: NR	Type of tear: NR	Duration of rehab: NR		
Operative	-	Tendon(s) torn: NR	Rehab components: passive	ROM: NR	
approach	Followup duration,		stretching (up to wk 6); active		
	mean (range):	GROUP 1	stretching (wk 6)	Strength: NR	
Questions:	Group 1: 21.6 mo	N: 25	Rehab regime: NR	5.00	
Q2, Q5, Q6	(12 mo–2.8 yr);	Age, mean±SD (range):	-	Other: NR	
	Group 2: 2.6 yr (13	62±10 yr (32–75 yr)	GROUP 2		
Funding:	mo-6.8 yr)	Males %: 16	Surgical approach: all-arthroscopic		
NR		Cause of tear: NR	Type of surgery: repair		
	Inclusion criteria:	Tear size: sm, med, lg	Additional procedures (N):		
NOS: 5*/8*	(1) required RCR,(2) tear confirmed	Dominant shoulder %: NR Comorbidities: NR	acromioplasty (all)		
	intraoperatively.		Duration of immobilization: 3 wk		
	. ,	GROUP 2	Duration of rehab: NR		
	Exclusion criteria:	N: 25	Rehab components: passive		
	(1) <1 yr of followup,	Age, mean±SD (range):	stretching (up to wk 6); active		
	(2) no regular	55±7.6 yr (34–72 yr)	stretching (wk 6)		
	followup, (3)	Males %: 28	Rehab regime: NR		
	arthroscopically	Cause of tear: NR	-		
	assisted mini-open	Tear size: sm, med, lg	PRE-OP TREATMENT: yes		
	repair, (4) traditional	Dominant shoulder %: NR	Duration: NR		
	open repair cuff	Comorbidities: NR	Type of treatment: physical therapy		
	debridement +		NOS		
	subacromial				
	decompression				
	without repair, (5)				
	revision procedure,				
	(6) concomitant				
	stiffness				

Study	Study design	Participant oberactoristics	Treatment characteristics	Outcomes reported	Author conclusions
Study	Recruitment dates:	Participant characteristics Enrolled: 24	GROUP 1	Outcomes reported HRQL: NR	
Koubaa S,					Study confirms the efficacy of
2006	Aug 2001 to Mar	Analyzed: 24	Intervention: passive/active stretching,	Function	nonoperative tx despite
0	2002	Withdrawals: 0	strengthening, corticosteroid injection,	Function:	methodological limitations.
Country:			NSAIDs, analgesics, other PT	• CMS	Good results were achieved in
Tunisia	Study design: before-and-after	Duration since symptom onset, mean±SD (range):	techniques e.g., proprioception, re- education, ultrasound	 VAS (100 points) 	75% of patients (lasted 6 mo). Nonoperative tx should be
Treatment		9.1±12.3 mo (3 mo-2.7 yr)	Drug name: analgesics, piroxicam	Pain:	offered as first option.
category:	Enrolled		Duration of treatment: 2 mo	 VAS (100 point) 	
Non-operative	consecutively: NR	Type of tear: FTT	Treatment Regime: Frequency–3x/wk.;		
	•••••••	Tendon(s) torn: SS,	Intensity– NR	 night pain 	
Questions:	Followup duration,	SS+IS, SS+IS+SC	Degree of supervision: NR	ROM:	
Q3, Q5	(minimum): 6 mo		Treatment provider: PT	-	
,	(GROUP 1	Additional comments: NA	 abduction (passive and active) 	
Funding: NR	Inclusion criteria:	N: 24		active)	
	(1) rupture or	Age, mean±SD (range):		 flexion (passive and 	
BA Quality:	perforation	59.2±10 yr (44–83 yr)		active)	
Consecutive: U	"transfixiante"	Males %: 37.5		 external rotation (active) 	
Followup: U	degenerative of RC,	Cause of tear:		 internal rotation 	
Outcome	(2) adherence to	degenerative (24)		Strength: NR	
assessment: U	therapeutic protocol,	Tear size: mean: 13.5 mm ²			
	(3) ≥6 mo followup	Dominant shoulder %:		Other:	
		62.5		 number of pts returning 	
	Exclusion criteria:	Comorbidities: NR		to work	
	NR			success	
				 pt reported efficacy of tx 	

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Kreuz PC,	Recruitment dates:	Enrolled: 16	GROUP 1	HRQL: NR	Repair of FTT and PTT of SC
2005	1994 to 1999	Analyzed: 16	Surgical approach: all-arthroscopic		tendon shows improvement in
		Withdrawals: 0	Type of surgery: repair	Function:	CMS. Delay between trauma
Country:	Study design:		Additional procedures (N):	CMS	and surgery was inversely
Germany	before-and-after	Duration since symptom onset, mean (range): NR	manipulation (1)	Shid function rating	proportional to the improvement in CMS.
Treatment	Enrolled		Duration of immobilization: NR	Pain:	
category: Operative	consecutively: NR	Type of tear: FTT (9); PTT (7)	Duration of rehab: NR Rehab components: passive	 pain NOS 	
·	Followup duration,	Tendon(s) torn: SC	stretching-NR; active-assisted stretching	ROM: NR	
Questions:	mean (range): 3 yr		(wk 4); stretching (3 mo)		
Q2, Q5, Q6	(2.3–4 yr)	GROUP 1 N: 16	Rehab regime: NR	Strength: NR	
Funding: No	Inclusion criteria:	Age, mean±SD (range):	PRE-OP TREATMENT: yes	Other: NR	
funding	isolated traumatic	46 yr (27–64 yr) Males %: 87.5	Duration (mean/range): PTT (4.7 mo; 3–7 mo); FTT (0.9 mo; 0.25–2 mo)		
BA Quality:	rupture of SC tendon	Cause of tear: traumatic	Type of treatment: PT NOS, NSAID		
Consecutive: U	Exclusion criteria:	(16)	Type of treatment. IT NOS, NOAD		
Followup: Y	NR	Tear size: NR			
Outcome		Dominant shoulder %:			
assessment: U		93.8			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Lafosse L,	Recruitment dates:	Enrolled: 95 (shld: 105)	GROUP 1	HRQL: NR	Much lower rate of failure can
2007	1999 to 2003	Analyzed: 95 (shld: 105)	Surgical approach: all-arthroscopic		be achieved by arthroscopic
		Withdrawals: 0	Type of surgery: repair	Function:	RCR with use of the double-row
Country:	Study design:		Additional procedures: acromioplasty	CMS	suture anchor technique
France	before-and-after	Duration since symptom	(105); biceps tenotomy/tenodesis		compared with previous reports
		onset, mean (range): NR	(59)/(50)	Pain:	of either open or arthroscopic
Treatment	Enrolled			• VAS	repair methods.
category:	consecutively: yes	Type of tear: FTT	Duration of immobilization: NR		
Operative		Tendon(s) torn: SS, SS+IS	Duration of rehab: NR	ROM:	
	Followup duration,		Rehab components: passive stretching	 abduction 	
Questions:	mean (range): 3 yr	GROUP 1	(day 1–wk 3); active stretching (≥wk 6);	 flexion (active) 	
Q2, Q5, Q6	(2–4.8 yr)	N: 95 (shld: 105)	Modalities-hydrotherapy (encouraged)		
		Age, mean±SD (range):	Rehab regime: NR	Strength:	
Funding: No	Inclusion criteria:	52 yr (37–79 yr)		 mean strength 	
funding	(1) FTT ≥1 tendon,	Males %: 49.5	PRE-OP TREATMENT: yes		
	underwent repair	Cause of tear: NR	Duration: NR	Other:	
BA Quality:	with double-row	Tear size: all sizes	Type of treatment: physical therapy	 cuff integrity 	
Consecutive: Y	technique, (2)	Dominant shoulder %:	NOS		
Followup: Y	followup ≥2 yr	72.4			
Outcome		Comorbidities: SC fraying			
assessment: U	Exclusion criteria:	(17)			
	(1) single-row repair,				
	(2) open repair, (3) a contaminant SC				
	tear, (4) refusal of				
	having postop arthrogram, (5)				
	follow up <2 yr				
	ioliow up <z td="" yi<=""><td></td><td></td><td></td><td></td></z>				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Lafosse L,	Recruitment dates:	Enrolled: 17	GROUP 1	HRQL: NR	Arthroscopic SC repair can
2007	May 2000 to Jul	Analyzed: 17	Surgical approach: all-arthroscopic		result in durable RC repair with
	2002	Withdrawals: 0	Type of surgery: repair and	Function:	clinical results that are at least
Country:			debridement	CMS	comparable with those open
France	Study design: before-and-after	Duration since symptom onset, mean (range):	Additional procedures (N): biceps tenodesis (9)	• UCLA	repair techniques.
Treatment		2 yr (3 mo–3.7 yr)		Pain:	
category: Operative	Enrolled consecutively: yes	Type of tear: FTT (15);	Duration of immobilization: 6 wk Duration of rehab: NR	 VAS (15 points) 	
oporanio	•••••• · •• · •• · ••	PTT (2)	Rehab components: passive stretching	ROM:	
Questions:	Followup duration,	Tendon(s) torn: SC	(wk 6); active stretching (≥wk 6);	 flexion 	
Q2, Q5, Q6	mean (range): 2.4		strengthening (≥3 mo)	external rotation	
	yr (2–3.3 yr)	GROUP 1	Rehab regime: NR	 internal rotation 	
Funding: No	J (J /	N: 17		 Internal rotation 	
funding	Inclusion criteria:	Age, mean±SD (range):	PRE-OP TREATMENT: yes	Strength:	
	pt with RC tear	47 yr (29–59 yr)	Duration: NR	 strength (25 points) 	
BA Quality:	involving the SC	Males %: 76.5	Type of treatment: NR		
Consecutive: Y	tendon	Cause of tear:		Other:	
Followup: Y		degenerative (4), traumatic		 cuff integrity 	
Outcome	Exclusion criteria:	(13)		• cun integrity	
assessment: Y	RC tear involving	Tear size: sm, med, lg			
	other tendons	Dominant shoulder %:			
		94.1			
		Comorbidities: rupture of			
		LHB (2); partial tear of			
		biceps tendon (7)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
LaStayo PC,	Recruitment dates:	Enrolled: 31 (shld: 32)	GROUP 1	HRQL: NR	CPM results in little disability
1998	1991 to 1994	Analyzed: NR	Surgical approach: open		and excellent or good outcome
		Withdrawals: NR	Type of surgery: repair and	Function:	after repair. It does not provide
Country:	Study design (trial		debridement	 SPADI 	a better outcome than manual
USA	type): RCT (parallel)	Duration since symptom	Additional procedures (N):		passive ROM exercises, which
		onset, mean (range): NR	acromioplasty (all)	Pain:	is more cost effective.
Treatment	Enrolled			• VAS	
category:	consecutively: NR	Type of tear: NR	Duration of immobilization: NR		
Post-op		Tendon(s) torn: NR	Duration of rehab: 6 wk	ROM:	
rehabilitation	Followup duration,		Rehab components: in hospital:	 flexion (passive and 	
	mean±SD (range):	GROUP 1	passive stretching (1–3 days); at home:	active)	
Questions:	22±9.8 mo (6 mo–	N: shld: 17	CPM (day 3–4 wk); passive stretching	 external rotation 	
Q2, Q5, Q6	3.8 yr)	Age, mean±SD (range):	(wk 4–6); active stretching (wk 4–6);	(passive and active)	
		62.9 yr (30–80 yr)	strengthening (wk 10–1 yr)	ŭ ,	
Funding:	Inclusion criteria:	Males %: 47.1	Rehab regime: Frequency –daily;	Strength:	
No funding	RCR	Cause of tear: NR	Intensity–4 hr/day	flexion	
		Tear size: sm, med, lg		 external rotation 	
ROB: High	Exclusion criteria:	Dominant shoulder %:	GROUP 2		
	(1) mass, irreparable		Surgical approach: open	Other:	
	RC tear; (2) pre-op	Comorbidities: NR	Type of surgery: repair and	 number of outpt physical 	
	evidence of		debridement	therapist visits	
	instability; (3)	GROUP 2	Additional procedures (N):		
	rheumatol disorder;	N: shld: 15	acromioplasty (all)		
	(4) repetitive stress	Age, mean±SD (range):			
	disorder; (5)	63.7 yr (45–75 yr)	Duration of immobilization: NR		
	fracture; (6)	Males %: 40	Duration of rehab: 6 wk		
	glenohumeral	Cause of tear: NR	Rehab components: in hospital:		
	arthritis; (7)	Tear size: sm, med, lg	passive stretching (1–3 days); at home:		
	adhesive capsulitis;	Dominant shoulder %: 80	passive stretching (day 3-wk 6); active		
	(8) previous surgery	Comorbidities: NR	stretching (wk 6–10).; strengthening (wk		
			10–1 yr)		
			Rehab regime: Frequency-3x/day;		
			Intensity–3 sets, 10–15 reps		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		
			Type of treatment. NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Leroux JL,	Recruitment dates:	Enrolled: 112 (shld: 115)	GROUP 1	HRQL: NR	Significantly higher functional
1993	NR	Analyzed: 60	Intervention: PT NOS, corticosteroid		improvement was obtained in
		Withdrawals: 52	injection	Function:	patients receiving rehabilative
Country:	Study design:		Drug name: NR	 Scapular function Index 	tx than those who were not.
France	Retrospective cohort	Duration since symptom	Duration of treatment: NA		This confirms the beneficial
		onset, mean±SD (range):	Treatment Regime: Frequency–NR;	Pain: NR	effect of rehabilitative therapy in
Treatment	Enrolled	7.5±0.5 mo (NR)	Intensity–(mean±SD) 1.9±0.6 injections		RC tears.
category:	consecutively: yes		Degree of supervision: NR	ROM: NR	
Nonoperative		Type of tear: FTT	Treatment provider: NR		
	Followup duration,	Tendon(s) torn: SS,		Strength: NR	
Questions:	mean (range):	SS+IS, SS+SC	GROUP 2		
Q3	114.4 days (5 days–		Intervention: PT NOS, corticosteroid	Other: NR	
	2 yr)	GROUP 1	injection		
Funding: NR		N: 18	Drug name: NR		
	Inclusion criteria:	Age, mean±SD (range): all	Duration of treatment: (mean/range)		
NOS: 3*/8*	NR	groups: 61.5 yr (36–85 yr)	16 day/5 day–3 mo		
		Males %: all groups 60.7	Treatment Regime: Frequency–NR;		
	Exclusion criteria:	Cause of tear: NR	Intensity–(mean±SD) 1.6±0.1 injections		
	NR	Tear size: NR	Degree of supervision: NR		
		Dominant shoulder %: all	Treatment provider: NR		
		groups 70			
		Comorbidities: all groups:			
		pseudoparalytic shld (6%)			
		GROUP 2			
		N: 42			
		Age, mean±SD (range):			
		see group 1			
		Males %: see group 1			
		Cause of tear: NR			
		Tear size: NR			
		Dominant shoulder %: see			
		group 1			
		Comorbidities: see group1			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Levy O, 2008	Recruitment dates:	Enrolled: 115	GROUP 1	HRQL: NR	There was a significant
	Oct 1998 to May	Analyzed: 102	Surgical approach: all-arthroscopic		improvement in the mean pre-
Country: UK	2003	Withdrawals: 13	Type of surgery: repair and	Function:	operative CMS after repair of
			debridement	CMS	RC tears. Higher score for: (1)
Treatment	Study design:	Duration since symptom	Additional procedures (N):		intact repair in comparison with
category:	before-and-after	onset, mean (range): NR	acromioplasty (99); biceps	Pain: NR	recurrent tears, (2) small tears
Operative			tenotomy/tenodesis (12); manipulation		with arthroscopic repair of RC
	Enrolled	Type of tear: NR	(all); resection arthroplasty of joint (41)	ROM: NR	tears leads to higher rates of
Questions:	consecutively: yes	Tendon(s) torn: SS+IS+SC			satisfaction and good functional
Q2, Q5, Q6			Duration of immobilization: 6 wk.	Strength: NR	results.
	Followup duration,	GROUP 1	Duration of rehab: 6 mo (min)		
Funding: No	mean (range): 3.0	N: 115	Rehab components: passive stretching	Other:	
funding	yr (2–6.1 yr)	Age, mean±SD (range):	(up to wk 6); active stretching and	 number of pts able to 	
		57.3 yr (23–78 yr)	strengthening (wk 6 onward)	return to work/leisure	
BA Quality:	Inclusion criteria:	Males %: 55.7	Rehab regime: NR	activities	
Consecutive: Y	RC tears +	Cause of tear:		 cuff integrity 	
Followup: U	undergoing	degenerative (54), traumatic	PRE-OP TREATMENT: NR		
Outcome	arthroscopic repair	(48)	Duration: NR		
assessment: U		Tear size: all sizes	Type of treatment: NR		
	Exclusion criteria:	Dominant shoulder %: NR			
	lost to followup	Comorbidities: biceps			
		pathology (15)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Levy O, 2008	Recruitment dates: NR	Enrolled: 17 Analyzed: 17	GROUP 1	HRQL: NR	A structured deltoid rehabilitation program is
Country: UK		Withdrawals: 0	Intervention: strengthening,	Function:	suitable for massive RC tears in
-	Study design:		corticosteroid injection, NSAIDs, PT	CMS	elderly pts.
Treatment	before-and-after	Duration since symptom	NOS		
category:		onset, mean (range): NR	Drug name: Marcaine 0.5%;	Pain: NR	
Non-operative	Enrolled		Depomedrone		
	consecutively: NR	Type of tear: FTT	Duration of treatment: 12 wk (min)	ROM:	
Questions:		Tendon(s) torn: SS	Treatment Regime: Frequency-3-5	 flexion 	
Q3, Q6	Followup duration,		x/day (first 6 wk); Intensity–Marcaine 10		
	(minimum): 9 mo	GROUP 1	mg, Depomedrone 40 mg	Strength: NR	
Funding: NR		N: 17	Degree of supervision: NR		
	Inclusion criteria:	Age, mean±SD (range):	Treatment provider: PT	Other: NR	
BA Quality:	(1) mass irreparable	80 yr (70–96 yr)			
Consecutive: U	RC tears, (2)	Males %: 35.3			
Followup: Y	severely medially	Cause of tear:			
Outcome	retracted (grade 3)	degenerative (17)			
assessment: U	Evolucion oritorio.	Tear size: mass			
	Exclusion criteria:	Dominant shoulder %: NR			
	NR	Comorbidities: pseudo			
		paralysis (all); multiple			
		medical comorbidities (all)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Lichtenberg S,	Recruitment dates:	Enrolled: 53	GROUP 1	HRQL: NR	Arthroscopic repair with
2006	NR	Analyzed: 53	Surgical approach: all-arthroscopic		subacromial decompression
		Withdrawals: 0	Type of surgery: repair and	Function:	gives good clinical and
Country:	Study design:		debridement	CMS	subjective results, comparable
Germany	before-and-after	Duration since symptom	Additional procedures (N):		to open or mini-open repair
		onset, mean (range):	acromioplasty (52); biceps	Pain: NR	results. Pts over the age of 65
Treatment	Enrolled	11.7 mo (1 mo–6 yr)	tenotomy/tenodesis (18) resection of		yr show a higher retear rate.
category:	consecutively: yes		lateral clavicle (14)	ROM: NR	
Operative		Type of tear: FTT			
	Followup duration,	Tendon(s) torn: SS	Duration of immobilization: 3 wk	Strength: NR	
Questions:	mean (range): 2.2		Duration of rehab: 4 mo (min)		
Q2, Q5, Q6	yr (NR)	GROUP 1	Rehab components: passive stretching	Other:	
		N: 53	(day 1-wk 6); active stretching (NR);	 cuff integrity 	
Funding: NR	Inclusion criteria:	Age, mean±SD (range):	stretching (min 4 mo); hydrotherapy		
	FTT of SS tendon	60.9 yr (46–74 yr)	(NR)		
BA Quality:	— . 1	Males %: 64.2	Rehab regime: NR		
Consecutive: Y	Exclusion criteria:	Cause of tear: NR	DDE OD TREATMENT. ND		
Followup: U	(1) IS/SC tears; (2)	Tear size: NR	PRE-OP TREATMENT: NR		
Outcome	PTT, partial repairs;	Dominant shoulder %:	Duration: NR		
assessment: U	(3) adhesive	69.8	Type of treatment: NR		
	capsulitis; (4)	Comorbidities: biceps			
	glenohumeral	pathology (18)			
	arthritis; (5) upward				
	migration of the				
	head of the				
	humerus, severe				
	muscle atrophy or				
	fatty infiltration				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Liem D, 2007	Recruitment dates:	Enrolled: 77	GROUP 1	HRQL: NR	In isolated SS tears,
	Jan 2000 to Aug	Analyzed: 38	Surgical approach: mini-open		arthroscopic RC repair
Country:	2003	Withdrawals: 39	Type of surgery: repair	Function:	produces excellent clinical
Germany			Additional procedures (N):	CMS	results and equivalent tendon
•	Study design:	Duration since symptom	acromioplasty (18); labral repair (1);		integrity compared with mini-
Treatment	retrospective cohort	onset, mean±SD (range):	biceps tenodesis/tenotomy (2)/(1); AC	Pain: NR	open repair.
category:	·	Group 1: 10.6±7.9 mo (NR);	joint resection (4)		
Operative	Enrolled	Group 2: 9.6±5.2 mo (NR)		ROM:	
approach	consecutively: yes		Duration of immobilization: 48 hr.	 abduction 	
		Type of tear: NR	Duration of rehab: NR	external rotation	
Questions:	Followup duration,	Tendon(s) torn: SS	Rehab components: passive stretching	 flexion 	
Q2, Q5, Q6	(endpoint): group 1:		(day 1–wk 6); active stretching (≥wk 7);		
	25 mo.; group 2:	GROUP 1	strengthening (wk 9–12)	Strength: NR	
Funding: No	17.6 mo.	N: 24	Rehab regime: NR	Strength. MA	
funding		Age, mean±SD (range):		Other:	
5	Inclusion criteria:	62.9±6.7 yr (NR)		 cuff integrity 	
BA Quality:	isolated SS tear with	Males %: 66.7	GROUP 2	• cun integrity	
Consecutive: Y	persistent pain and	Cause of tear:	Surgical approach: all-arthroscopic		
Followup: Y	reduced function	degenerative (13), traumatic	Type of surgery: repair		
Outcome		(6)	Additional procedures (N):		
assessment: U	Exclusion criteria:	Tear size: sm, med, lg	acromioplasty (all); labral tear (2); biceps		
	(1) previous surgery;	Dominant shoulder %: NR	tenotomy (5); AC joint resection (6)		
	(2) major trauma	Comorbidities: SLAP	······································		
	including dislocation	lesion (1)	Duration of immobilization: 48 hr.		
	or fracture; (3)		Duration of rehab: NR		
	concomitant	GROUP 2	Rehab components: passive stretching		
	adhesive capsulitis;	N: 53	(day 1–wk 6); active stretching (≥wk 7);		
	grade 3 atrophy	Age, mean±SD (range):	strengthening (wk 9–12)		
	grand d'an oprig	61.9±6.6 yr (NR)	Rehab regime: NR		
		Males %: 30.2	·····		
		Cause of tear:	PRE-OP TREATMENT: YES		
		degenerative (9), traumatic	Duration: NR		
		(10)	Type of treatment: physical therapy		
		Tear size: sm, med, lg	NOS, cortisone injection, NSAID		
		Dominant shoulder %: NR	,, , ,		
		Comorbidities: SLAP			
		lesion (2)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Lim JTK, 2005	Recruitment dates:	Enrolled: 23	GROUP 1	HRQL: NR	Substantial improvement of
	NR	Analyzed: 23	Surgical approach: all-arthroscopic		CMS following decompression
Country:		Withdrawals: 0	Type of surgery: NA	Function:	in patients with FTT with
England	Study design:		Additional procedures (N):	CMS	predominant symptoms of
	prospective cohort	Duration since symptom	acromioplasty (all); excision of AC joint		impingement. No patients went
Treatment	treated as before-	onset, minimum (range):	(52)	Pain: NR	on to further surgery.
category:	and-after	6 mo (NR)			
Operative			Duration of immobilization: 3–5 day	ROM: NR	
	Enrolled	Type of tear: FTT	Duration of rehab: NR		
Questions:	consecutively: yes	Tendon(s) torn: NR	Rehab components: passive stretching	Strength: NR	
Q2			(immediately post-operative); stretching		
	Followup duration,	GROUP 1	NOS (NR)	Other: NR	
Funding: NR	mean (range): 14	N: 19	Rehab regime: NR		
	mo (3–24 mo)	Age, mean±SD (range):			
BA Quality:		NR	GROUP 2		
Consecutive: Y	Inclusion criteria:	Males %: NR	Surgical approach: all-arthroscopic		
Followup: Y	 sympromatic >6 	Cause of tear: NR	Type of surgery: NA		
Outcome	mo; (2) failed	Tear size: NR	Additional procedures (N):		
assessment: Y	nonoperative tx; (3)	Dominant shoulder %: NR	acromioplasty (all); excision of AC joint		
	impingement	Comorbidities: NR	(10)		
	syndrome with/				
	without tear	GROUP 2	Duration of immobilization: 3–5 day		
		N: 4	Duration of rehab: NR		
	Exclusion criteria:	Age, mean±SD (range):	Rehab components: passive stretching		
	(1) instability; (2) no	NR	(immediately post-operative); stretching		
	impinge; (3) injection	Males %: NR	NOS (NR)		
	test in another unit;	Cause of tear: NR	Rehab regime: NR		
	(4) FTT with	Tear size: NR			
	proximal humeral	Dominant shoulder %: NR	PRE-OP TREATMENT: yes		
	migration tx	Comorbidities: NR	Duration: NR		
	nonoperatively or		Type of treatment: cortisone injection		
	with open RCR				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Lunn JV,	Recruitment dates:	Enrolled: 19	GROUP 1	HRQL: NR	Comparing the gain in the
2008	1998 to 2004	Analyzed: 19	Intervention: corticosteroid injection, PT		CMS, there was no significant
_		Withdrawals: 0	NOS, activity modification	Function:	benefit between those treated
Country:	Study design:		Drug name: NR	CMS	operatively and nonoperatively.
France	prospective cohort	Duration since symptom	Duration of treatment: NR		
		onset, mean (range):	Treatment Regime: NR	Pain: NR	
Treatment	Enrolled	4.3 yr (6 mo–10 yr)	Degree of supervision: NR	5.0.4	
category:	consecutively: NR	Town of the PTT	Treatment provider: NR	ROM:	
Nonoperative		Type of tear: FTT		 flexion (active) 	
vs. operative	Followup duration,	Tendon(s) torn: IS	GROUP 2	 external rotation 	
Quest!	mean (range): 4.2		Surgical approach: open	 internal rotation 	
Questions:	yr (2–6.6 yr)	GROUP 1	Type of surgery: repair		
Q4, Q5	Inclusion oritoria.	N: 14	Additional procedures: NR	Strength: NR	
Funding: ND	Inclusion criteria:	Age, mean \pm SD (range):	Duration of immobilization: NR		
Funding: NR	isolated IS rupture and characteristic	47.1 yr (30–66 yr) Males %: 7.1	Duration of immobilization: NR Duration of rehab: NR	Other:	
NOS: 5*/8*	edema pattern of IS	Cause of tear:	Rehab components: NR	 degree of fatty muscle 	
NUS. 5 /6	muscle on MRI	degenerative (13), traumatic	Rehab regime: NR	infiltration	
		(1) (1)	Nenan regime. MN	 cuff integrity 	
	Exclusion criteria:	Tear size: NR	PRE-OP TREATMENT: yes		
	No other FTT of RC,	Dominant shoulder %:	Duration: (mean/range) 2.3 injections/		
	no bilateral disease	57.1	0–5 injection		
		Comorbidities: all groups:	Type of treatment: injections		
		SS tendinitis (4); partial SS			
		tear (3)			
		GROUP 2			
		N: 5			
		Age, mean±SD (range):			
		46.2 yr (38–59 yr)			
		Males %: 60			
		Cause of tear:			
		degenerative (4), traumatic			
		(1)			
		Tear size: NR			
		Dominant shoulder %: 60			
		Comorbidities: see group1			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Maier D, 2007	Recruitment dates:	Enrolled: 21	GROUP 1	HRQL: NR	Stabilization of the LHB tendon
	NR	Analyzed: 21	Surgical approach: open		in early repair of a traumatic
Country:		Withdrawals: 0	Type of surgery: repair and	Function:	tear of the SC tendon has
Germany	Study design:		debridement	CMS	functional outcomes
Treatment	before-and-after	Duration since symptom onset, mean (range):	Additional procedures (N): NR	 subjective shid function 	comparable with the result of tenodesis or tenotomy reported
category:	Enrolled	6.2 wk (3–9 wk)	Duration of immobilization: 6 wk	Pain: NR	in previous studies.
Operative	consecutively: NR		Duration of rehab: 3 mo		
	····· , ····	Type of tear: NR	Rehab components: passive stretching	ROM: NR	
Questions:	Followup duration,	Tendon(s) torn: SS, SC	(day 1); active-assisted stretching		
Q2, Q5	mean (range): 2.4		(individualized); active stretching (wk 6);	Strength: NR	
-	yr (2–4.5 yr)	GROUP 1	strengthening (≥wk 6)		
Funding: No	Inclusion criteria:	N: 21	Rehab regime: NR	Other: NR	
funding		Age, mean±SD (range):	PRE-OP TREATMENT: NR		
BA Quality:	 written informed consent, (2) 	51 yr (30–70 yr) Males %: 76.2	Duration: NR		
Consecutive: U	instability of gross	Cause of tear: traumatic	Type of treatment: NR		
Followup: Y	intact LHB tendon,	(21)	Type of treatment. With		
Outcome	(3) FTT of SC	Tear size: sm			
assessment: Y	tendon, (4) >24 mo	Dominant shoulder %: NR			
	followup	Comorbidities: anterior			
		inferior shid dislocation			
	Exclusion criteria:	(traumatic) (4)			
	(1) no trauma to	, , , ,			
	cause the injury, (2)				
	pathological				
	changes in LHB				
	tendon at the time of				
	surgery, (3) posterior				
	RC tear, (4) atrophy				
	of SC muscle, (5)				
	≥10 wk since injury				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Mallon WJ,	Recruitment dates:	Enrolled: 224	GROUP 1	HRQL: NR	Non-smokers undergoing RCR
2004	Jan 1990 to May	Analyzed: 224	Surgical approach: open		have greater improvement of
	1993	Withdrawals: 0	Type of surgery: repair	Function:	pain and better functional
Country: USA			Additional procedures (N):	UCLA	results than smokers.
	Study design:	Duration since symptom	acromioplasty (all)		
Treatment	retrospective cohort	onset, mean (range): NR		Pain:	
category:	treated as before-		Duration of immobilization: 4–6 wk	VAS	
Operative	and-after	Type of tear: FTT	Duration of rehab: 12 mo		
		Tendon(s) torn: NR	Rehab components: passive stretching	ROM: NR	
Questions:	Enrolled		(day 3–wk 6); active-assisted stretching		
Q2, Q6	consecutively: yes	GROUP 1	(wk 6); strengthening (3 mo–1 yr)	Strength: NR	
		N: 95	Rehab regime: NR	-	
Funding: NR	Followup duration,	Age, mean±SD (range):		Other: NR	
	(minimum): 1 yr	51.8±6.4 yr (NR)	GROUP 2		
BA Quality:		Males %: NR	Surgical approach: open		
Consecutive: Y	Inclusion criteria:	Cause of tear: NR	Type of surgery: repair		
Followup: Y	open repair of	Tear size: NR	Additional procedures (N):		
Outcome assessment: Y	chronic FTT	Dominant shoulder %: NR Comorbidities: NR	acromioplasty (all)		
assessment. I	Exclusion criteria:	comorbidities. NR	Duration of immobilization: 4–6 wk		
	chronic mass tears	GROUP 2	Duration of rehab: 12 mo		
	chionic mass lears	N: 129	Rehab components: passive stretching		
		Age, mean±SD (range):	(day 3–wk 6); active-assisted stretching		
		53.1±9 yr (NR)	(wk 6); strengthening (3 mo–1 yr)		
		Males %: NR	Rehab regime: NR		
		Cause of tear: NR	Renab regime. NR		
		Tear size: NR	PRE-OP TREATMENT: NR		
		Dominant shoulder %: NR	Duration: NR		
		Comorbidities: NR	Type of treatment: NR		
			Type of deathent. MA		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Marc T,	Recruitment dates:	Enrolled: 80	GROUP 1	HRQL: NR	Functional outcome was the
2009	2004	Analyzed: NR	Surgical approach: NR		same for inpatient and
		Withdrawals: NR	Type of surgery: repair	Function:	outpatient rehab; pain reduction
Country:	Study design:		Additional procedures (N): NR	CMS	was greater for patients with
France	Retrospective cohort	Duration since symptom			outpatient rehab.
_		onset, mean (range): NR	Duration of immobilization: 3–8 wk,	Pain:	
Treatment	Enrolled		depending on surgical intervention	• VAS	
category:	consecutively: NR	Type of tear: FTT	Duration of rehab: 4–10 wk		
Post-op		Tendon(s) torn: SS, IS, SC	Rehab components:	ROM: NR	
rehabilitation	Followup duration,	Age, mean±SD (range): 61	kinébalnéotherapie; kinésithérapie;		
•	mean (range): 2 yr	yr (36–80)	ergothérapie; physical therapy	Strength:	
Questions:		Males %: 61	Rehab regime: NR	 Strength (NR) 	
Q2, Q6	Inclusion criteria:				
-	(1) FT RC repair by	GROUP 1	GROUP 2	Other: NR	
Funding:	one of the authors	N: 26	Surgical approach: NR		
NR	(2) seen ≥2 years	Age, mean±SD (range):	Type of surgery: repair		
	postoperatively		Additional procedures (N): NR		
NOS: 6*/8*	Evolucion oritorio.	Males %: NR	Duration of immobilization, 2, 0 w/		
	Exclusion criteria:	Cause of tear: NR	Duration of immobilization: 3–8 wk,		
	NR	Tear size: NR Dominant shoulder %: NR	depending on surgical intervention Duration of rehab: 3–4 mo		
		Comorbidities: NR			
		Comorbidities. NR	Rehab components: Concept Global d'Epaule (CGE); 3 principles: 1)		
		GROUP 2	movements done with ext post-int		
		N: 38	pressure on humeral head to increase		
		Age, mean±SD (range):	subacromial space; 2) gradual		
		NR	progression from passive to active		
		Males %: NR	movement at patient's tolerance; 3)		
		Cause of tear: NR	restore dynamic equilibrium between		
		Tear size: NR	muscle responsible fore elevating		
		Dominant shoulder %: NR	humeral head and rotation cuff muscles		
		Comorbidities: NR	Rehab regime: NA		
		Comorbiances. Nix	Kenab regime. W		
		GROUP 3	GROUP 3		
		N: 16	Surgical approach: NR		
		Age, mean±SD (range):	Type of surgery: repair		
		NR	Additional procedures (N): NR		
		Males %: NR	,		
		Cause of tear: NR	Duration of immobilization: 3–8 wk,		
		Tear size: NR	depending on surgical intervention		
		Dominant shoulder %: NR	Rehabilitation: Initially, following Group		
		Comorbidities: NR	1 protocol; subsequently, received CGE		
			following Group 2 treatment protocol.		

Marc T,	PRE-OP TREATMENT: yes
2009	Duration: NR
(continued)	Type of treatment: exercise

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Matis N,	Recruitment dates:	Enrolled: 99	GROUP 1	HRQL: NR	Arthroscopic RC reinsertion
2006	1998 to 2003	Analyzed: 96	Surgical approach: all-arthroscopic		provides comparable results to
		Withdrawals: 3	Type of surgery: repair	Function:	open refixation, after allowing
Country:	Study design:		Additional procedures (N):	CMS	for an appropriate learning
Austria	prospective cohort	Duration since symptom	acromioplasty (all)		curve, with less surgical trauma
		onset, mean (range): NR	Technique: single transoseous suture;	Pain: NR	and faster recovery.
Treatment	Enrolled		central mattress		
category:	consecutively: No	Type of tear: FTT (NR);		ROM: NR	
Operative		PTT (NR)	Duration of immobilization: 6 wk		
technique	Followup duration,	Tendon(s) torn: SS, IS	Duration of rehab: NR	Strength: NR	
	mean (range):		Rehab components: passive and active		
Questions:	Group 1: 26.8 mo	GROUP 1	stretching; Modality–heat/cold;	Other:	
Q2, Q5	(5–59 mo); Group 2:	N: 75	electrotherapy; under water tx; lymph	 cuff integrity 	
	14.3 mo (5–33 mo)	Age, mean±SD (range):	drainage		
Funding:		58.2 yr (35–75 yr)	Rehab regime: NR		
NR	Inclusion criteria:	Males %: 68			
	(1) SS and IS	Cause of tear: NR	GROUP 2		
NOS: 4*/8*	tendon tears (total,	Tear size: sm, med	Surgical approach: all-arthroscopic		
	PTT), (2) <75 yr old,	Dominant shoulder %: NR	Type of surgery: repair		
	(3) mobilized tendon	Comorbidities: NR	Additional procedures (N):		
			acromioplasty (all)		
	Exclusion criteria:	GROUP 2	Technique: central mattress suture		
	(1) retracted tendon	N: 24			
	cannot be	Age, mean±SD (range):	Duration of immobilization: 6 wk		
	sufficiently mobilized	58 yr (35–75 yr)	Duration of rehab: NR		
	to provide a tension	Males %: 66.7	Rehab components: passive and active		
	free reinsertion, (2)	Cause of tear: NR	stretching; Modality–heat/cold;		
	SC tear, (3)	Tear size: sm, med	electrotherapy; under water tx; lymph		
	extremely high head	Dominant shoulder %: NR	drainage		
	of humerus, (4) atrophy of RC	Comorbidities: NR	Rehab regime: NR		
	muscle ≥50% on		PRE-OP TREATMENT: NR		
	MRI, (5) pts >75 yr		Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
McBirnie JM,	Recruitment dates:	Enrolled: 53	GROUP 1	HRQL:	Use of bioabsorbable tacks for
2005	Apr 1995 to Apr	Analyzed: 53	Surgical approach: all-arthroscopic	• SF-36	arthroscopic repair produced
	1998	Withdrawals: 0	Type of surgery: repair		satisfactory clinical outcome
Country:			Additional procedures (N):	Function:	results.
Scotland	Study design:	Duration since symptom	acromioplasty (all); labral repair (33);	ASES	
	before-and-after	onset, mean (range): NR	biceps tenotomy/tenodesis (1); distal	CMS	
Treatment			clavical resection (NR)		
category:	Enrolled	Type of tear: FTT		Pain: NR	
Operative	consecutively: NR	Tendon(s) torn: NR	Duration of immobilization: 3 wk		
			Duration of rehab: NR	ROM: NR	
Questions:	Followup duration,	GROUP 1	Rehab components: passive stretching		
Q2, Q5, Q6	mean (range): 2.4	N: 53	(wk 3); active stretching and	Strength: NR	
	yr (2–5 yr)	Age, mean±SD (range):	strengthening (wk 6); physical therapy (6		
Funding: NR		51 yr (23–74 yr)	mo)	Other: NR	
	Inclusion criteria:	Males %: 71.7	Rehab regime: NR		
BA Quality:	presence of mobile,	Cause of tear: NR			
Consecutive: U	FTT	Tear size: sm/med, lg/	PRE-OP TREATMENT: yes		
Followup: Y		mass, mean: 2.5 cm	Duration: 6 mo (min)		
Outcome	Exclusion criteria:	Dominant shoulder %:	Type of treatment: physical therapy		
assessment: U	(1) non-mobilized	62.3	NOS, cortisone injection, NSAID		
	irreparable tears, (2)	Comorbidities: SLAP			
	PTT, (3) previous	lesion total (33); SLAP			
	shld surgery	lesion type I (22); SLAP			
		lesion type II (11); biceps			
		tenodesis (1)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
McCallister	Recruitment dates:	Enrolled: 96	GROUP 1	HRQL:	Open RCR without
WV, 2005	Nov 1992 to Dec	Analyzed: 61	Surgical approach: open	• SF-36	acromioplasty showed
	2000	Withdrawals: 35	Type of surgery: repair		improvement in self-assessed
Country: USA			Additional procedures (N): bursectomy	Function:	shoulder comfort.
Treatment	Study design: before-and-after	Duration since symptom onset, mean (range): NR	(all)	• SST	
category:			Duration of immobilization: NR	Pain: NR	
Operative	Enrolled	Type of tear: FTT	Duration of rehab: NR		
Questions:	consecutively: yes	Tendon(s) torn: SS, SS+IS, SS+IS+SC	Rehab components: NR Rehab regime: NR	ROM: NR	
Q2, Q5, Q6	Followup duration,	33+13, 33+13+30	Kenab regime. NK	Strength: NR	
QZ, Q0, Q0	mean±SD (range):	GROUP 1	PRE-OP TREATMENT: NR	Strength. NK	
Funding: No	5.5±2.2 yr (2–10 yr)	N: 96	Duration: NR	Other: NR	
funding	• • • • •	Age, mean±SD (range):	Type of treatment: NR		
	Inclusion criteria:	61±11 yr (30–84 yr)			
BA Quality:	FTT	Males %: 43.8			
Consecutive: Y		Cause of tear: NR			
Followup: N	Exclusion criteria:	Tear size: NR			
Outcome	(1) irreparable RC	Dominant shoulder %: NR			
assessment: N	tear; (2) previous RC or acromial surgery,	Comorbidities: NR			
	or PTT; (3) WCB				
	claim				
	claim				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
McIntyre LF,	Recruitment dates:	Enrolled: 105	GROUP 1	HRQL: NR	No statistical difference in post
2006	Jan 2001 to Feb	Analyzed: 87	Surgical approach: mini-open		operative UCLA score between
-	2002	Withdrawals: 18	Type of surgery: repair	Function:	the 2 groups.
Country:			Additional procedures (N):	UCLA	
USA	Study design:	Duration since symptom	acromioplasty (all); biceps		
	retrospective cohort	onset, mean (range):	tenotomy/tenodesis (4); glenohumeral	Pain: NR	
Treatment		Group 1: 9.9 mo (1 mo–3	arthritis debridement (1); SLAP lesion		
category:	Enrolled	yr); Group 2: 10.4 mo (1	excision (1); calcified tendonitis excision	ROM: NR	
Operative	consecutively: yes	mo–3 yr)	(1); arthroscopic capsular release (1)		
technique	Followum duration		Technique: metalic suture anchor;	Strength: NR	
Oursetiener	Followup duration,	Type of tear: NR	monofilament stitch and tendon to bone		
Questions:	mean (range): 2.3	Tendon(s) torn: NR	closure	Other: NR	
Q2, Q5	yr (18 mo–3.3 yr)	GROUP 1	Duration of immobilization: 3 wk		
Funding:	Inclusion criteria:	N: 50	Duration of rehab: NR		
NR	NR	Age, mean±SD (range):	Rehab components: passive stretching		
	INIT	55.7 yr (37–78 yr)	(wk 1); active stretching (wk 4–6)		
NOS: 4*/8*	Exclusion criteria:	Males %: 58	Rehab regime: NR		
NO3. 4 /0	NR	Cause of tear:	Renab regime. NR		
		degenerative (26), traumatic	GROUP 2		
		(24)	Surgical approach: mini-open		
		Tear size: mean: 3.4 cm;	Type of surgery: repair		
		range:1–6 cm	Additional procedures (N):		
		Dominant shoulder %: 62	acromioplasty (all)		
		Comorbidities: adhesive	Technique: hand tied knots; braided		
		capsulitis	polyester suture; simple stitch		
		GROUP 2	Duration of immobilization: 3 wk		
		N: 55	Duration of rehab: NR		
		Age, mean±SD (range):	Rehab components: passive stretching		
		54.7 yr (17–78 yr)	(wk 1); active stretching (wk 4–6)		
		Males %: 69.1	Rehab regime: NR		
		Cause of tear:			
		degenerative (30), traumatic	PRE-OP TREATMENT: NR		
		(25)	Duration: NR		
		Tear size: mean: 3.0 cm;	Type of treatment: NR		
		range: 1–6 cm			
		Dominant shoulder %:			
		65.5			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Michael	Recruitment dates:	Enrolled: 61	GROUP 1	HRQL: NR	Postoperative tx of FTT with
JWP, 2005	NR	Analyzed: 55	Surgical approach: open (19); mini-		combined CPM and physical
		Withdrawals: 6	open (14); other (1)	Function:	therapy protocol provided a
Country:	Study design (trial		Type of surgery: repair	CMS	significantly earlier ROM than
Germany	type): RCT (parallel)	Duration since symptom	Additional procedures (N):		physical therapy alone.
		onset, mean (range): NR	manipulation (4): setting fractures (1)	Pain:	
Treatment	Enrolled			 VAS (100 points) 	
category:	consecutively: NR	Type of tear: FTT (53);	Duration of immobilization: NR		
Post-op		PTT (8)	Duration of rehab: 90 days	ROM:	
rehabilitation	Followup duration	Tendon(s) torn: SS	Rehab components: CPM (day 1/3-	 time to 90° active 	
	(endpoint): 56 days		42); passive stretching (day 1–3); active-	abduction	
Questions:		GROUP 1	assisted stretching (day 3–wk 3); active		
Q2, Q5	Inclusion criteria:	N: 40	and active-assisted stretching and	Strength: NR	
	(1) 30–70 yr, (2) FTT	Age, mean±SD (range):	strengthening (wk 4–6); strengthening	-	
Funding:	of SS, (3)	58 yr (35–70 yr)	(≥wk 7); Modality–cold	Other:	
Industry	acromiohumeral	Males %: 62.5	Rehab regime: Frequency– CPM,	 time away from work 	
	space >7 mm, (4)	Cause of tear: NR	5x/day; PT 2x/wk; Intensity–CPM, 20	2	
Other:	attend followup	Tear size: NR	min. each; PT, 30 min/session		
German	visits, (5) consent	Dominant shoulder %: NR			
		Comorbidities: NR	GROUP 2		
ROB: High	Exclusion criteria:		Surgical approach: open (12); mini-		
	previous surgery,	GROUP 2	open (9); all-arthorscopic (4)		
	(2) shld co-	N: 21	Type of surgery: repair		
	morbidity, (3) ability	Age, mean±SD (range):	Additional procedures (N):		
	to use CPM device	58 yr (43–71 yr)	manipulation (1); setting fractures (1)		
	at home, (4)	Males %: 57.1			
	paralysis, (5)	Cause of tear: NR	Duration of immobilization: 4 wk		
	Parkinson's disease,	Tear size: NR	Duration of rehab: 90 days		
	(6) adhesive	Dominant shoulder %: NR	Rehab components: passive stretching		
	capsulitis, (7) mental	Comorbidities: NR	(day 1–3); active-assisted stretching		
	health condition, (8)		(day 3–wk 3); active and active-assisted		
	neurological		stretching and strengthening (wk 4–6);		
	damage, (9) SC		strengthening (≥wk 7); Modality–cold		
	rupture		Rehab regime: Frequency- 2x/wk;		
			Intensity-30 min/session		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Milano G,	Recruitment dates:	Enrolled: 80	GROUP 1	HRQL: NR	At short-term followup
2007	NR	Analyzed: 71	Surgical approach: all-arthroscopic		subacromial decompression did
		Withdrawals: 9	Type of surgery: repair	Function:	not seem to significantly affect
Country:	Study design (trial		Additional procedures (N):	CMS	the outcome of arthroscopic
Italy	type): RCT (parallel)	Duration since symptom	acromioplasty (all); biceps tenotomy	DASH	RCR.
		onset, mean (range): NR	(7)/tenodesis (14)	 Work-DASH 	
Treatment	Enrolled				
category:	consecutively: NR	Type of tear: FTT	Duration of immobilization: 3 wk.	Pain: NR	
Operative		Tendon(s) torn: SS,	Duration of rehab: NR		
approach	Followup duration	SS+IS+SC	Rehab components: stretching	ROM: NR	
	(endpoint): 2 yr		(passive, active, active-assisted) (wk 4–		
Questions:		GROUP 1	8); strengthening (wk 9–12); open kinetic	Strength: NR	
Q2, Q6	Inclusion criteria:	N: 40	chain exercise, proprioception and		
	(1) reparable FTT,	Age, mean±SD (range):	polymetric exercises, postural rehab of	Other: NR	
Funding:	(2) type 2 or 3	61±7 yr (NR)	kinetic chain (wk 13–16)		
NR	acromion	Males %: 50	Rehab regime: NR		
		Cause of tear: NR			
ROB: High	Exclusion criteria:	Tear size: NR	GROUP 2		
	(1) PTT or	Dominant shoulder %:	Surgical approach: all-arthroscopic		
	irreparable tear; (2)	57.5	Type of surgery: repair		
	labral pathology	Comorbidities: pathology	Additional procedures (N): biceps		
	amenable to surgical	of LHB (12)	tenotomy (15)/tenodesis (5);		
	repair; (3) type 1	GROUP 2	subacromial bursectomy (all)		
	acromion, os acromium,	N: 40	Duration of immobilization: 3 wk.		
	,	Age, mean±SD (range):	Duration of rehab: NR		
	degenerative arthritis of	59.7±9.7 yr (NR)	Rehab components: stretching		
	glenohumeral joint;	Males %: 47.5	(passive, active, active-assisted) (wk 4–		
	(4) symptomatic	Cause of tear: NR	8 wk); strengthening (wk 9–12); open		
	arthritis of AC joint;	Tear size: NR	kinetic chain exercise, proprioception		
	(5) RC arthropathy;	Dominant shoulder %: 60	and polymetric exercises, postural rehab		
	(6) previous surgery;	Comorbidities: pathology	of kinetic chain (wk 13–16)		
	(7) WCB claim	of LHB (20)	Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Millar NL,	Recruitment dates:	Enrolled: 159	GROUP 1	HRQL: NR	Open or arthroscopic repair of
2009	Feb 2003 to Mar	Analyzed: 87	Surgical approach: open		RC tear resulted in
•	2006	Withdrawals: 72	Type of surgery: repair and	Function:	improvements in pain, motion,
Country:			debridement	 ASES (1[°]) 	strength and function.
Australia	Study design:	Type of tear: FTT	Additional procedures (N):	 Overall shoulder 	Arthroscopic had 20 percent
-	Retrospective cohort	Tendon(s) torn: NR	acromioplasty (all)	function	better ASES scores than the
Treatment	En and the st		Denstion of immediation (and	 RC Functional Index 	open group.
category:	Enrolled	GROUP 1	Duration of immobilization: 6 wk		
Operative	consecutively: yes	N: 20	Duration of rehab: NR	Pain:	
approach/	Followup duration	Age, mean±SD (range): 58	Rehab components: passive stretching	 At rest (0–4) 	
technique	Followup duration,	yr (28–87)	(day 1); active stretching and	 At night (0–4) 	
Questions:	mean (range): 2 yr	Males %: 50	strengthening exercises (6 wk); active		
Q2, Q5, Q6	Inclusion criteria:	Duration since symptom onset, mean (range): 15	overhead activity (3 mo) Rehab regime: NR	ROM:	
Q_{2}, Q_{3}, Q_{0}	(1) symptomatic RC	mo (0.7 mo–6.8 yr)	Reliab legilie. NR	 flexion 	
Funding:	tears	Cause of tear: NR	GROUP 2	 abduction 	
Industry	lears	Tear size: all sizes	Surgical approach: all-arthroscopic	 external rotation 	
muustry	Exclusion criteria:	Dominant shoulder %: 60	Type of surgery: repair and		
NOS: 7*/8*	(1) glenohumeral	Comorbidities: NR	debridement	Strength:	
	arthritis (2) fracture,	Somorbiances. Mix	Additional procedures (N):	 supraspinatus 	
	(3) previous	GROUP 2	acromioplasty (all)	 external rotation 	
	shoulder surgery, (4)	N: 29	Technique: knotted	 liftoff 	
	osteonecrosis, (5)	Age, mean±SD (range): 64			
	PTT, (6) unable/	vr (40–90 vr)	Duration of immobilization: 6 wk	Other:	
	unwilling to undergo	Males %: 34	Duration of rehab: NR	 cuff integrity 	
	ultrasound at 6 mo	Duration since symptom	Rehab components: passive stretching		
	and 2 yr post-op, (7)	onset, mean (range): 7.2	(day 1); active stretching and		
	repairs within the	mo (1–3.3 yr)	strengthening exercises (6 wk); active		
	first 6 wk of surgeon	Cause of tear: NR	overhead activity (3 mo)		
	changing to new	Tear size: all sizes	Rehab regime: NR		
	arthroscopic	Dominant shoulder %: 66	5		
	technique	Comorbidities: NR	GROUP 3		
	·		Surgical approach: all-arthroscopic		
		GROUP 3	Type of surgery: repair and		
		N: 38	debridement		
		Age, mean±SD (range): 59	Additional procedures (N):		
		yr (34–86)	acromioplasty (all)		
		Males %: 53	Technique: knotless		
		Duration since symptom			
		onset, mean (range): 6.6	Duration of immobilization: 6 wk		
		mo (0.5 mo–2.6 yr)	Duration of rehab: NR		
		Cause of tear: NR	Rehab components: passive stretching		
		Tear size: all sizes	(day 1); active stretching and		

Millar NL, 2009 (continued)	Dominant shoulder %: 76 Comorbidities: NR	strengthening exercises (6 wk); active overhead activity (3 mo) Rehab regime: NR
		PRE-OP TREATMENT: NR Duration: NR Type of treatment: NR

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Milroy DR,	Recruitment dates:	Enrolled: 67	GROUP 1	HRQL:	Tx of patients with a
2008	NR	Analyzed: NR	Surgical approach: NR	 DASH 	standardized care process
		Withdrawals: NR	Type of surgery: repair		following RCR resulted in
Country:	Study design:		Additional procedures: NR	Function: NR	greater functional improvement
USA	retrospective cohort	Duration since symptom			and utilized fewer physical
		onset, mean (range): NR	Duration of immobilization: NR	Pain: NR	therapy visits.
Treatment	Enrolled		Duration of rehab: NR		
category:	consecutively: NR	Type of tear: NR	Rehab components: NR	ROM: NR	
Post-op		Tendon(s) torn: NR	Rehab regime: NR		
rehabilitation	Followup duration,			Strength: NR	
	mean (range) : NR	GROUP 1	GROUP 2		
Questions:		N: 28	Surgical approach: NR	Other:	
Q2	Inclusion criteria:	Age, mean±SD (range):	Type of surgery: repair	 number of tx visits 	
	NR	57±10.9 yr (NR)	Additional procedures: NR		
Funding:		Males %: 57.1			
NR	Exclusion criteria:	Cause of tear: NR	Duration of immobilization: NR		
	NR	Tear size: NR	Duration of rehab: NR		
Other:		Dominant shoulder %: NR	Rehab components: NR		
Abstract		Comorbidities: NR	Rehab regime: NR		
NOS: 3*/8*		GROUP 2	PRE-OP TREATMENT: NR		
		N: 39	Duration: NR		
		Age, mean±SD (range):	Type of treatment: NR		
		57.8±9.81 yr (NR)			
		Males %: 69.2			
		Cause of tear: NR			
		Tear size: NR			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Misamore GW,	Recruitment dates:	Enrolled: 103 (shld: 107)	GROUP 1	HRQL: NR	Workers compensation patients
1995	1988 to 1990	Analyzed: 103 (shld: 107)	Surgical approach: open		had poorer functional and
		Withdrawals: 0	Type of surgery: repair	Function:	return to work results than
Country: USA	Study design:		Additional procedures (N):	UCLA	patients not receiving
	retrospective cohort	Duration since symptom	acromioplasty (all)		compensation, with the
Treatment	treated as before-	onset, mean (range): NR		Pain: NR	exception of the active ROM
category:	and-after		Duration of immobilization: 6 wk		results.
Operative		Type of tear: NR	Duration of rehab: NR	ROM: NR	
•	Enrolled	Tendon(s) torn: NR	Rehab components: passive stretching		
Questions:	consecutively: yes		(≥day 1); active stretching (wk 6–8);	Strength: NR	
Q2, Q6	•	GROUP 1	strengthening (wk 8–9)	0	
	Followup duration,	N: 24	Rehab regime: NR	Other:	
Funding: No	mean (range): 3.8	Age, mean±SD (range): 53		 number of pts returning 	
funding	yr (2–5.7 yr)	yr (22–67 yr)	GROUP 2	to work/sports	
0		Males %: 75	Surgical approach: open		
BA Quality:	Inclusion criteria:	Cause of tear: NR	Type of surgery: repair		
Consecutive: Y	(1) operative RCR,	Tear size: all sizes	Additional procedures (N):		
Followup: Y	(2) active with no	Dominant shoulder %: 50	acromioplasty (all)		
Outcome	serious medical	Comorbidities: NR			
assessment: U	illness, (3) no		Duration of immobilization: 6 wk		
	response to	GROUP 2	Duration of rehab: NR		
	nonoperative	N: 79 (shld: 83)	Rehab components: passive stretching		
	·	Age, mean±SD (range):	(≥day 1); active stretching (wk 6–8);		
	Exclusion criteria:	53 yr (30–68 yr)	strengthening (wk 8–9)		
	(1) mass RC tear,	Males %: 70.1	Rehab regime: NR		
	(2) not amenable to	Cause of tear: NR			
	direct primary repair,	Tear size: all sizes	PRE-OP TREATMENT: yes		
	(3) treated with	Dominant shoulder %:	Duration: 3 mo (mean)		
	debridement alone	64.6	Type of treatment: exercise, physical		
	or with a procedure	Comorbidities: NR	therapy NOS, cortisone injection		
	involving local tissue		· · · · · · · · · · · · · · · · · · ·		
	augmentation				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Mohtadi NG,	Recruitment dates:	Enrolled: 73	GROUP 1	HRQL:	No difference in outcomes at 1
2008	1999 to 2004	Analyzed: 60	Surgical approach: open	 RC-QOL 	and 2 years between mini-oper
		Withdrawals: 14	Type of surgery: repair		and open acromioplasty.
Country:	Study design (trial		Additional procedures (N):	Function:	Statistically and clinically
Canada	type): RCT (parallel)	Duration since symptom	acromioplasty (all)	ASES	significant improvement in
		onset, mean (range):		 Shoulder Rating 	quality of life was found in mini
Treatment	Enrolled	>3 mo (NR)	Duration of immobilization: 6 wk	Questionnaire	open patients at 3 mo vs. open
category:	consecutively: NR		Duration of rehab: NR		RCR pts.
Operative		Type of tear: FTT	Rehab components: passive stretching	Pain: NR	
approach	Followup duration,	Tendon(s) torn: NR	(immediately); active stretching (wk 6);		
0	mean (range): 2 yr		CPM (≥wk 8)	ROM:	
Questions:	(NR)	GROUP 1	Rehab regime: NR	 flexion 	
Q2, Q5,	Inclucion oritorio.	N: 37	GROUP 2	 external rotation at side 	
Funding:	Inclusion criteria:	Age, mean±SD (range): 56.2		 external rotation at 90° 	
Government,	(1) unremitting pain,	yr (44–77 yr) Males %: 59.5	Surgical approach: mini-open	abduction	
academic, foundation	(2) ≥3 mo nonoperative, (3)	Cause of tear: NR	Type of surgery: repair Additional procedures (N):	 internal rotation 	
Touridation	1 / ()	Tear size: all sizes	• • • •		
ROB: High	weakness, (4) >18 yr, (5) FTT, (6)	Dominant shoulder %: 43.2	acromioplasty (all)	Strength:	
ROB. High	English speaking	Comorbidities: NR	Duration of immobilization: 6 wk	 Function Shoulder 	
	English speaking	comorbiantes. NR	Duration of rehab: NR	Elevation Test	
	Exclusion criteria:	GROUP 2	Rehab components: passive stretching		
	(1) < grade 3 muscle	N: 36	(immediately); active stretching (6 wk);	Other: NR	
	strength, (2)	Age, mean±SD (range):	CPM (≥wk 8)		
	previous surgery, (3)	57 yr (33–82 yr)	Rehab regime: NR		
	PTT or irreparable	Males %: 55.6			
	tear	Cause of tear: NR	PRE-OP TREATMENT: yes		
		Tear size: all sizes	Duration: 3 mo (min)		
		Dominant shoulder %: 66.7	Type of treatment: NR		
		Comorbidities: NR	-yp		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Montgomery	Recruitment dates:	Enrolled: 106 (shld: 107)	GROUP 1	HRQL: NR	Open repair group did
TJ, 1994	Jan 1987 to Mar	Analyzed: 87 (shld: 88)	Surgical approach: open		significantly better than
	1990	Withdrawals: 19	Type of surgery: repair	Function: NR	arthroscopic debridement
Country:			Additional procedures (N):		group. Although arthroscopic tx
USA	Study design (trial	Duration since symptom	acromioplasty (all)	Pain: NR	may be indicated in select
	type): CCT (parallel)	onset, mean (range): NR			patients, this study could not
Treatment			Duration of immobilization: NR	ROM: NR	delineate any factors that would
category:	Enrolled	Type of tear: FTT	Duration of rehab: NR		allow pre-operative selection of
Operative	consecutively: yes	Tendon(s) torn: NR	Rehab components: passive stretching-	Strength:	these patients and therefore
approach			day 10–30; active rehabilitation >1 mo	 abduction strength 	would recommend RCR for
	Followup duration,	GROUP 1	Rehab regime: NR	 external rotation 	patients with FTT.
Questions:	mean (range): NR	N: 58		strength	
Q2, Q5	(2–5 yr)	Age, mean±SD (range):	GROUP 2		
		58±11.6 yr (32–79 yr)	Surgical approach: all-arthroscopic	Other: NR	
Funding:	Inclusion criteria:	Males %: NR	Type of surgery: debridement		
NR	(1) failure of	Cause of tear: NR	Additional procedures (N):		
	nonoperative tx, (2)	Tear size: all sizes	acromioplasty (all); abrasion of the greater		
ROB: High	FTT	Dominant shoulder %: all	tuberoscity (NR)		
	Exclusion criteria:	groups 60.4 Comorbidities: NR	Duration of immobilization: NR		
	NR	Comorbiallies. NR	Duration of rehab: NR		
	INIX	GROUP 2	Rehab components: passive stretching		
		N: 49	(day 10–30); active rehabilitation (>1 mo)		
		Age, mean±SD (range):	Rehab regime: NR		
		60±12.2 yr (36–79 yr)	Kendb regime. NK		
		Males %: NR	PRE-OP TREATMENT: yes		
		Cause of tear: NR	Duration: 3 mo (min)		
		Tear size: all sizes	Type of treatment: exercise, physical		
		Dominant shoulder %: see	therapy NOS, cortisone injection, NSAID,		
		group 1	avoidance of pain inducing activities		
		Comorbidities: NR	avoidance of pair modeling detrifies		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Moosemayer	Recruitment	Enrolled: 103	GROUP 1	HRQL:	In a short-term prospective
S, 2010	dates: Sept 2004 to	Analyzed: 102	Surgical approach: open (n=42); mini-	• SF-36	study, nonoperative and
	Oct 2007	Withdrawals: 1	open (n=9)		operative interventions can be
Country:			Type of surgery: repair and debridement	Function:	used for treatment of patients
Norway	Study design: RCT	Type of tear: FTT	Additional procedures (N):	ASES	with small and medium-sized
	(parallel)	Tendon(s) torn: SS, SS+IS,	acromioplasty (all), biceps tenodesis (18)	CMS	RCR. However, better results
Treatment		SS+SC			can be expected after primary
category:	Enrolled		Duration of immobilization: NR	Pain: NR	surgical repair.
Nonoperative	consecutively: NR	GROUP 1	Duration of rehab: NR		
vs. operative		Duration since symptom	Rehab components: passive stretching	ROM: NR	
	Followup duration,	onset, mean±SD: 12.3±18.7	(1 wk); active-assisted stretching (6 wk);		
Questions:	mean (range): 12	N: 51	strengthening exercises (12 wk)	Strength: NR	
Q1, Q4, Q5	mo	Age, mean±SD (range):	Rehab regime: NR		
		59±7.5 yr	Treatment provider: PT	Other:	
Funding: NR	Inclusion criteria:	Males %: 73		 cuff integrity 	
	(1) pain at rest or	Cause of tear: degenerative	GROUP 2		
ROB: High	exercise laterally on	(22); traumatic (30)	Intervention: PT – stretching,		
	the shoulder, (2) a	Tear size: sm, med	strengthening and joint mobilization		
	painful arch, (3)	Dominant shoulder %: 65	exercise		
	positive	Comorbidities: NR	Drug name: NR		
	impingement signs		Duration of treatment: mean (range): 24		
	and a passive ROM	GROUP 2	(9–55) training sessions		
	≥140 for abduction	Duration since symptom	Treatment Regime: Frequency – 2x/wk;		
	and flexion, (4) FTT	onset, mean±SD: 9.8±9.8	Intensity – 40 mins/session		
	<3 cm confirmed by	N: 51	Degree of supervision: direct (1:1) Treatment provider: PT		
	MRI or US, (5)	Age, mean±SD (range):	Treatment provider: PT		
	muscle atrophy <stage 2="" mri,<="" on="" td=""><td>61±7.6 yr Males %: 71</td><td>GROUP 3</td><td></td><td></td></stage>	61±7.6 yr Males %: 71	GROUP 3		
	(6) traumatic and	Cause of tear: degenerative	Initial mean of 24 sessions (range 15–34		
	atraumatic tears	(22); traumatic (29)	session) of nonoperative treatment – see		
		Tear size: sm, med	"Group 2"		
	Exclusion criteria:	Dominant shoulder %: 61	After failed improvement – see "Group 1"		
	(1) age <18 years,	Comorbidities: NR	Alter falled improvement – see Group i		
	(1) age < 10 years, (2) tears with	Comorbidides. Nix			
	absolute indication	GROUP 3	PRE-OP TREATMENT: NR		
	for surgery, (3)	N: 9	Duration: NR		
	other local or	Age, mean±SD (range): NR	Type of treatment: NR		
	systemic disease	Males %: NR			
	influencing shld	Cause of tear: NR			
	function, (4) history	Tear size: sm, med			
	of tendon surgery,	Dominant shoulder %: NR			
	(5) medical	Comorbidities: NR			
	contraindication				
	contraindication				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Moser M,	Recruitment dates:	Enrolled: 38	ALL GROUPS	HRQL: NR	Pts with partial or complete
2007	1991 to 1999	Analyzed: NR	Surgical approach: open		repair were seen to have the
		Withdrawals: NR	Type of surgery: repair (group 1 and 2);	Function:	best subjective and objective
Country:	Study design:		debridement (group 3)	 SPADI 	outcome measures, but due to
USA	retrospective cohort	Duration since symptom	Additional procedures (N):		sample size did not reach
_		onset, mean (range): NR	acromioplasty (NR)	Pain: NR	statistical significance, except
Treatment	Enrolled		Duration of immobilization: NR		active external rotation. Author
category:	consecutively: NR	Type of tear: FTT	Duration of rehab: >3 mo	ROM:	will continue to tx mass tears
Operative		Tendon(s) torn: NR	Rehab components: passive stretching	 scaption (active) 	with partial or complete repair
approach	Followup duration		(day 1–wk 6); active stretching (wk 6–3	 internal rotation (active) 	over debridement.
Questions:	(endpoint): 2 yr	ALL GROUPS	mo); strengthening (≥3 mo)	 external rotation (active) 	
	Inclusion criteria:	N: 21 (group 1), 11 (group 2),	Rehab regime: NR		
Q2, Q5	(1) tear ≥5 cm with	6 (group 3) Age, mean±SD (range): all	PRE-OP TREATMENT: yes	Strength:	
Funding:	≥ 2 tendons involved.	groups: 62.6 yr (33–81 yr)	Duration: NR	scaption	
NR	(2) failure of	Males %: 73.7 (all)	Type of treatment: NR	 external rotation 	
	nonoperative tx, (3)	Cause of tear: NR		Other: NR	
NOS: 3*/8*	no prior repair, (4)	Tear size: mass			
	minimal/no arthritis,	Dominant shoulder %: 63.6			
	(5) follow up ≥24 mo	(all) Comorbidities: NR			
	Exclusion criteria:				
	NR				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Motycka T,	Recruitment dates:	Enrolled: 76	GROUP 1	HRQL: NR	Suturing of large RC tear is not
2004	1988 to 1998	Analyzed: 64	Surgical approach: open		superior to debridement in the
		Withdrawals: 12	Type of surgery: repair	Function:	long term.
Country:	Study design:		Additional procedures (N):	CMS	
Austria	retrospective cohort	Duration since symptom	acromioplasty (all); resection of clavicle		
		onset, mean (range): NR	(1)	Pain: NR	
Treatment	Enrolled				
category:	consecutively: NR	Type of tear: NR	Duration of immobilization: 3–6 wk	ROM: NR	
Operative		Tendon(s) torn: NR	Duration of rehab: NR		
approach	Followup duration,		Rehab components: passive stretching;	Strength: NR	
	mean±SD (range):	GROUP 1	active stretching; strengthening		
Questions:	5 yr.±8 mo (2.1–14.2	N: 33	Rehab regime: NR	Other: NR	
Q2, Q5	yr)	Age, mean±SD (range): NR			
		Males %: NR	GROUP 2		
Funding:	Inclusion criteria:	Cause of tear: NR	Surgical approach: open (15); all-		
NR	RC tears ≥3 cm	Tear size: lg, mass	arthorscopic (16)		
		Dominant shoulder %: NR	Type of surgery: debridement		
NOS: 4*/8*	Exclusion criteria:	Comorbidities: NR	Additional procedures (N):		
	NR		acromioplasty (all); partial closure (8);		
		GROUP 2	resection of clavicle (1)		
		N: 31			
		Age, mean±SD (range): NR	Duration of immobilization: 3 wk		
		Males %: NR	Duration of rehab: NR		
		Cause of tear: NR	Rehab components: passive stretching;		
		Tear size: lg, mass	active stretching; strengthening		
		Dominant shoulder %: NR	Rehab regime: NR		
		Comorbidities: chronic			
		rupture of LHB (3)	PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Mullett H,	Recruitment dates:	Enrolled: 210	GROUP 1	HRQL: NR	The results of the study support
2006	Dec 2004 to Jun	Analyzed: NR	Surgical approach: all-arthroscopic		arthroscopic RCR compared to
	2006	Withdrawals: NR	Type of surgery: debridement	Function:	decompression alone in
Country:			Additional procedures (N): NR	CMS	patients with small and medium
UK	Study design:	Duration since symptom			rotator cuff tears.
	Prospective cohort	onset, mean (range): NR	Duration of immobilization: NR	Pain:	
Treatment			Duration of rehab: NR	VAS	
category:	Enrolled	Type of tear: FTT	Rehab components: NR		
Operative approach	consecutively: no	Tendon(s) torn: NR	Rehab regime: NR	ROM: NR	
	Followup duration,	GROUP 1	GROUP 2	Strength:	
Questions:	mean (range): 3 yr	N: 114	Surgical approach: all-arthroscopic	 strength (NR) 	
Q2, Q5	(12 mo–NR)	Age, mean±SD (range): NR	Type of surgery: repair	en en gur (i n i)	
		Males %: NR	Additional procedures (N): NR	Other: NR	
Funding:	Inclusion criteria:	Cause of tear: NR			
NR	(1) sml & med RC	Tear size: sm, med	Duration of immobilization: NR		
	tears	Dominant shoulder %: NR	Duration of rehab: NR		
NOS: 6*/8*		Comorbidities: NR	Rehab components: NR		
	Exclusion criteria:		Rehab regime: NR		
	NR	GROUP 2			
		N: 96	PRE-OP TREATMENT: NR		
		Age, mean±SD (range): NR	Duration: NR		
		Males %: NR	Type of treatment: NR		
		Cause of tear: NR			
		Tear size: sm, med			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Nam SC, 2008	Recruitment dates:	Enrolled: 45	GROUP 1	HRQL:	Pts with FTT and stiffness of
	Apr 2000 to Sep	Analyzed: 45	Surgical approach: all-arthroscopic	• SST	the shld can be tx with
Country:	2004	Withdrawals: 0	Type of surgery: repair and debridement		arthroscopic RCR and
South Korea			Additional procedures (N):	Function:	concomitant manipulation with
	Study design:	Duration since symptom	acromioplasty (all); manipulation (all)	CMS	results comparable to patients
Treatment	prospective cohort	onset, mean (range):		UCLA	with no stiffness.
category:	treated as before-	Group 1: 11.7 mo (2 mo–5 yr)	Duration of immobilization: NR		
Operative	and-after	Group 2: 11.6 mo (1 mo–2.5	Duration of rehab: NR	Pain:	
		yr)	Rehab components: passive stretching	 VAS (active motion) 	
Questions:	Enrolled		(1–6 mo); active-assisted stretching (wk	VAS (at rest)	
Q2, Q6	consecutively: NR	Type of tear: FTT	6); strengthening (wk ≥6)		
		Tendon(s) torn: NR	Rehab regime: Frequency– daily;	ROM:	
Funding: No	Followup duration,		Intensity–3x10 rounds/day	 abduction 	
funding	mean (range): 2.6	GROUP 1		 forward flexion 	
	yr (16 mo–6.2 yr)	N: 15	GROUP 2	 external rotation 	
BA Quality:		Age, mean±SD (range): 59.8	Surgical approach: all-arthroscopic	 internal rotation (pos.) 	
Consecutive: U	Inclusion criteria:	yr (43–73 yr)	Type of surgery: repair and debridement	 cross-body adduction 	
Followup: Y	arthroscopic	Males %: 86.7	Additional procedures (N):		
Outcome	RCR for RC tear	Cause of tear: NR	acromioplasty (all)	Strength:	
assessment: Y	with limited ROM;	Tear size: sm, med, lg		 forward flexion (kg) 	
	(2) AC group:	Dominant shoulder %: 66.7	Duration of immobilization: NR	 external rotation (kg) 	
	crepitus heard	(all)	Duration of rehab: NR	 internal rotation (kg) 	
	during manipulation	Comorbidities: shld	Rehab components: NR	• Internal rotation (kg)	
	before RC repair	stiffness(all); DM (5)	Rehab regime: Frequency-daily;	Other: NR	
			Intensity–3x10 rounds/day	Other. NR	
	Exclusion criteria:	GROUP 2			
	(1) partial/mass RC	N: 30	PRE-OP TREATMENT: NR		
	tears, (2) AC arthritis	Age, mean±SD (range): 56.1	Duration: NR		
	that required distal	yr (40–65 yr)	Type of treatment: NR		
	clavicular resection,	Males %: 60			
	(3) advanced	Cause of tear: NR			
	glenohumeral	Tear size: sm, med, lg			
	arthritis, (4) WCB	Dominant shoulder %: see			
	claim, (5) tenotomy	group 1			
	or tenodesis of the	Comorbidities: DM (1)			
	long head of the				
	biceps, (6) revision				
	procedures				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Nho SJ, 2009	Recruitment dates:	Enrolled: 193	GROUP 1	HRQL: NR	Prognostic factors after
•	2003 to 2005	Analyzed: 127	Surgical approach: all-arthroscopic		arthroscopic RCR including
Country: USA	0 / 1 1	Withdrawals: 66	Type of surgery: repair and debridement	Function:	age, tear size, and concomitant
-	Study design:		Additional procedures (N):	 ASES 	pathology influences outcomes.
Treatment	before-and-after	Duration since symptom	acromioplasty (all); SLAP repair (1);	B.L. ND	The progression from a single-
category:	Envelled	onset, mean (range): NR	biceps tenotomy/tenodesis (12)/(6); AC	Pain: NR	tendon to multiple tendon tear
Operative	Enrolled		joint coplaning (28); distal clavicle excision	DOM	with associated pathology
Quastiana	consecutively: yes	Type of tear: NR	(15)	ROM:	increased the likelihood of
Questions:	Followup duration	Tendon(s) torn: SS, IS, SC,	Duration of immobilization: NR	flexion	tendon defect by at least 9
Q2, Q6	Followup duration, mean (range): 2.4	TM (single, double, triple)	Duration of rehab: NR	 external rotation 	times. Earlier surgery provides better outcomes.
Funding: NR		GROUP 1	Rehab components: Rehab regime: NR		beller outcomes.
Funding. NR	yr	N : 193	Reliab components. Reliab regime. NR	Strength:	
BA Quality:	Inclusion criteria:	Age, mean±SD (range): 58.6	PRE-OP TREATMENT: yes	 manual muscle testing 	
Consecutive: Y	(1) imaging	Vr	Duration: NR	flexion	
Followup: N	consistent with RC	Males %: 39.9	Type of treatment: physical therapy	 external rotation 	
Outcome	tear, (2) failure of	Cause of tear: NR	NOS, cortisone injection		
assessment: U	nonoperative tx, (3)	Tear size: all sizes		Other:	
	corticosteroid	Dominant shoulder %: NR		 cuff integrity 	
	injection	Comorbidities: SLAP lesion			
	njeedon	(36); biceps pathology (37)			
	Exclusion criteria:	(30), biceps pathology (37)			
	(1) RCR not				
	performed, (2)				
	revision RCR, (3)				
	glenohumeral OA				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Ogilvie-	Recruitment dates:	Enrolled: 50	GROUP 1	HRQL: NR	Subacromial decompression
Harris DJ,	NR	Analyzed: 45	Surgical approach: open		and debridement is ideal for pts
1993		Withdrawals: 5	Type of surgery: repair	Function:	with limited demands and
	Study design (trial		Additional procedures (N):	UCLA	whose main complaints are
Country:	type): CCT (parallel)	Duration since symptom	acromioplasty (all)		pain and ROM loss. For
Canada		onset, mean (range): NR		Pain: NR	patients who need good
	Enrolled		Duration of immobilization: NR		function and strength
Treatment	consecutively: yes	Type of tear: NR	Duration of rehab: NR	ROM: NR	arthroscopic RCR is not
category:		Tendon(s) torn: NR	Rehab components: passive stretching		suffficient, in which case the
Operative	Followup duration,		(wk 1–3); active-assisted stretching (wk	Strength: NR	authors advise open repair.
approach	mean (range): NR	GROUP 1	3–6); strengthening (6 wk–6 mo)		
	(2–5 yr)	N: 25	Rehab regime: NR	Other: NR	
Questions:		Age, mean±SD (range): 30–			
Q2	Inclusion criteria:	39 (2); 40–49 (9); 50–59 (9);	GROUP 2		
	pre-op dx based	60–69 (1); >69 (2)	Surgical approach: all-arthroscopic		
Funding:	on history, (2)	Males %: NR	Type of surgery: debridement		
No funding	physical exam and	Cause of tear: NR	Additional procedures (N):		
	failed nonoperative	Tear size: med, lg	acromioplasty (all)		
ROB: High	tx, (3) confirmation	Dominant shoulder %: NR			
	of dx and	Comorbidities: NR	Duration of immobilization: NR		
	appropriate tear size		Duration of rehab: NR		
		GROUP 2	Rehab components: active stretching		
	Exclusion criteria:	N: 25	(day 1–3 mo); strengthening (wk 6–3 mo)		
	NR	Age, mean±SD (range): 30–	Rehab regime: NR		
		39 (3); 40–49 (8); 50–59 (6);			
		60–69 (4); >69 (1)	PRE-OP TREATMENT: yes		
		Males %: NR	Duration: 6 mo (min)		
		Cause of tear: NR	Type of treatment: NR		
		Tear size: med, lg			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Oh JH, 2008	Recruitment dates:	Enrolled: 125 (shld: 127)	GROUP 1	HRQL: NR	Moderate pre-operative
	Jan 2004 to Dec	Analyzed: 125 (shld: 127)	Surgical approach: open (21); all-		shoulder stiffness does not
Country:	2005	Withdrawals: 0	arthroscopic (9)	Function:	affect clinical outcomes of RC
South Korea			Type of surgery: repair and debridement	ASES	repair if arthroscopic capsular
	Study design:	Duration since symptom	Additional procedures (N):	CMS	release is added to the index
Treatment	prospective cohort	onset, mean±SD (range):	acromioplasty (all); biceps	• SST	procedure.
category:	treated as before-	Group 1: 28.5±52.2 (NR)	tenotomy/tenodesis (12); manipulation		
Operative	and-after	Group 2: 41.2±52 (NR)	(all); capsular release (all); clavicle	Pain:	
			resection (1)	• VAS	
Questions:	Enrolled	Type of tear: FTT			
Q2, Q6	consecutively: yes	Tendon(s) torn: NR	Duration of immobilization: sm tears: 4	ROM:	
			wk; med tears: 5 wk; lg and mass tears:	 forward elevation 	
Funding: No	Followup duration,	GROUP 1	6–7 wk	 external rotation 	
funding	mean (range): 15.1	N: shld: 30	Duration of rehab: NR	 internal rotation 	
	mo. (12 mo–2.7 yr)	Age, mean±SD (range):	Rehab components: sm/med: passive		
BA Quality:		60.9±8.7 yr (NR)	stretching (immediate); lg/mass: passive	Strength: NR	
Consecutive: Y	Inclusion criteria:	Males %: 50	stretching (wk 2–4); active stretching once		
Followup: Y Outcome	symptomatic FTT with/without shld	Cause of tear: NR Tear size: all sizes	brace weaned; strengthening (wk 9–12) Rehab regime: NR	Other:	
assessment: Y	stiffness	Dominant shoulder %: NR		 cuff integrity 	
assessment. I	Sumess	Comorbidities: SLAP	GROUP 2		
	Exclusion criteria:	lesion (15); biceps	Surgical approach: open (62); all-		
	(1) previous shld	pathology (12); AC arthritis	arthroscopic (35)		
	surgery, (2) revision	(1); DM (3)	Type of surgery: repair and debridement		
	repair, (3)	(1), DW (0)	Additional procedures (N):		
	irreparable tear, (4)	GROUP 2	acromioplasty (all); biceps		
	existence of	N: shld: 97	tenotomy/tenodesis (44); distal clavicle		
	instability or cuff tear	Age, mean±SD (range):	resection (10)		
	arthropathy	58.8±9.3 yr (NR)			
		Males %: 45.4	Duration of immobilization: sm: 4 wk;		
		Cause of tear: NR	med: 5 wk; lg and mass: 6-7 wk		
		Tear size: NR	Duration of rehab: NR		
		Dominant shoulder %: NR	Rehab components: sm/med: passive		
		Comorbidities: SLAP	stretching (immediate); lg/mass: passive		
		lesion (45); biceps	stretching (wk 2-4); active stretching once		
		pathology (44); AC arthritis	brace weaned; strengthening (wk 9-12)		
		(10); DM (10)	Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		
			Type of treatment. NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Pai VS, 2001	Recruitment dates:	Enrolled: 60	GROUP 1	HRQL: NR	Acromioplasty and RCR can
	1994 to 1997	Analyzed: 54 (shld: 58)	Surgical approach: open		improve pain and shld function
Country: New		Withdrawals: 6	Type of surgery: repair	Function: NR	in patients with FTT.
Zealand	Study design:		Additional procedures (N):		
	Before-and-after	Duration since symptom	acromioplasty (all); biceps tenodesis (3);	Pain:	
Treatment		onset, mean (range):	distal clavical excision (11); repair of	 pain at rest 	
category:	Enrolled	Group 1: 9 mo (3–24 mo)	coracoacromial ligament (6)		
Operative	consecutively: yes			ROM: NR	
		Type of tear: FTT	Duration of immobilization: 6 wk		
Questions:	Followup duration,	Tendon(s) torn: SS,	Duration of rehab: NR	Strength: NR	
Q2, Q5, Q6	mean (range): 34	SS+IS, SS+SC, SS+IS+SC	Rehab components: passive stretching		
	mo (NR)		(day 1–wk 6); active stretching (≥wk 6);	Other: NR	
Funding: NR		GROUP 1	strengthening when active motion was		
	Inclusion criteria:	N: 60	comfortable		
BA Quality:	FTT	Age, mean±SD (range): 65	Rehab regime: NR		
Consecutive: Y	Freebook and and and a	yr (32–82 yr)			
Followup: Y	Exclusion criteria:	Males %: 56.7	PRE-OP TREATMENT: yes		
Outcome	inadequate followup	Cause of tear:	Duration: 3 mo (min)		
assessment: Y		degenerative (11), traumatic	Type of treatment: exercise, physical		
		(47) Tear size: all sizes	therapy NOS, cortisone injection, NSAID		
		Dominant shoulder %:			
		66.7			
		Comorbidities: dislocated			
		shid (1); biceps tendon			
		rupture (7); OA; sclerosis of greater tuberosity; cystic			
		changes; squaring; decreased AC space			
		uecieaseu AU space			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Park JY,	Recruitment dates:	Enrolled: 85	GROUP 1	HRQL: NR	The single-row method should
2008	May 2002 to May	Analyzed: 78	Surgical approach: all-arthroscopic		be used to repair small to
	2004	Withdrawals: 7	Type of surgery: repair and	Function:	medium RC tears and the
Country:			debridement	 ASES 	double-row method should be
South Korea	Study design: prospective cohort	Duration since symptom onset, mean (range): NR	Additional procedures (N): acromioplasty (all)	• CMS	used for repairing large to massive RC tears.
Treatment			Technique: double-row knot tying	Pain: NR	
category:	Enrolled	Type of tear: FTT	•		
Operative technique	consecutively: yes	Tendon(s) torn: NR	Duration of immobilization: 5–8 wk Duration of rehab: NR	ROM: NR	
•	Followup duration,	GROUP 1	Rehab components: passive	Strength:	
Questions: Q2, Q5, Q6	mean (range): 2.1 yr (22 mo–2.5 yr)	N: 42 Age, mean±SD (range):	stretching; active stretching (wk 5); strengthening (wk 8–10)	Shoulder Strength Index	
QZ, QJ, QU	yr (22 mo-2.5 yr)	54.4 yr (28–76 yr)	Rehab regime: NR		
Funding:	Inclusion criteria:	Males %: 52.4	Renab regime. NR	Other: NR	
No funding	FTT	Cause of tear: NR	GROUP 2		
Norunaing	1 1 1	Tear size: sm/med, lg/mass	Surgical approach: all-arthroscopic		
NOS: 7*/8*	Exclusion criteria:	Dominant shoulder %: NR	Type of surgery: repair and		
100.770	(1) incomplete	Comorbidities: NR	debridement		
	repair, (2) RC tears		Additional procedures (N):		
	after shid fracture or	GROUP2	acromioplasty (all)		
	dislocation	N: 43	Technique: single-row		
	diolocation	Age, mean±SD (range):			
		57 yr (39–78 yr)	Duration of immobilization: 5–8 wk		
		Males %: 46.5	Duration of rehab: NR		
		Cause of tear: NR	Rehab components: passive		
		Tear size: sm/med, lg/mass	stretching; active stretching (wk 5);		
		Dominant shoulder %: NR	strengthening (wk 8–10)		
		Comorbidities: NR	Rehab regime: NR		
			PRE-OP TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Park JY, 2004	Recruitment dates:	Enrolled: 42	GROUP 1	HRQL: NR	Satisfactory postoperative pain
	NR	Analyzed: 42	Surgical approach: all-arthroscopic		relief and functional recovery
Country:		Withdrawals: 0	Type of surgery: repair	Function:	were obtained in both PTT and
South Korea	Study design:		Additional procedures (N):	ASES	FTT groups repaired by
	Prospective cohort	Duration since symptom	acromioplasty (all); biceps tenotomy (3)		arthroscopic RC repair and
Treatment	treated as before-	onset, mean (range):		Pain:	subacromial decompression.
category: Operative	and-after	2.5 yr (1 mo–20 yr)	Duration of immobilization: 6 wk Duration of rehab: NR	• VAS	To avoid procedural failure, careful pre-operative
	Enrolled	Type of tear: FTT (20);	Rehab components: passive stretching	ROM:	examination of AC joint is
Questions:	consecutively: yes	PTT (22)	(up to wk 6); active stretching (≥wk 6)	 flexion 	critical.
Q2, Q5		Tendon(s) torn: NR	Rehab regime: NR	 external rotation 	
	Followup duration,		-	 internal rotation 	
Funding: NR	mean (range): 2.8	GROUP 1	GROUP 2		
	yr (2–5.2 yr)	N: 22	Surgical approach: all-arthroscopic	Strength: NR	
BA Quality:		Age, mean±SD (range): all	Type of surgery: repair		
Consecutive: Y	Inclusion criteria:	groups: 55 yr (NR)	Additional procedures (N):	Other: NR	
Followup: Y	PTT (>50% tears),	Males %: NR	acromioplasty (all)		
Outcome	FTT	Cause of tear:			
assessment: U		degenerative (15), traumatic	Duration of immobilization: 6 wk		
	Exclusion criteria:	(7)	Duration of rehab: NR		
	(1) tears of thickness	Tear size: NR	Rehab components: passive stretching		
	<6mm, (2) open	Dominant shoulder %: NR	(up to wk 6); active stretching (≥wk 6)		
	RCR of mass RC tear	Comorbidities: LHB tears (3); OA of AC joint (2)	Rehab regime: NR		
	loai		PRE-OP TREATMENT: NR		
		GROUP 2	Duration: NR		
		N: 20	Type of treatment: NR		
		Age, mean±SD (range):	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		see group 1			
		Males %: NR			
		Cause of tear:			
		degenerative (10), traumatic			
		(10)			
		Tear size: all sizes			
		Dominant shoulder %: NR			
		Comorbidities: OA (1)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Pearsall AW,	Recruitment dates:	Enrolled: 54	GROUP 1	HRQL: NR	No difference in outcomes
2007	1999 to 2003	Analyzed: 52	Surgical approach: mini-open		between mini-open and
		Withdrawals: 2	Type of surgery: repair	Function:	arthroscopic repair and either
Country:	Study design:		Additional procedures (N):	UCLA	procedure can be used in the
USA	Prospective cohort	Duration since symptom	acromioplasty (23); distal clavicle		treatment of small and medium
		onset, mean (range): 5.7	excision (14); biceps tenotomy/tenodesis	Pain:	sized rotator cuff tears.
Treatment	Enrolled	(3–16) mo	(NR); debridement of any exposed bone	• VAS	
category:	consecutively: NR		on humerus or glenoid (NR)		
Operative		Type of tear: FTT		ROM:	
approach	Followup duration,	Tendon(s) torn: NR	Duration of immobilization: 6 wk	 active flexion 	
	mean (range): 4.2		Duration of rehab: 3 mo	 active abduction 	
Questions:	yr (2.3–7 yr)	GROUP 1	Rehab components: passive stretching	 internal rotation at 90° 	
Q2, Q6		N: 25	(1–6 wk); active stretching &	 glenohumeral elevation 	
	Inclusion criteria:	Age, mean±SD (range): 58	strengthening exercises (6 wk–3 mo)	 external rotation at 0° 	
Funding:	(1) tear size	yr (41–76 yr)	Rehab regime: NR	 external rotation at 90° 	
Government	between 1–5 cm, (2)	Males %: 40			
	minimum followup	Cause of tear: NR	GROUP 2	Strength: NR	
NOS: 8*/8*	24 mo, (3) complete	Tear size: med, lg	Surgical approach: all-arthroscopic	ou ongai. Aux	
	pre- and	Dominant shoulder %: NR	Type of surgery: repair	Other:	
	postoperative	Comorbidities: fraying of	Additional procedures (N):	 Short Shoulder Test 	
	evaluation	biceps tendon (12); humeral	acromioplasty (NR) distal clavicle	Improvement	
		OA (4); glenoid OA (3);	excision (11); biceps tenotomy/tenodesis	improvement	
	Exclusion criteria:	diabetes (5)	(NR); greater tuberosity abrasion (NR)		
	massive RCTs,				
	(2) acute tear	GROUP 2	Duration of immobilization: 6 wk		
	repaired within 3 mo	N: 27	Duration of rehab: 3 mo		
	of injury, (3) <24 mo	Age, mean±SD (range): 55	Rehab components: passive stretching		
	of followup;	yr (38–78 yr)	(1–6 wk); active stretching &		
	radiographic	Males %: 41	strengthening exercises (6 wk–3 mo)		
	evidence of	Cause of tear: NR	Rehab regime: NR		
	glenohumeral joint	Tear size: med, lg			
	arthritis, (4) WCB	Dominant shoulder %: NR	PRE-OP TREATMENT: yes		
		Comorbidities: fraying of	Duration: 3 mo (min)		
		biceps tendon (17); humeral	Type of treatment: PT NOS for 6 wk,		
		OA (4); glenoid OA (2);	cortisone injection (≥1 injection)		
		diabetes (6)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Pillay R, 1994	Recruitment dates:	Enrolled: 40 (shld: 42)	GROUP 1	HRQL: NR	Arthroscopic subacromial
	Dec 1988 to July	Analyzed: 34 (shld: 36)	Surgical approach: all-arthroscopic		decompression is effective for
Country:	1991	Withdrawals: NR	Type of surgery: repair	Function:	tx of PTT and impingement
Singapore			Additional procedures (N):	UCLA	syndrome.
	Study design:	Duration since symptom	acromioplasty (all)		
Treatment	retrospective cohort	onset, mean (range):		Pain: NR	
category:	treated as before-	Group 1: 18 mo (NR);	Duration of immobilization: NR		
Operative	and-after	Group 2: 12.5 mo (NR)	Duration of rehab: NR	ROM: NR	
•			Rehab components: active-assisted		
Questions:	Enrolled	Type of tear: FTT (8); PTT	and active stretching (≥day 1)	Strength: NR	
Q2, Q6	consecutively: NR	(20)	Rehab regime: NR	5	
	-	Tendon(s) torn: NR	-	Other:	
Funding: NR	Followup duration		GROUP 2	 number of pts with 	
U	(mean / range):	GROUP 1	Surgical approach: all-arthroscopic	improvemed UCLA	
BA Quality:	group 1: 18 mo (6	N: 26	Type of surgery: repair		
Consecutive: U	mo-2.5 yr); group 2:	Age, mean±SD (range):	Additional procedures (N):		
Followup: U	20 mo (6 mo-2.5 yr)	50.2 yr (33–75 yr)	acromioplasty (all)		
Outcome		Males %: 50			
assessment: N	Inclusion criteria:	Cause of tear: NR	Duration of immobilization: NR		
	(1) chronic	Tear size: NR	Duration of rehab: NR		
	impingement	Dominant shoulder %: 77	Rehab components: active-assisted		
	syndrome, (2)	Comorbidities: All groups:	and active stretching (≥day 1)		
	arthroscopic	diabetic neuropathy and	Rehab regime: NR		
	subacromial	cervical radiculopathy (1			
	decompression	total)	PRE-OP TREATMENT: yes		
		,	Duration: 6 mo (min)		
	Exclusion criteria:	GROUP 2	Type of treatment: NR		
	NR	N: 8 (shld: 10)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		Age, mean±SD (range):			
		52 yr (51–71 yr)			
		Males %: 62.5			
		Cause of tear: NR			
		Tear size: all sizes			
		Dominant shoulder %: 100			
		Comorbidities: see goup 1			
		Compression Stations and State State			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Porcellini G,	Recruitment dates:	Enrolled: 100	GROUP 1	HRQL: NR	RC tears and glenohumeral
2006	Jan 2000 to May	Analyzed: 100	Surgical approach: all-arthroscopic		instability are closely related
	2002	Withdrawals: 0	Type of surgery: repair	Function:	and may affect outcome.
Country: Italy			Additional procedures (N): NR	CMS	Authors recommend
	Study design:	Duration since symptom		Rowe score	arthroscopic RCR.
Treatment	retrospective cohort	onset, mean (range): NR	Duration of immobilization: 3 wk		
category:	treated as before-		Duration of rehab: NR	Pain: NR	
Operative	and-after	Type of tear: FTT (100);	Rehab components: passive stretching		
		PTT (6 – in group 1)	(wk 3–8); passive and active stretching	ROM: NR	
Questions:	Enrolled	Tendon(s) torn: SS, IS,	(wk 5); strengthening (≥wk 8);		
Q2, Q6	consecutively: yes	SC, SS+IS, SS+IS+SC,	Modalities-pool	Strength: NR	
		SS+SC, IS+TM	Rehab regime: NR		
Funding: NR	Followup duration,			Other: NR	
	mean (range): 3 yr	GROUP 1	GROUP 2		
BA Quality:	(2–4.3 yr)	N: 50	Surgical approach: all-arthroscopic		
Consecutive: Y		Age, mean±SD (range):	Type of surgery: repair		
Followup: Y	Inclusion criteria:	47.5±6.36 yr (NR)	Additional procedures (N): labral		
Outcome	All: (1) 40–60 yr, (2)	Males %: 64	repair (NR)		
assessment: Y	no disclocation of	Cause of tear: NR			
	unaffected shld, (3)	Tear size: NR	Duration of immobilization: 3 wk		
	negative	Dominant shoulder %: NR	Duration of rehab: NR		
	apprehension and	Comorbidities: NR	Rehab components: passive stretching		
	relocation signs in		(wk 3–8); passive and active stretching		
	the unaffected shld,	GROUP 2	(wk 5); strengthening (≥wk 8);		
	(4) sulcus sign	N: 50	Modalities-pool		
	negative bilaterally,	Age, mean±SD (range):	Rehab regime: NR		
	(5) no fracture of the glenoid/tuberosities	48.1±6.4 yr (NR) Males %: 82	PRE-OP TREATMENT: NR		
	Group 1/3: (1) ≥1	Cause of tear: NR	Duration: NR		
	episodes of	Tear size: NR			
	•	Dominant shoulder %: NR	Type of treatment: NR		
	instability, (2) instability (3) no	Comorbidities: Bankart			
	engaging Hill-Sacks	lesions (12); capsular			
		lesions (12), capsular lesions (18); labrum capsule			
	lesion, (4) lesion of				
	the glenoid labrum	(20); recument ant.			
	or capsule	Dislocation of shld			
	Group 2/3: (1)	associated with a cuff tear			
	postive cuff signs on	(all)			
	pre-operative				
	examination, (2) cuff				
	signs, (3) complete				
	RC tear with ≥1				
	tendon				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Porcellini G,	Group 1: negative				
2006	RC signs, (2) no				
(continued)	sign of RC tear, (3)				
	intact RC cuff or				
	fraying of the				
	articular side of cuff				
	Group 2: (1) no shld				
	instability, (2)				
	negative				
	apprehension and				
	relocation signs in				
	affected shoulder,				
	(3) no instability, (4)				
	no lesion of the				
	glenoid labrum or				
	capsule				
	Exclusion criteria:				
	(1) open surgery, (2)				
	lesions different from				
	those in inclusion,				
	(3) acromion-				
	humeral distance <5				
	mm, (4) axillary or				
	SC palsy, (5) SC				
	tendon lesion				
	associate with lesion				
	of the ant. And pos.				
	glenoid labrum, (6)				
	pts with PTT				
	associated with a				
	SLAP lesion				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Prasad N,	Recruitment dates:	Enrolled: 42	GROUP 1	HRQL: NR	Older pts and those with mass
2005	2000 to 2003	Analyzed: 40	Surgical approach: open		RC tear could benefit from
		Withdrawals: 2	Type of surgery: repair	Function:	surgery, although not as much
Country: UK	Study design:		Additional procedures (N):	CMS	as younger pts and those with
	before-and-after	Duration since symptom	acromioplasty (all)		small/moderate size cuff tears
Treatment		onset, mean (range):		Pain:	
category:	Enrolled	4.7 yr (6 mo–15 yr)	Duration of immobilization: NR	• VAS	
Operative	consecutively: yes		Duration of rehab: NR		
		Type of tear: FTT	Rehab components: NR	ROM: NR	
Questions:	Followup duration,	Tendon(s) torn: SS,	Rehab regime: NR		
Q2, Q5, Q6	mean (range): 1.2	SS+IS, SC, SS+IS+SC		Strength: NR	
	yr (12 mo–4.2 yr)		PRE-OP TREATMENT: yes	5	
Funding: NR		GROUP 1	Duration: NR	Other: NR	
-	Inclusion criteria:	N: 42	Type of treatment: NR		
BA Quality:	NR	Age, mean±SD (range): 63			
Consecutive: Y		yr (22–82 yr)			
Followup: Y	Exclusion criteria:	Males %: 71.4			
Outcome	NR	Cause of tear:			
assessment: Y		degenerative (26), traumatic			
		(16)			
		Tear size: all sizes			
		Dominant shoulder %:			
		90.5			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Raab MG,	Recruitment dates:	Enrolled: 41	GROUP 1	HRQL: NR	CPM had no effect on overall
1996	Dec 1992 to Jan	Analyzed: 26	Surgical approach: NR		shld score with 3 mo followup.
	1994	Withdrawals: 15	Type of surgery: repair	Function:	CPM had a beneficial effect on
Country:			Additional procedures (N):	 Shoulder Score 	ROM for all pt, and pain relief in
USA	Study design (trial	Duration since symptom	acromioplasty (14)		female pts and pts ≥60 yr.
	type): RCT (parallel)	onset, mean (range): NR		Pain: NR	
Treatment			Duration of immobilization: NR		
category:	Enrolled	Type of tear: FTT (24);	Duration of rehab: ≥6 wk	ROM: NR	
Post	consecutively: yes	PTT (2)	Rehab components: passive stretching		
operative		Tendon(s) torn: NR	(wk 1–3); active-assisted stretching (≥wk	Strength: NR	
rehabilitation	Followup duration		4–6); physical therapy NOS (≥wk 6)	5	
	(endpoint): 3 mo	GROUP 1	Rehab regime: Frequency-daily for 3	Other: NR	
Questions:		N: 14	wk; Intensity–8 hr/day		
Q2, Q5, Q6	Inclusion criteria:	Age, mean±SD (range): 58			
	NR	yr (NR)	GROUP 2		
Funding:		Males %: 64.3	Surgical approach: NR		
NR	Exclusion criteria:	Cause of tear: NR	Type of surgery: repair		
	NR	Tear size: sm/med, lg/mass	Additional procedures (N):		
ROB: High		Dominant shoulder %: NR	acromioplasty (12)		
		Comorbidities: NR			
			Duration of immobilization: NR		
		GROUP 2	Duration of rehab: ≥6 wk		
		N: 12	Rehab components: passive stretching		
		Age, mean±SD (range):	(wk 1–3); active-assisted stretching and		
		58 yr (NR)	physical therapy NOS (wk 4–6)		
		Males %: 75	Rehab regime: NR		
		Cause of tear: NR	-		
		Tear size: sm/med, lg/mass	PRE-OP TREATMENT: NR		
		Dominant shoulder %: NR	Duration: NR		
		Comorbidities: NR	Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Randelli PS,	Recruitment dates:	Enrolled: 14	GROUP 1	HRQL: NR	Preliminary results indicate that
2008	Jan to May 2004	Analyzed: 13	Surgical approach: all-arthroscopic		the application of platelet rich
		Withdrawals: 1	Type of surgery: repair and	Function:	plasma during RCR is safe and
Country: UK	Study design:		debridement	CMS	effective.
	before-and-after	Duration since symptom	Additional procedures (N):	UCLA	
Treatment		onset, mean (range): NR	acromioplasty (all)		
category:	Enrolled	T		Pain:	
Operative	consecutively: NR	Type of tear: FTT	Duration of immobilization: 10 days;	• VAS	
Owentiener	Fallouwn dwretian	Tendon(s) torn: NR	followed by 18 nights of immobilization		
Questions:	Followup duration	GROUP 1	Duration of rehab: NR	ROM: NR	
Q2, Q5	(endpoint): 24 mo	N: 14	Rehab components: passive stretching (day 10); active stretching (≥1 mo)		
Funding: NR	Inclusion criteria:	Age, mean±SD (range):	Rehab regime: NR	Strength: NR	
Funding. NR	(1) FTT (2)	66.6±9 yr (NR)	Reliab legilile. NR		
BA Quality:	underwent	Males %: 57.1	PRE-OP TREATMENT: NR	Other: NR	
Consecutive: U	arthroscopic RCR,	Cause of tear: NR	Duration: NR		
Followup: Y	(3) wore a brace for	Tear size: NR	Type of treatment: NR		
Outcome	4 wk post	Dominant shoulder %:			
assessment: U	operatively, (4) gave	71.4			
	informed consent,	Comorbidities: NR			
	(5) pre-operative				
	platelet count				
	>150,000, (6) min				
	pre-operative				
	hemoglobin of				
	11.0g/dl, (7) no				
	infectious diease or				
	any disease to limit				
	followup, (8)				
	unilateral RC tear				
	Freebreiten enkomin				
	Exclusion criteria:				
	(1) tear involving SC				
	or biceps tendons, (2) previous RCR,				
	(2) previous RCR, (3) moderate to				
	severe				
	glenohumeral OA,				
	$(4) > 20^{\circ} \text{ loss of}$				
	passive flexion				
	compared to				
	contralateral shid,				

Randelli PS,	Exclusion criteria	
2008	(continued):	
(continued)	(1) tear involving SC	
	or biceps tendons,	
	(2) previous RCR,	
	(3) moderate to	
	severe	
	glenohumeral OA,	
	(4) >20° loss of	
	passive flexion	
	compared to	
	contralateral shld,	
	(5) fatty infiltration	
	>50% of SS or IS,	
	(6) mass tear in a	
	contracted immobile	
	cuff, (7) infection, (8)	
	metabolite bone	
	disorders, (9) un-	
	cooperative/difficulty	
	with directions, (10)	
	vascular	
	insufficiency,	
	muscular atrophy, or	
	neuromuscular	
	diseases of the	
	affected arm	

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Roddey TS,	Recruitment dates:	Enrolled: 129	GROUP 1	HRQL: NR	With a therapist available for
2002	NR	Analyzed: 108	Surgical approach: all-arthroscopic		questions, patients who used
		Withdrawals: 21	Type of surgery: repair	Function:	the videotape method for their
Country:	Study design (trial		Additional procedures (N): all groups:	PENN	home program instruction had
USA	type): RCT (NR)	Duration since symptom	acromioplasty (all); manipulation (3);	 SPADI 	self-reported outcomes equal to
		onset, mean (range): NR	SLAP repair (5); biceps tear repair (1);		patients instructed in their
Treatment	Enrolled		Bankart repair (1)	Pain: NR	home program personally by a
category:	consecutively: NR	Type of tear: FTT			physical therapist. Self-reported
Post-op		Tendon(s) torn: NR	Duration of immobilization: 6 wk	ROM: NR	compliance with the
rehabilitation	Followup duration		Duration of rehab: 52 wk		rehabilitation program had little
	(endpoint): 52 wk	GROUP 1	Rehab components: passive stretching	Strength: NR	effect on the outcomes.
Questions:		N: 54	(day 1–6 wk); active stretching (wk 6		
Q2	Inclusion criteria:	Age, mean±SD (range):	onward); strengthening (≥3 mo); free-	Other: NR	
	(1) FTT, (2)	58.7±10.6 yr (34.6–78.0 yr)	weight exercise and weight bearing		
Funding:	arthroscopic RCR	Males %: 66.7	exercise (6 mo onward)		
Foundation		Cause of tear: NR	Rehab regime: NR		
	Exclusion criteria:	Tear size: mean: 2.5 cm,			
ROB: High	(1) RA, (2) previous	range: 1–5 cm, mass tears	GROUP 2		
	surgery on involved	n=4	Surgical approach: all-arthroscopic		
	shld	Dominant shoulder %: NR	Type of surgery: repair		
		Comorbidities: For all	Additional procedures (N): see group1		
		groups: biceps tear (5);			
		SLAP lesion (5); Bankart	Duration of immobilization: 6 wk		
		lesion (1)	Duration of rehab: 52 wk.		
			Rehab components: passive stretching		
		GROUP 2 N: 54	(day 1); active stretching (\geq wk 6);		
			strengthening (3 mo); free-weight		
		Age, mean±SD (range): 57.2±9.1 yr (40.0–75.8 yr)	exercise and weight bearing exercise (6 mo onward)		
		Males %: 61.1	Rehab regime: Frequency–NR;		
		Cause of tear: NR	Intensity–15 min./phase		
		Tear size: mean: 2.6 cm;	intensity-15 min./pnase		
		range:1.5–4.0 cm, mass	PRE-OP TREATMENT: NR		
		tears n=8	Duration: NR		
		Dominant shoulder %: NR	Type of treatment: NR		
		Comorbidities: see group1			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Rokito AS,	Recruitment dates:	Enrolled: 30	GROUP 1	HRQL: NR	Large or massive RC tears can
1999	Jun 1989 to Jul 1993	Analyzed: 30	Surgical approach: open		have satisfactory outcomes
		Withdrawals: 0	Type of surgery: repair	Function:	with operative RCR but more
Country: USA	Study design:		Additional procedures (N):	UCLA	than one year is needed for
	before-and-after	Duration since symptom	acromioplasty (all)		restoration of strength.
Treatment		onset, mean (range): NR		Pain: NR	
category:	Enrolled		Duration of immobilization: 6 wk		
Operative	consecutively: yes	Type of tear: NR	Duration of rehab: NR	ROM: NR	
		Tendon(s) torn: NR	Rehab components: passive stretching		
Questions:	Followup duration,		(≥day 1); active stretching (≥wk 6–8);	Strength:	
Q2, Q5	mean (range): 65	GROUP 1	strengthening (≥wk12)	 isokinetic strength 	
- - - - - - - - - -	mo (46–93 mo)	N: 30	Rehab regime: NR	(flexion, abduction,	
Funding: No	Inclusion oritorio.	Age, mean±SD (range):		external rotation)	
funding	Inclusion criteria:	57 yr (39–78 yr)	PRE-OP TREATMENT: yes		
BA Quality	lg or mass,	Males %: 70 Cause of tear: NR	Duration: 6 mo (min)	Other: NR	
BA Quality: Consecutive: Y	reparable chronic tear of RC		Type of treatment: exercise, NSAID		
Followup: Y	lear of RC	Tear size: lg, mass Dominant shoulder %:			
Outcome	Exclusion criteria:	76.7			
assessment: Y	(1) irreparable tears,	Comorbidities: NR			
assessment. I	(1) ineparable tears, (2) previous	comorbidities. NR			
	procedure involving				
	the shid, (3)				
	symptoms in the				
	2 1				
	contralateral shid				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Sauerbrey	Recruitment dates:	Enrolled: 63	GROUP 1	HRQL: NR	Short-term results for
AM, 2005	Jan 1997 to Dec	Analyzed: 54	Surgical approach: mini-open		arthroscopic and mini-open
	1999	Withdrawals: 9	Type of surgery: repair	Function:	RCR are similar. This study
Country:			Additional procedures (N):	ASES	supports the continued use of
USA	Study design:	Duration since symptom	acromioplasty (all); labral repair (2);		arthroscopic RCR techniques.
Treatment	retrospective cohort	onset, mean (range): NR	biceps tenotomy (3)/tenodesis (4); distal clavicle excision (5); capsular release (2)	Pain: NR	
category:	Enrolled	Type of tear: FTT	(-),(-),	ROM: NR	
Operative	consecutively: yes	Tendon(s) torn: NR	Duration of immobilization: 4–6 wk		
approach	,		Duration of rehab: NR	Strength: NR	
- 11	Followup duration,	GROUP 1	Rehab components: passive stretching		
Questions:	mean (range):	N: 26	(day 1-wk 6); active stretching (wk 6-≥1	Other: NR	
Q2, Q6	Group 1: 33 mo (18–	Age, mean±SD (range):	yr); strengthening (wk 6–≥1 yr)		
	48 mo); Group 2: 19	57 yr (40–84 yr)	Rehab regime: NR		
Funding:	mo (13–26 mo)	Males %: 61.5	C C		
NR		Cause of tear:	GROUP 2		
	Inclusion criteria:	degenerative (6), traumatic	Surgical approach: all-arthroscopic		
NOS: 6*/8*	(1) FTT, (2) followup	(16), NR (4)	Type of surgery: repair and		
	≥ 1 yr	Tear size: med, lg, mass	debridement		
		Dominant shoulder %: NR	Additional procedures (N):		
	Exclusion criteria:	Comorbidities: NR	acromioplasty (all); biceps tenodesis (7);		
	NR		distal clavicle excision (5); capsular		
		GROUP 2	release (3);		
		N: 28			
		Age, mean±SD (range):	Duration of immobilization: 4–6 wk		
		56 yr (38–86 yr)	Duration of rehab: NR		
		Males %: 57.1	Rehab components: passive stretching		
		Cause of tear:	(day 1–wk 6); active stretching (wk 6–≥1		
		degenerative (7), traumatic	yr); strengthening (≥wk 6–≥1 yr)		
		(15), NR (6)	Rehab regime: NR		
		Tear size: med, lg, mass			
		Dominant shoulder %: NR	PRE-OP TREATMENT: yes		
		Comorbidities: NR	Duration: 3 mo (min)		
			Type of treatment: physical therapy		
			NOS, cortisone injection, NSAID		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Scheibel M,	Recruitment dates:	Enrolled: 23	GROUP 1	HRQL: NR	Open RCR augmented with an
2007	May 2003 to May 2004	Analyzed: 20	Surgical approach: open		autologous periosteal flap
-		Withdrawals: 3	Type of surgery: repair and	Function:	shows high patient satisfaction
Country:	Study design: before-		debridement	CMS	level with low re-rupture rates.
Germany	and-after	Duration since symptom	Additional procedures (N):	• SST	
		onset, mean (range): NR	acromioplasty (all); biceps tenodesis		
Treatment	Enrolled		(18); AC joint resection (9)	Pain: NR	
category:	consecutively: NR	Type of tear: FTT			
Operative		Tendon(s) torn: SS, SS+IS,	Duration of immobilization: 4 wk	ROM: NR	
•	Followup duration,	SS+SC, SS+IS+SC	Duration of rehab: NR		
Questions:	mean (range): 14.4		Rehab components: passive	Strength: NR	
Q2, Q5	mo (12–21 mo)	GROUP 1	stretching (wk 1–6); active-assisted		
		N: 23	and active stretching (≥wk 6)	Other:	
Funding: NR	Inclusion criteria: degenerative	Age, mean±SD (range): 59.7 yr (44–71 yr)	Rehab regime: NR	 cuff integrity 	
BA Quality:	symptomatic FTT SS	Males %: 69.6	PRE-OP TREATMENT: NR		
Consecutive: U	tears with variable	Cause of tear: NR	Duration: NR		
Followup: Y	ant./pos. expansion	Tear size: med, lg, mass	Type of treatment: NR		
Outcome	into the upper SC or IS	Dominant shoulder %:			
assessment: U		73.9			
	Exclusion criteria:	Comorbidities: ectopic			
	(1) PTT; (2) traumatic	ossification in SS tendon (4);			
	history; (3) previous	biceps pathology (19);			
	surgery on the affected	controlled hypertension (5);			
	shld; (4) signs of cuff	DM type II (1); chronic			
	tear arthropathy; (5)	bronchitis (1)			
	grade III tendon				
	retraction according to				
	Patte, grade III atrophy				
	according to				
	Thomazeau + grade III-				
	IV fatty infiltration				
	according to Goutailler				
	adjusted to MRI scans				
	by Fuchs; (6)				
	intraoperatively dx				
	tears having to be fixed				
	using side to side				
	technique				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Scheibel M,	Recruitment dates:	Enrolled: 23	GROUP 1	HRQL: NR	Reversed arthorscopic
2004	Apr 1997 to Sept 2000	Analyzed: 22	Surgical approach: all-arthroscopic		subacromial decompression
		Withdrawals: 1	Type of surgery: debridement	Function:	with tenotomy of the LHB
Country:	Study design: before-		Additional procedures (N):	CMS	tendon offers a less invasive tx
Germany	and-after	Duration since symptom	acromioplasty (all); biceps		strategy for massive RC tears
		onset, mean (range):	tenotomy/tenodesis (NR);	Pain: NR	while preserving the integrity of
Treatment	Enrolled	12 mo (3–48 mo)	tuberoplasty (NR)		the corcoacromial arch.
category:	consecutively: NR			ROM: NR	
Operative	-	Type of tear: FTT	Duration of immobilization: 24 hr		
	Followup duration,	Tendon(s) torn: SS+IS,	Duration of rehab: 3 mo	Strength: NR	
Questions:	mean (range): 3.3 yr	SS+IS+SC, SS+SC	Rehab components: passive	C	
Q2, Q5, Q6	(20 mo-4.8 yr)		stretching (immediately-wk 2); active	Other: NR	
		GROUP 1	stretching (wk 2–3 mo); strengthening		
Funding: NR	Inclusion criteria:	N: 23	(wk 2–3 mo)		
	(1) mass defect of RC,	Age, mean±SD (range):	Rehab regime: NR		
BA Quality:	(2) 3 mo conservative	69 yr (60–81 yr)	-		
Consecutive: U	therapy	Males %: 78.3	PRE-OP TREATMENT: yes		
Followup: Y		Cause of tear: degenerative	Duration: 3 mo (min)		
Outcome	Exclusion criteria:	(14), traumatic (8)	Type of treatment: physical therapy		
assessment: U	previous surgery on the	Tear size: mass	NOS, cortisone injection, NSAID		
	shld	Dominant shoulder %:	· · · ·		
		65.2			
		Comorbidities: biceps			
		pathology (16); OA (3)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Scheuermann	Recruitment dates:	Enrolled: 29	GROUP 1	HRQL: NR	Early functional physical
R, 1991	NR	Analyzed: 24	Intervention: active ROM,		therapy and active shoulder
Country: Germany	Study design: Before- and-after	Withdrawals: 5 Duration since symptom	strengthening, soft tissue massage, posture control, active shld support with bandage	Function: NR Pain: NR	support resulted in pain relief and earlier usability of shoulder joint.
		onset, mean (range): NR	Drug name: NR		
Treatment	Enrolled		Duration of treatment: 25 days	ROM:	
category:	consecutively: NR	Type of tear: NR	Treatment Regime: NR	 abduction 	
Nonoperative		Tendon(s) torn: NR	Degree of supervision: direct one-	flexion	
	Followup duration		to-one	 external rotation 	
Questions: Q3	(endpoint): 25 days	GROUP 1	Treatment provider: PT	 abduction 	
		N: 29		 extension 	
Funding: Industry	Inclusion criteria: RC rupture	Age, mean±SD (range): NR Males %: NR		 internal rotation 	
Other: German	Exclusion criteria:	Cause of tear: NR Tear size: NR		Strength: NR	
	(1) complete loss of	Dominant shoulder %: NR		Other:	
BA Quality: Consecutive: U Followup: Y Outcome assessment: U	function and resistant to conservative therapy, (2) long-term ruptures	Comorbidities: NR		 number of pts with pain at endpoint number of pts needing operation 	

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Severud EL,	Recruitment dates:	Enrolled: 75 (shld: 82)	GROUP 1	HRQL: NR	All-arthroscopic RCR provides
2003	Sep 1992 to Aug 1998	Analyzed: 58 (shld: 64)	Surgical approach: mini-open		comparable outcomes and
		Withdrawals: 17 (shld: 18)	Type of surgery: repair and debridement	Function:	complication rates to
Country:	Study design:		Additional procedures (N):	 ASES 	arthroscopic decompression
USA	retrospective cohort	Duration since symptom onset, mean (range):	acromioplasty (all)	• UCLA	with mini-open RCR. The lower incidence of fibrous ankylosis
Treatment category:	Enrolled consecutively: yes	Group 1: 10.8 mo (NR); Group 2: 15.7 mo (NR)	Duration of immobilization: NR Duration of rehab: NR	Pain: NR	favors the all-arthroscopic technique. Better early motion
Operative	2		Rehab components: passive stretching	ROM: NR	was obtained in the all-
approach	Followup duration,	Type of tear: FTT (54); PTT	(up to wk 4); active-assisted stretching	-	arthroscopic group.
Questions:	mean (range): 3.7 yr (2–6.8 yr)	(4) Tendon(s) torn: NR	(≥wk 4); strengthening (3 mo) Rehab regime: NR	Strength: NR	
Q2, Q5, Q6				Other: NR	
,,	Inclusion criteria:	GROUP 1	GROUP 2		
Funding:	(1) FTT, (2) WCB	N: NR (shld: 29)	Surgical approach: all-arthroscopic		
NR	cases	Age, mean±SD (range): 63.3 yr (NR)	Type of surgery: repair and debridement Additional procedures (N):		
NOS: 4*/8*	Exclusion criteria: (1) other significant	Males %: 62.1 of shld Cause of tear: NR	acromioplasty (all)		
	intra-articular	Tear size: sm, med, lg	Duration of immobilization: NR		
	pathology, (2) previous	Dominant shoulder %: NR	Duration of rehab: NR		
	RC surgery, (3) mass	Comorbidities: All groups:	Rehab components: passive stretching		
	RC tears, (4)	ruptured LHB (2); biceps	(up to wk 4); active-assisted stretching		
	neurological disorders	tendon fraying (5)	(≥wk 4); strengthening (3 mo)		
			Rehab regime: NR		
		GROUP 2			
		N: NR (shld: 35)	PRE-OP TREATMENT: yes		
		Age, mean±SD (range): 58.7	Duration: NR		
		yr (NR)	Type of treatment: physical therapy		
		Males %: 60 of shid	NOS, cortisone injection, NSAID		
		Cause of tear: NR			
		Tear size: sm, med, lg			
		Dominant shoulder %: NR			
		Comorbidities: see group 1			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Shibata Y,	Recruitment dates:	Enrolled: 78	GROUP 1	HRQL: NR	Therapeutic efficacy in the
2001	NR	Analyzed: 78	Intervention (modality): strengthening,		sodium hyaluronate group was
		Withdrawals: 0	sodium hyaluronate injection (25 mg +	Function:	equivalent to that in the steroid
Country:	Study design (trial		3ml of 1% lidocaine), heat	UCLA	group.
Japan	type): RCT (parallel)	Duration since symptom	Drug name: loxoprofen (180mg/d)		
		onset, mean±SD (range):	Duration of treatment: 5 wk	Pain: NR	
Treatment	Enrolled	Group 1: 5.8±5.4 mo (NR)	Treatment Regime: Frequency-1/wk;		
category:	consecutively: NR	Group 2: 4.7±5.7 mo (NR)	Intensity-NR	ROM:	
Nonoperative			Degree of supervision: NR	 abduction 	
	Followup duration	Type of tear: FTT	Treatment provider: NR	 external rotation 	
Questions:	(endpoint): 24 wk	Tendon(s) torn: NR	Additional comments: If pts were	 internal rotation 	
Q3, Q5, Q6			unsatisfied with tx >4 wk., they were		
	Inclusion criteria:	GROUP 1	offered surgery. Pts who chose	Strength: NR	
Funding: NR	1) FTT	N: 38	nonoperative tx were prescribed NSAIDS	5.00	
		Age, mean±SD (range):	and physical therapy; examined 24 wk	Other: NR	
ROB: High	Exclusion criteria:	59.5±9.1 yr (NR)	after last intra-articular injection. If shld		
	1) intra-articular	Males %: 71.1	disability resolved, injections were		
	injection of drugs; 2)	Cause of tear: degenerative	discontinued		
	abnormal hepatic/renal	(19), traumatic (19)			
	function; 3) pregnant;	Tear size: NR	GROUP 2		
	severe osteoarthritic	Dominant shoulder %: 60.5	Intervention (modality): strengthening,		
	changes of affected	Comorbidities: NR	corticosteroid injection (2mg		
	shld; 5) symptoms		dexamethasone + 3ml of 1% lidocaine),		
	resulting from surgical	GROUP 2	heat/cold		
	lesions	N: 40	Drug name: loxoprofen (180mg/d)		
		Age, mean±SD (range):	Duration of treatment: 5 wk,		
		62.4±8.6 yr (NR)	Treatment Regime: Frequency–1/wk;		
		Males %: 70	Intensity–NR		
		Cause of tear: degenerative	Degree of supervision: NR		
		(17), traumatic (23)	Treatment provider: NR		
		Tear size: NR	Additional comments: see group 1		
		Dominant shoulder %: 67.5			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Sugaya H,	Recruitment dates:	Enrolled: 106	GROUP 1	HRQL: NR	Arthroscopic RCR has
2007	Apr 2001 to May 2003	Analyzed: 86	Surgical approach: all-arthroscopic		demonstrated improved repair
	. ,	Withdrawals: 20	Type of surgery: repair and	Function:	integrity compared with
Country:	Study design: before-		debridement	ASES	tradditional open or mini-open
Japan	and-after	Duration since symptom	Additional procedures (N):	 JOA 	RCR. Retear rate with large
		onset, mean (range): NR	acromioplasty (all)	UCLA	and massive tears was still
Treatment	Enrolled				higher than that for small tears.
category: Operative	consecutively: yes	Type of tear: FTT Tendon(s) torn: NR	Duration of immobilization: 3–4 wk Duration of rehab: NR	Pain: NR	
	Followup duration,		Rehab components: isometric	ROM: NR	
Questions:	mean (range): 2.6 yr	GROUP 1	exercises (day 1); active and passive		
Q2, Q5	(2–4.1 yr)	N: 106	stretching (after immobilization period	Strength: NR	
		Age, mean±SD (range): 60.5	ended); strengthening (wk 6)	-	
Funding: No	Inclusion criteria:	yr (41–77 yr)	Rehab regime: NR	Other:	
funding	(1) FTT, (2)	Males %: 49.1		 cuff integrity 	
	arthroscopic double-	Cause of tear: NR	PRE-OP TREATMENT: yes		
BA Quality:	row repair, (3) MRI of	Tear size: all sizes	Duration: NR		
Consecutive: Y	RC between 1–2 yr	Dominant shoulder %: 59.4	Type of treatment: NR		
Followup: U Outcome	post operative, (4) final	Comorbidities: NR			
assessment: U	functional eval ≥2 yr postoperative				
assessment. U	postoperative				
	Exclusion criteria:				
	(1) PTT, (2)				
	nonarthroscopic RCR				
	because of mass				
	irreparable tears with				
	fatty degeneration and				
	atrophy				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Sugaya H,	Recruitment dates:	Enrolled: 104 (Shld: 106)	GROUP 1	HRQL: NR	Successful functional outcomes
2005	Feb 1999 to Apr 2002	Analyzed: 80 (shld: 80)	Surgical approach: all-arthroscopic		obtained by arthroscopic RCR,
		Withdrawals: 26	Type of surgery: repair	Function:	without significant difference
Country:	Study design:		Additional procedures (N):	ASES	between single and dual-row
Japan	retrospective cohort	Duration since symptom	acromioplasty (all)	UCLA	fixation technique. However, in
		onset, mean (range): NR	Technique: double-row mattress fashion		structural outcomes dual-row
Treatment	Enrolled		sliding knot; side to side stitches if	Pain: NR	excelled over single-row
category:	consecutively: yes	Type of tear: FTT	longitudinal/ U-shaped tears		technique.
Operative		Tendon(s) torn: NR		ROM: NR	
technique	Followup duration,		Duration of immobilization: 3 wk	-	
•	mean (range): 2.9 yr	GROUP 1	Duration of rehab: NR	Strength: NR	
Questions:	(2–5 yr)	N: NR (shld: 55)	Rehab components: isometric cuff	g	
Q2, Q5		Age, mean±SD (range): 58.1	exercise and relaxation of muscle (day 1-	Other:	
	Inclusion criteria:	yr (36–73 yr)	wk 3); active and active-assisted	 cuff integrity 	
Funding:	(1) failed nonoperative	Males %: 50.9 of shld	stretching (wk 3–6); strengthening (≥wk 6)	ean megny	
NR	tx, (2) FTT, (3) no	Cause of tear: NR	Rehab regime: NR		
	major associated	Tear size: all sizes	•		
NOS: 6*/8*	pathology (glenoid	Dominant shoulder %: NR			
	fracture or Bankart	Comorbidities: NR	GROUP 2		
	lesion)		Surgical approach: all-arthroscopic		
	,	GROUP 2	Type of surgery: repair		
	Exclusion criteria:	N: NR (shld: 51)	Additional procedures (N):		
	PTT	Age, mean±SD (range): 57.7	acromioplasty (all)		
		yr (34–72 yr)	Technique: single-row metal suture self		
		Males %: 54.9 of shld	locking		
		Cause of tear: NR	5		
		Tear size: all sizes	Duration of immobilization: 3 wk		
		Dominant shoulder %: NR	Duration of rehab: NR		
		Comorbidities: NR	Rehab components: isometric cuff		
			exercise and relaxation of muscle (day 1-		
			wk 3); active and active assisted		
			stretching (wk 3–6); strengthening (\geq wk 6)		
			Rehab regime: NR		
			PRE-OP TREATMENT: yes		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Tashjian RZ,	Recruitment dates:	Enrolled: 125 (shld: 125)	GROUP 1	HRQL:	Pts with more medical
2006	NR	Analyzed: 125 (shld: 125)	Surgical approach: open (26); mini-open	• SF-36	comorbidities have a worse
		Withdrawals: 0	(62); all-arthorscopic (37)	 VAS-QOL 	general health status after RC
Country: USA	Study design: before-		Type of surgery: repair		repair; although they have
	and-after	Duration since symptom	Additional procedures (N): NR	Function:	greater improvement in overall
Treatment		onset, mean±SD (range):		• DASH	shld pain, function and quality
category:	Enrolled	16±25.9 mo (3 mo–18 yr)	Duration of immobilization: NR	• SST	of life scores compared with
Operative	consecutively: yes		Duration of rehab: NR	 VAS function 	pre-operative scores.
		Type of tear: FTT	Rehab components: NR		
Questions:	Followup duration,	Tendon(s) torn: NR	Rehab regime: NR	Pain:	
Q2, Q6	(endpoint): 1 yr			 VAS pain 	
		GROUP 1	PRE-OP TREATMENT: yes	·	
Funding: No	Inclusion criteria:	N: 125 (shld: 125)	Duration: 3 mo (min)	ROM: NR	
funding	(1) chronic FTT	Age, mean±SD (range):	Type of treatment: physical therapy		
	(symptoms \geq 3 mo), (2)	56 yr (32–80 yr)	NOS, cortisone injection	Strength: NR	
BA Quality:	failure of nonoperative	Males %: 57.6		-	
Consecutive: Y	tx	Cause of tear: degenerative		Other: NR	
Followup: N	Freelanders - March	(46), traumatic (79)			
Outcome	Exclusion criteria:	Tear size: mean: 2.2 cm,			
assessment: N	glenohumeral arthritis,	range:1–4cm			
	AC	Dominant shoulder %: NR			
		Comorbidities: number of			
		comorbidities: 1.9±1.5 / 0-6			
		(mean/range)			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Tauro JC,	Recruitment dates:	Enrolled: 74	ALL GROUPS	HRQL: NR	Pts who undergo RCR
2006	NR	Analyzed: 72	Surgical approach: all-arthroscopic		commonly have pre-operative
		Withdrawals: 2	Type of surgery: repair	Function:	stiffness. Routine therapy after
Country: USA	Study design:		Additional procedures: NR	UCLA	surgery can resolve mild to
	Retrospective cohort	Duration since symptom			moderate stiffness. Pts with
Treatment	treated as before-and-	onset, mean (range): NR	Duration of immobilization: NR	Pain: NR	total ROM deficit ≥70° may
category:	after		Duration of rehab: NR		have adhesive capsulitis as
Operative		Type of tear: FTT	Rehab components: passive	ROM: NR	well as a cuff tear and may not
	Enrolled	Tendon(s) torn:	stretching and strengthening (up to wk		do well with RCR alone.
Questions:	consecutively: yes	Group 1 and 2: SS, IS, SC;	5/6); active stretching (≥wk 5/6)	Strength: NR	
Q2, Q5, Q6		Group 3: SS, IS	Rehab regime: NR	-	
	Followup duration,			Other:	
Funding: NR	mean (range): 2 yr	GROUP 1	PRE-OP TREATMENT: yes	 total ROM deficit 	
	(NR)	N: 42	Duration: 4.4 mo (2–8 mo)		
BA Quality:		Age, mean±SD (range):	Type of treatment: physical therapy		
Consecutive: Y	Inclusion criteria: (1)	70 yr (NR)	NOS, cortisone injection		
Followup: Y	FTT, (2) arthroscopic	Males %: NR			
Outcome	RCR	Cause of tear: NR			
assessment: U		Tear size: mean: 3.7 cm			
	Exclusion criteria:	Dominant shoulder %: NR			
	NR	Comorbidities: (all groups):			
		hypertension; heart disease;			
		DM			
		GROUP 2			
		N: 24			
		Age, mean±SD (range): 70			
		yr (NR) Males %: NR			
		Cause of tear: NR			
		Tear size: mean: 7.7 cm			
		Dominant shoulder %: NR			
		Comorbidities: see group 1			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Tauro JC,		GROUP 3			
2006		N: 6			
(continued)		Age, mean±SD (range):			
, , , , , , , , , , , , , , , , , , ,		70 yr (NR)			
		Males %: NR			
		Cause of tear: NR			
		Tear size: mean: 12.3 cm			
		Dominant shoulder %: NR			
		Comorbidities: see group 1			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Tauro JC,	Recruitment dates:	Enrolled: 42 (shld: 43)	GROUP 1	HRQL: NR	Interval slide technique
2004	NR	Analyzed: 41 (shld: 42)	Surgical approach: all-arthroscopic		improves SS mobility in large
		Withdrawals: 1	Type of surgery: repair	Function:	retracted tears.
Country: USA	Study design: before-		Additional procedures (N):	 modified UCLA 	
	and-after	Duration since symptom	acromioplasty (all); capsular release		
Treatment		onset, mean (range):	(all)	Pain: NR	
category:	Enrolled	12.4 mo (2–5 yr)			
Operative	consecutively: yes		Duration of immobilization: 1 day	ROM: NR	
		Type of tear: NR	Duration of rehab: NR		
Questions:	Followup duration,	Tendon(s) torn: SS, SS+IS	Rehab components: passive	Strength: NR	
Q2, Q5,	mean (range): 2.7 yr		stretching and strengthening (day		
	(2–4 yr)	GROUP 1	3–4); active stretching (wk 5–6);	Other: NR	
Funding: NR	Inclusion eniteries	N: 42 (shld: 43)	active strengthening (wk 8–10)		
	Inclusion criteria:	Age, mean±SD (range):	Rehab regime: NR		
BA Quality:	lg contracted tears, not	70 yr (46–86 yr)	DDE OD TREATMENT. NO		
Consecutive: Y	adequately mobilized	Males %: NR	PRE-OP TREATMENT: NR		
Followup: Y	without a rotator	Cause of tear: degenerative	Duration: NR		
Outcome	interval release	(24), traumatic (18)	Type of treatment: NR		
assessment: N		Tear size: mean (range): ant.			
	Exclusion criteria:	To pos.: 3.4 cm (2.5–5 cm),			
	significant SC tears	medial to lateral: 3.1 cm (2.5-			
	requiring open RCR	3.5 cm)			
		Dominant shoulder %: 66.7			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Torrens C,	Recruitment dates:	Enrolled: 42	GROUP 1	HRQL: NR	Increasing the subacromial
2003	NR	Analyzed: 42	Surgical approach: open		space, preserving the anatomy
		Withdrawals: 0	Type of surgery: repair	Function:	of subacromial arch, provides
Country:	Study design (trial		Additional procedures (N):	CMS	functional results in the
Spain	type): CCT (NR)	Duration since symptom	acromioplasty (all)		modified acromioplasty that are
		onset, mean (range): NR	Duration of immobilization: NR	Pain: NR	as good as those obtained with
Treatment	Enrolled		Duration of rehab: NR		classical open acromioplasty.
category:	consecutively: yes	Type of tear: NR	Rehab components: NR	ROM: NR	
Operative		Tendon(s) torn: NR	Rehab regime: NR		
approach	Followup duration,			Strength: NR	
	mean (range): 18 mo	GROUP 1	GROUP 2		
Questions:	(NR)	N: 20	Surgical approach: open	Other: NR	
Q2, Q5		Age, mean±SD (range):	Type of surgery: repair		
	Inclusion criteria:	55.9 yr (NR)	Additional procedures (N):		
Funding:	(1) impingement	Males %: 20	acromioplasty (all)		
NR	symptoms, (2) failure of	Cause of tear: NR			
	≥3 mo conservative tx	Tear size: sm, med, lg,	Duration of immobilization: NR		
ROB: High		mass	Duration of rehab: NR		
	Exclusion criteria:	Dominant shoulder %: NR	Rehab components: NR		
	NR	Comorbidities: NR	Rehab regime: NR		
		GROUP 2	PRE-OP TREATMENT: yes		
		N: 22	Duration: 3 mo (min)		
		Age, mean±SD (range):	Type of treatment: NR		
		63.8 yr (NR)	Type of treatment. Mix		
		Males %: 18.2			
		Cause of tear: NR			
		Tear size: sm, med, lg,			
		mass			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Trenerry K,	Recruitment dates:	Enrolled: 75	GROUP 1	HRQL: NR	Restriction of ROM, pre-
2005	Jul 1996 to Mar 2001	Analyzed: 75	Surgical approach: open		operative hand behind back
		Withdrawals: 0	Type of surgery: repair	Function: NR	predicted shoulder stiffness at 6
Country:	Study design: case-		Additional procedures (N):		wk. postoperative, findings
Australia	control treated as	Duration since symptom	acromioplasty (all)	Pain:	affirm the potential for almost
	before-and-after	onset, mean (range):		 frequency of activity 	complete recovery of ROM and
Treatment		Group 1: 22 mo (13 mo-2.6 mo)	Duration of immobilization: 2	pain	reduction of pain in pts who
category:	Enrolled	Group 2: 13 mo (6–20 mo)	days		have shld stiffness after RC
Operative	consecutively: yes		Duration of rehab: 3 mo	ROM:	repair.
		Type of tear: FTT (67); PTT (8)	Rehab components: home	 flexion (passive) 	
Questions:	Followup duration,	Tendon(s) torn: NR	exercise regimen; Modalities-cold	external rotation	
Q2, Q6	mean (range): 17.5		Rehab regime: NR	(passive)	
	mo (15.6–19.3 mo)	GROUP 1	-	 abduction (passive) 	
Funding: No		N: 39	GROUP 2	 hand behind back 	
funding	Inclusion criteria:	Age, mean±SD (range):	Surgical approach: open	(passive)	
	(1) RCR, (2) pt with	60 yr (56–64 yr)	Type of surgery: repair	(publito)	
BA Quality:	outcomes in the	Males %: 69.2	Additional procedures (N):	Strength:	
Consecutive: Y	upper quartile of the	Cause of tear: degenerative	acromioplasty (all)	 isometric muscle force 	
Followup: Y	total cohort for at	(18), traumatic (21)		for internal/external	
Outcome	least 3 out of 4 ROM	Tear size: mean: 4 cm ² , range:	Duration of immobilization: 2	rotation, and flexion	
assessment: U	measures and pts	2–6 cm ²	days	rotation, and nexion	
	with outcomes in the	Dominant shoulder %: 66.7	Duration of rehab: 3 mo	Other: NR	
	lower quartile	Comorbidities: glenohumeral	Rehab components: home	omen nik	
		OA; AC joint arthritis; synovitis;	exercise regimen; Modalities-cold		
	Exclusion criteria:	bursitis; LHB tear	Rehab regime: NR		
	(1) incomplete repair				
	of RC tears, (2)	GROUP 2	PRE-OP TREATMENT: NR		
	previous RC repair of	N: 36	Duration: NR		
	involved shld/	Age, mean±SD (range):	Type of treatment: NR		
	additional procedure	63 yr (60–66 yr)			
	at the time of	Males %: 52.8			
	symptoms	Cause of tear: degenerative			
		(15), traumatic (21)			
		Tear size: mean: 5 cm ² , range:3-			
		7 cm ²			
		Dominant shoulder %: 91.7			
		Comorbidities: glenohumeral			
		OA; AC joint arthritis; synovitis;			
		bursitis; LHB tear			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Vad VB,	Recruitment dates:	Enrolled: 108	GROUP 1	HRQL: NR	Poor outcomes in the tx of RC
2002	1990 to 1995	Analyzed: 108	Intervention: PT NOS, NSAIDs		tears correlates with the
		Withdrawals: 0	Drug name: NR	Function:	presence of ≥3 of the following
Country:	Study design:		Duration of treatment: 8.2 wk (1–22	 Insalata 	positive prognostic factors:
USA	retrospective cohort	Duration since symptom	wk)		glenohumeral arthritis,
	·	onset, mean (range):	Treatment Regime: Frequency-NR;	Pain: NR	decreased passive ROM,
Treatment	Enrolled	6.3 mo (1–17 mo)	Intensity– 1.6 (1–4) injections		superior migration of humeral
category:	consecutively: NR	, , , , , , , , , , , , , , , , , , ,	Degree of supervision: NR	ROM:	head, presence of atrophy, or
Non-	-	Type of tear: FTT	Treatment provider: PT	 abduction 	strength <3.
operative vs.	Followup duration,	Tendon(s) torn: NR	-	 time to maximal 	C C
operative	mean (range): 3.2 yr		GROUP 2	ROM	
•	(2–7 yr)	GROUP 1 and 2	Intervention: PT NOS, NSAIDs,		
Questions:		N: 40	corticosteroid injection	Strength: NR	
Q2, Q4, Q6	Inclusion criteria:	Age, mean±SD (range): 63.2	Drug name: NR	ou ongain rate	
	(1) chronic atraumatic,	yr (46–85 yr)	Duration of treatment: 10.3 wk (2–24	Other: NR	
Funding:	FTT of ≥2 tendons, (2)	Males %: 46 (all)	wk)	Ouler: MA	
NR	mass tear	Cause of tear: degenerative	Treatment Regime: NR		
		(40)	Degree of supervision: NR		
NOS: 5*/8*	Exclusion criteria:	Tear size: mass	Treatment provider: PT		
	history of surgery on	Dominant shoulder %: 75			
	shld	Comorbidities: NR	GROUP 3		
			Surgical approach: NR		
		GROUP 3	Type of surgery: repair		
		N: 36	Additional procedures (N): NR		
		Age, mean±SD (range): 59.4			
		yr (46–85 yr)	Duration of immobilization: NR		
		Males %: see group 1	Duration of rehab: NR		
		Cause of tear: degenerative	Rehab components: NR		
		(36)	Rehab regime: NR		
		Tear size: mass			
		Dominant shoulder %: 86.1	GROUP 4		
		Comorbidities: NR	Surgical approach: all-arthroscopic		
			Type of surgery: debridement		
		GROUP 4	Additional procedures (N): NR		
		N: 32			
		Age, mean±SD (range): 62.9	Duration of immobilization: NR		
		yr (46–85 yr)	Duration of rehab: NR		
		Males %: see group 1	Rehab components: NR		
		Cause of tear: degenerative	Rehab regime: NR		
		(32)			
		Tear size: mass	PRE-OP TREATMENT: yes		
		Dominant shoulder %: 68.8	Duration: 6 mo (min)		
		Comorbidities: NR	Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Vaz S, 2000	Recruitment dates:	Enrolled: 14	GROUP 1	HRQL: NR	The CMS was satisfactory in
	Mar 1994 to 1996	Analyzed: 14	Surgical approach: all-arthroscopic		86% of cases.
Country:		Withdrawals: 0	Type of surgery: debridement	Function:	
France	Study design: before-		Additional procedures (N):	CMS	
	and-after	Duration since symptom	acromioplasty (all)		
Treatment		onset, mean (range): NR		Pain: NR	
category:	Enrolled		Duration of immobilization: NR		
Operative	consecutively: NR	Type of tear: FTT (8); PTT	Duration of rehab: NR	ROM: NR	
		(6)	Rehab components: NR		
Questions:	Followup duration,	Tendon(s) torn: NR	Rehab regime: NR	Strength: NR	
Q2, Q6	mean (range): 3.1 yr			-	
	(12 mo–4 yr)	GROUP 1	PRE-OP TREATMENT: yes	Other:	
Funding: NR		N: 14	Duration: 6 mo (min)	 return to work 	
	Inclusion criteria:	Age, mean±SD (range): NR	Type of treatment: physical therapy NOS		
BA Quality:	sub-acromial	Males %: NR			
Consecutive: U	impingment alone or	Cause of tear: NR			
Followup: Y	impingement wtih	Tear size: NR			
Outcome	PTT/FTT	Dominant shoulder %: NR			
assessment: Y		Comorbidities: NR			
	Exclusion criteria:				
	NR				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Verma NN,	Recruitment dates:	Enrolled: 127	GROUP 1	HRQL: NR	No clinical differences were
2006	Jan 2000 to May	Analyzed: 71	Surgical approach: mini-open		found in outcomes for mini-
	2002	Withdrawals: 56	Type of surgery: repair	Function:	open RCR compared to
Country:			Additional procedures (N): acromioplasty	ASES	arthroscopic RCR.
USA	Study design:	Duration since symptom	(all); biceps tenotomy (1)/tenodesis (2);	 Insalata 	·
	retrospective cohort	onset, mean (range): NR	clavicle excision (4); SLAP repair (9)	• SST	
Treatment					
category:	Enrolled	Type of tear: FTT	Duration of immobilization: 6 wk	Pain:	
Operative	consecutively: yes	Tendon(s) torn: NR	Duration of rehab: NR	VAS	
approach			Rehab components: passive stretching (wk		
	Followup duration,	GROUP 1	6–12); active stretching and strengthening	ROM:	
Questions:	mean (range): 3.2	N: 58	(≥wk 12)	 forward flexion 	
Q2, Q5	yr (2–8.1 yr)	Age, mean±SD (range):	Rehab regime: NR	 external rotation 	
	• • • •	60.7±10.4 yr (NR)	-	 internal rotation 	
Funding:	Inclusion criteria:	Males %: 39.7	GROUP 2	 abduction 	
NR	(1) arthroscopic/	Cause of tear: NR	Surgical approach: all-arthroscopic		
	mini-open RCR, (2)	Tear size: sm/med, lg/mass	Type of surgery: repair		
NOS: 6*/8*	followup >2 yr	Dominant shoulder %:	Additional procedures (N): acromioplasty	Strength: NR	
		39.7	(all); biceps tenotomy(3); clavicle excision	Other:	
	Exclusion criteria:	Comorbidities: NR	(4); SLAP repair (6)		
	(1) revision, (2) SC			 satisfaction 	
	tear, (3) partial/	GROUP 2	Duration of immobilization: 6 wk	 cuff integrity 	
	irreparable tears, (4)	N: 69	Duration of rehab: NR		
	open RCR	Age, mean±SD (range):	Rehab components: passive stretching (wk		
		59.5±8.6 yr (NR)	6–12); active stretching and strengthening		
		Males %: 31.9	(≥wk 12)		
		Cause of tear: NR	Rehab regime: NR		
		Tear size: sm/med, lg/mass	-		
		Dominant shoulder %:	PRE-OP TREATMENT: NR		
		33.3	Duration: NR		
		Comorbidities: NR	Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Vitale MA,	Recruitment dates:	Enrolled: 87	GROUP 1	HRQL:	Improvements were seen on
2007	NR	Analyzed: 87	Surgical approach: open	 Health Utility Index 	the Health Utility Index,
		Withdrawals: 0	Type of surgery: repair	EuroQOL	EuroQOL and SF-36 at 1 yr
Country: USA	Study design:		Additional procedures (N): NR	• SF-36	post-operative. An
	before-and-after	Duration since symptom			improvement in pain was seen
Treatment		onset, mean (range): NR	Duration of immobilization: NR	Function: NR	in all measures.
category:	Enrolled		Duration of rehab: NR		
Operative	consecutively: NR	Type of tear: NR Tendon(s) torn: NR	Rehab components: NR Rehab regime: NR	Pain: NR	
Questions: Q2	Followup duration, mean (range): 1 yr	GROUP 1	PRE-OP TREATMENT: yes	ROM: NR	
Funding:	(NR)	N: 87 Age, mean±SD (range):	Duration: 12 mo (min) Type of treatment: physical therapy NOS,	Strength: NR	
Foundation	Inclusion criteria:	62.5±9.5 yr (40.4–83.3 yr)	cortisone injection, NSAID	Other: NR	
BA Quality: Consecutive: U Followup: Y Outcome assessment: N	(1) RC tear, $(2) \ge 12$ mo of failed nonoperative tx, (3) 40–80 yr, (4) ability to communicate with investigators, (5) give informed consent	Males %: 54 Cause of tear: NR Tear size: NR Dominant shoulder %: NR Comorbidities: NR			
	Exclusion criteria: (1) concurrent humeral arthroplasty, (2) primary glenohumeral OA, RA, (3) fracture, (4) osteonecrosis				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Waibl B, 2005	Recruitment dates:	Enrolled: 22	GROUP 1	HRQL: NR	The transtendon suture
	May 2001 to Apr	Analyzed: 22	Surgical approach: all-arthroscopic		technique for partial articular
Country:	2002	Withdrawals: 0	Type of surgery: repair and debridement	Function:	side SS tendon show promising
Switzerland			Additional procedures (N): acromioplasty	 UCLA 	results.
_	Study design:	Duration since symptom	(NR); SLAP repairs (5); SC repair (1); AC		
Treatment	before-and-after	onset, mean (range): NR	joint resection (4)	Pain:	
category:				• VAS	
Operative	Enrolled	Type of tear: PTT	Duration of immobilization: 6 wk.		
	consecutively: yes	Tendon(s) torn: SS	Duration of rehab: NR	ROM: NR	
Questions:			Rehab components: active-assisted		
Q2, Q5	Followup duration,	GROUP 1	stretching-immediately post operative	Strength: NR	
	mean (range): 16	N: 22	Rehab regime: NR		
Funding: NR	mo (11–22 mo)	Age, mean±SD (range):	DDE OD TREATMENT. NR	Other: NR	
DA Qualitur	Inclusion oritorio.	45 yr (20–63 yr) Males %: 54.5	PRE-OP TREATMENT: NR		
BA Quality:	Inclusion criteria:		Duration: NR		
Consecutive: Y	 partial articular- side SS tendon 	Cause of tear: degenerative	Type of treatment: NR		
Followup: Y Outcome		(12), traumatic (10) Tear size: NR			
assessment: U	avulsions, (2) 30- 70% of tendon cross	Dominant shoulder %: NR			
assessment. U	section	Comorbidities: SLAP lesion			
	Section	(5); SC repair (1); acromial			
	Exclusion criteria:	clavicular resection (4)			
	(1) significant bursal				
	side tendon lesion,				
	(2) hidden FTT				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Walton JR,	Recruitment dates:	Enrolled: 31 (shld: 32)	GROUP 1	HRQL: NR	Two years after surgical repair
2007	Apr 2002 to Jan 2003	Analyzed: 31 (shld: 32)	Surgical approach: open		of large RC defect
		Withdrawals: 0	Type of surgery: repair and debridement	Function: NR	supplemented with xenograft,
Country:	Study design:		Additional procedures (N): acromioplasty,		patients had persisting deficits
Australia	retrospective cohort	Duration since symptom	augmentation	Pain:	and no recognizable benefit
		onset, mean (range): NR	Technique: side-to-side suture, tendon-to-	 Activity pain scores 	compared with the results of
Treatment	Enrolled		bone reattachment & suture through graft in		patients with no augmentation.
category:	consecutively: no	Type of tear: FTT	horizontal mattress configuration	ROM: NR	The use of the orthobiologic
Operative		Tendon(s) torn: NR			implant is not recommended.
augmentation	Followup duration,		Duration of immobilization: 4 wks	Strength:	
	mean (range): 24	GROUP 1	Duration of rehab: NR	• ER	
Questions:	mo.	N: 15 (shld: 16)	Rehab components: passive stretching-	• IR	
Q2, Q5		Age, mean±SE: 60.2±3.5	1-4 wks; active stretching & strengthening	 ADD 	
	Inclusion criteria:	Males %: 67	exercises- >4 wks	Lift-off	
Funding: No	(1) poor tendon	Cause of tear: NR	Rehab regime: NR	• SS	
funding	quality or large to	Tear size: lg, mass			
	massive FTT of a	Dominant shoulder %: NR	GROUP 2	Other:	
NOS: 6*/8*	tendon that could be	Comorbidities: NR	Surgical approach: open	 Participation in 	
	attached to the		Type of surgery: repair and debridement	sports	
	greater tuberosity	GROUP 2	Additional procedures (N): acromioplasty	 Cuff integrity 	
	after mobilization (2)	N: 16 (shld: 16)	Technique: side-to-side suture & tendon-	0,	
	intact SC tendon	Age, mean±SE: 59.6±3.1	to-bone reattachment		
		Males %: 69	Demotion of immediations Andre		
	Exclusion criteria:	Cause of tear: NR	Duration of immobilization: 4 wks		
	NR	Tear size: lg, mass	Duration of rehab: NR		
		Dominant shoulder %: NR	Rehab components: passive stretching-		
		Comorbidities: NR	1-4 wks; active stretching & strengthening		
			exercises- >4 wks Rehab regime: NR		
			PRE-OPERATIVE TREATMENT: NR		
			Duration: NR		
			Type of treatment: NR		

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Warner JJ,	Recruitment dates:	Enrolled: 21	GROUP 1	HRQL: NR	No difference was found in
2005	Jul 1999 to Jul 2000	Analyzed: 21	Surgical approach: mini-open		outcomes between arthorscopic
		Withdrawals: 0	Type of surgery: repair and debridement	Function: NR	RCR and mini-open RCR due
Country:	Study design:		Additional procedures (N): acromioplasty		to satisfaction of all pts with the
USA	retrospective cohort	Duration since symptom	(all); biceps tenotomy (1); capsular release	Pain:	procedure and no objective
		onset, mean±SD (range):	(1)	• SST	differences in outcome. The
Treatment	Enrolled	Group 1: 9±4 mo. (NR)		• VAS	choice of approach is best
category:	consecutively: NR	Group 2: 12±4 mo. (NR)	Duration of immobilization: 4 wk		based on surgeon or pt
Operative			Duration of rehab: NR	ROM:	preference.
approach	Followup duration,	Type of tear: FTT	Rehab components: passive stretching	 flexion 	
	mean±SD (range):	Tendon(s) torn: SS	(wk 1–4); active stretching (wk 5–11);	 external rotation 	
Questions:	4.2±0.3 yr (2.3–7.1		strengthening (≥12)		
Q2, Q5	yr); Group 1: 3.7±1 yr;	GROUP 1	Rehab regime: NR	Strength:	
	Group 2: 4.6±1.3 yr	N: 12		 strengh (5 points) 	
Funding:		Age, mean±SD (range):	GROUP 2	o (1)	
NR	Inclusion criteria:	55±8 yr. (NR)	Surgical approach: all-arthroscopic	Other: NR	
	(1) no previous	Males %: 66.7	Type of surgery: repair and debridement		
NOS: 5*/8*	surgery, (2) pain	Cause of tear: degenerative	Additional procedures (N): acromioplasty		
	refractory >6 wk of	(6), traumatic (6)	(all); biceps tenotomy (3)		
	physical therapy, (3)	Tear size: NR			
	pain in overhead arm	Dominant shoulder %: NR	Duration of immobilization: 4 wk		
	and impingement	Comorbidities: SLAP lesion	Duration of rehab: NR		
	sign, (4) no superior	(4); Bankart (0)	Rehab components: passive stretching		
	translation of humeral		(wk 1–4); active stretching (wk 5–11);		
	head in AP	GROUP 2	strengthening (≥wk 12)		
	radiograph, (5) no	N: 9	Rehab regime: NR		
	significant stiffness,	Age, mean±SD (range):			
	(6) FTT limited to SS,	53±10 yr. (NR)	PRE-OP TREATMENT: yes		
	no evidence of RC	Males %: 55.6	Duration: 6 wk (min)		
	muscular atrophy	Cause of tear: degenerative	Type of treatment: cortisone injection		
	Exclusion criteria:	(3), traumatic (6) Tear size: NR			
	 prior surgery, (2) extention of tear to 	Dominant shoulder %: NR Comorbidities: SLAP lesion			
	SC or IS, (3) concomitant stiffness	(2); Bankart (1)			
	concomitant stimess				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Wilson F,	Recruitment dates:	Enrolled: 100	GROUP 1	HRQL: NR	Satisfactory postoperative
2002	Feb 1986 to May	Analyzed: 100	Surgical approach: all-arthroscopic		results and better overall
	1994	Withdrawals: 0	Type of surgery: repair and debridement	Function:	functional results are obtained
Country:			Additional procedures (N): acromioplasty	UCLA	in patients with well healed RC
USA	Study design:	Duration since symptom	(26)		tendons. The arthroscopic
	retrospective cohort	onset, mean (range):	Technique: staple fixation	Pain: NR	techniques have comparable
Treatment		Group 1: 11 mo (1 wk–6.0 yr)			results to the results of
category:	Enrolled	Group 2: 10.6 mo (2 wk–6.0	Duration of immobilization: 3 wk	ROM: NR	traditional open repair.
Operative	consecutively: NR	yr)	Duration of rehab: NR		
technique			Rehab components: passive stretching	Strength: NR	
	Followup duration,	Type of tear: FTT	and physical therapy NOS (wk 3 or 4);		
Questions:	mean (range): 5 yr	Tendon(s) torn: NR	strengthening (wk 6)	Other:	
Q2, Q5	(2–14 yr)		Rehab regime: NR	 cuff integrity 	
		GROUP 1			
Funding:	Inclusion criteria:	N: 35	GROUP 2		
NR	(1) FTT, pain, failed	Age, mean±SD (range): 52	Surgical approach: all-arthroscopic		
	nonoperative tx	yr (20–69 yr)	Type of surgery: repair and debridement		
NOS: 5*/8*		Males %: 77.1	Additional procedures: acromioplasty		
	Exclusion criteria:	Cause of tear: degenerative	(65); clavicle resection (58)		
	(1) PTT >5 cm, (2)	(7), traumatic (28)	Technique: side-to-side suture anchor		
	major organ system	Tear size: sm, med, lg	Duration of immobilization: 0		
	disease	Dominant shoulder %: NR	Duration of immobilization: 0		
		Comorbidities: NR	Duration of rehab: NR		
		GROUP 2	Rehab components: passive stretching		
		N: 65	and physical therapy NOS (wk 3/4);		
		Age, mean±SD (range):	strengthening (wk 6) Rehab regime: NR		
		52 yr (32–70 yr)	Reliab legime. NR		
		Males %: 58.5	PRE-OP TREATMENT: yes		
		Cause of tear: degenerative	Duration: NR		
		(19), traumatic (46)	Type of treatment: NR		
		Tear size: sm, med, lg	Type of a calification and		
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Yamada N,	Recruitment	Enrolled: 40	GROUP 1	HRQL: NR	The operative group
2000	dates: 1979 to	Analyzed: 40	Intervention (modality): passive ROM,		experienced greater
	1999	Withdrawals: 0	strengthening, corticosteroid injection, heat	Function:	improvement in pain relief,
Country:			Drug name: lidocaine (4 ml);	 JOA 	muscle strength, and ROM than
Japan	Study design:	Duration since symptom	dexamethasone (2 mg)		conservative group.
	retrospective cohort	onset, mean (range):	Duration of treatment: 15 injections (mean)	Pain: NR	Significantly better final result
Treatment		Group 1: 44 mo (12 mo–11	Treatment Regime: Frequency-1-2 / wk;		were seen in pts without
category:	Enrolled	yr); Group 2: 13 mo (1 mo–	Intensity– NR	ROM: NR	rupture of the tendon of LHB.
Nonoperative	consecutively: NR	4.5 yr)	Degree of supervision: NR		
vs. operative			Treatment provider: NR	Strength:	
	Followup	Type of tear: FTT		 flexion and 	
Questions:	duration, mean	Tendon(s) torn:	GROUP 2	extension	
Q4, Q6	(range): 4 yr (12	Group 1: SS, IS	Surgical approach: open	 internal and 	
	mo–23 yr)	Group 2: NR	Type of surgery: unclear	external rotation	
Funding: NR			Additional procedures (N): acromioplasty		
	Inclusion criteria:	GROUP 1	(26); tenorrhaphy (12); muscle transfer (6);	Other: NR	
NOS: 3*/8*	mass RC tears	N: 14	muscle transfer of TM (3); LHB (2)		
		Age, mean±SD (range):			
	Exclusion criteria:	70 yr (55–81 yr)	Duration of immobilization: NR		
	NR	Males %: 64.3	Duration of rehab: NR		
		Cause of tear: NR	Rehab components: passive stretching (day		
		Tear size: mass	active-assisted stretching (day 14–36);		
		Dominant shoulder %: NR	active stretching and strengthening (≥day 36)		
		Comorbidities: NR	Rehab regime: NR		
		GROUP 2			
		N: 26			
		Age, mean±SD (range):			
		62 yr (47–82 yr)			
		Males %: 92.3			
		Cause of tear: NR			
		Tear size: mass			
		Dominant shoulder %: NR			
		Comorbidities: NR			

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Youm T,	Recruitment dates:	Enrolled: 95	GROUP 1	HRQL: NR	At 2 yr followup, arthroscopic
2005	Mar 1997 to Sep	Analyzed: 84 (shld: 84)	Surgical approach: mini-open		and mini-open RCR produced
	2001	Withdrawals: 11	Type of surgery: repair and debridement	Function:	similar results for small,
Country:			Additional procedures (N): acromioplasty	ASES	medium and large RC tear with
USA	Study design:	Duration since symptom	(all)	UCLA	equivalent satisfaction rates.
	Retrospective	onset, mean (range): NR	Technique: margin convergence sutures		
Treatment	cohort		and anchors or bone tunnels	Pain: NR	
category:		Type of tear: NR			
Operative	Enrolled	Tendon(s) torn: NR	Duration of immobilization: NR	ROM: NR	
technique	consecutively: yes		Duration of rehab: NR		
		GROUP 1	Rehab components: passive stretching	Strength: NR	
Questions:	Followup duration,	N: 42	(immediately); active stretching (wk 4–6)		
Q2, Q5, Q6	mean (range): 3.0	Age, mean±SD (range):	Rehab regime: NR	Other: NR	
	yr (2–5.8 yr)	60 yr (NR)			
Funding:		Males %: NR	GROUP 2		
NR	Inclusion criteria:	Cause of tear: NR	Surgical approach: all-arthroscopic		
	(1) ≥2 yr. followup,	Tear size: sm, med, lg	Type of surgery: repair and debridement		
NOS: 6*/8*	(2) surgically	Dominant shoulder %: NR	Additional procedures (N): acromioplasty		
	confirmed and	Comorbidities: NR	(all)		
	repaired RC tear		Technique: suture lassoes and suture		
	Evolucion oritorio.	GROUP 2	punches; anchors		
	Exclusion criteria:	N: 42	Duration of immobilization, ND		
	(1) previous RC	Age, mean±SD (range):	Duration of immobilization: NR Duration of rehab: NR		
	surgery; (2) mass RC tear; (3) WCB;	57.9 yr (NR) Males %: NR			
	(4) loss of passive	Cause of tear: NR	Rehab components: passive stretching (immediately); active stretching (wk 4–6)		
	ROM, AC pint	Tear size: sm, med, lg	Rehab regime: NR		
	pathology; (5)	Dominant shoulder %: NR	Reliab regime. NR		
	intraarticular	Comorbidities: NR	PRE-OP TREATMENT: NR		
	lesions; (6) GH	comorbidities. NR	Duration: NR		
	arthritis; (7) SLAP		Type of treatment: NR		
	lesion; (8)		Type of a calification. NA		
	capsulolabral				
	detachment				
	detaoriment				

Study	Study design	Participant characteristics	Treatment characteristics	Outcomes reported	Author conclusions
Zumstein MA,	Recruitment dates:	Enrolled: 27	GROUP 1	HRQL: NR	Clinically durable, excellent
2008	NR	Analyzed: 23	Surgical approach: open		results with high pt satisfaction
		Withdrawals: 4	Type of surgery: repair	Function:	were achieved by open RCR of
Country:	Study design:		Additional procedures (N): NR	CMS	mass RC tears at a mean of
Switzerland	before-and-after	Duration since symptom		 subjective shld 	almost 10 yrs postoperative.
		onset, mean (range): NR	Duration of immobilization: 6 wk.	value	However, fatty infiltration of SS
Treatment	Enrolled		Duration of rehab: NR		+ IS progressed, and retear
category:	consecutively: yes	Type of tear: FTT	Rehab components: passive stretching (day	Pain: NR	size increased overtime.
Operative		Tendon(s) torn: SS+SC,	1–wk 6); active stretching (≥wk 6);		
	Followup duration,	SS+IS, SS+IS+SC	strengthening (wk 12)	ROM:	
Questions:	mean (range): 9.9		Rehab regime: NR	 abduction 	
Q2, Q5, Q6	yr (6.7–12.8 yr)	GROUP 1		 flexion 	
		N: 27	PRE-OP TREATMENT: NR	 external rotation 	
Funding: No	Inclusion criteria:	Age, mean±SD (range):	Duration: NR	 internal rotation 	
funding	(1) open RCR of	54 yr (42–67 yr)	Type of treatment: NR		
	mass RC tears, (2)	Males %: 55.6		Strength:	
BA Quality:	availability for	Cause of tear: NR		 abduction 	
Consecutive: Y	followup	Tear size: mass			
Followup: Y		Dominant shoulder %:		Other:	
Outcome	Exclusion criteria:	66.7		 intramuscular fatty 	
assessment: Y	unavailability for	Comorbidities: NR		degeneration	
	follow			U	
				 fatty infiltration cuff integrity	

Alphabetical List of Included Studies

- 1. Audenaert E, Van NJ, Schepens A, et al. Reconstruction of massive rotator cuff lesions with a synthetic interposition graft: a prospective study of 41 patients. Knee Surg Sports Traumatol Arthrosc 2006;14(4):360-364.
- Baker CL, Liu SH. Comparison of open and arthroscopically assisted rotator cuff repairs. Am J Sports Med 1995;23(1):99-104.
- Baysal D, Balyk R, Otto D, et al. Functional outcome and health-related quality of life after surgical repair of full-thickness rotator cuff tear using a mini-open technique. Am J Sports Med 2005;33(9):1346-1355.
- 4. Bennett WF. Arthroscopic repair of massive rotator cuff tears: a prospective cohort with 2- to 4-year follow-up. Arthroscopy 2003;19(4):380-390.
- Bennett WF. Arthroscopic repair of full-thickness supraspinatus tears (small-to-medium): a prospective study with 2- to 4-year follow-up. Arthroscopy 2003;19(3):249-256.
- 6. Bennett WF. Arthroscopic repair of anterosuperior (supraspinatus/subscapularis) rotator cuff tears: a prospective cohort with 2- to 4-year follow-up: classification of biceps subluxation/instability. Arthroscopy 2003;19(1):21-33.
- Bigoni M, Gorla M, Guerrasio S, et al. Shoulder evaluation with isokinetic strength testing after arthroscopic rotator cuff repair. J Shoulder Elbow Surg 2009;18(2):178-183
- Bishop J, Klepps S, Lo IK, et al. Cuff integrity after arthroscopic versus open rotator cuff repair: a prospective study. J Shoulder Elbow Surg 2006;15(3):290-299.
- Boehm TD, Werner A, Radtke S, et al. The effect of suture materials and techniques on the outcome of repair of the rotator cuff: a prospective, randomised study. J Bone Joint Surg Br 2005;87(6):819-823.
- Boileau P, Baque F, Valerio L, et al. Isolated arthroscopic biceps tenotomy or tenodesis improves symptoms in patients with massive irreparable rotator cuff tears. J Bone Joint Surg Am 2007;89(4):747-757.
- 11. Boileau P, Brassart N, Watkinson DJ, et al. Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Bone Joint Surg Am 2005;87(6):1229-1240.

- Boissonnault WG, Badke MB, Wooden MJ, et al. Patient outcome following rehabilitation for rotator cuff repair surgery: the impact of selected medical comorbidities. J Orthop Sports Phys Ther 2007;37(6):312-319.
- Boszotta H, Prunner K. Arthroscopically assisted rotator cuff repair. [review] Arthroscopy 2004;20(6):620-626.
- 14. Brady B, Redfern J, MacDougal G, et al. The addition of aquatic therapy to rehabilitation following surgical rotator cuff repair: a feasibility study. Physiother Res Int 2008;13(3):153-161.
- 15. Buess E, Steuber KU, Waibl B. Open versus arthroscopic rotator cuff repair: a comparative view of 96 cases. Arthroscopy 2005;21(5):597-604.
- Burks RT, Crim J, Brown N, et al. A prospective randomized clinical trial comparing arthroscopic single- and double-row rotator cuff repair: magnetic resonance imaging and early clinical evaluation. Am J Sports Med 2009;37(4):674-682.
- 17. Caniggia M, Maniscalco P, Pagliantini L, et al. Titanium anchors for the repair of rotator cuff tears: preliminary report of a surgical technique. J Orthop Trauma 1995;9(4):312-317.
- Charousset C, Grimberg J, Duranthon LD, et al. The time for functional recovery after arthroscopic rotator cuff repair: correlation with tendon healing controlled by computed tomography arthrography. Arthroscopy 2008;24(1):25-33.
- Charousset C, Grimberg J, Duranthon LD, et al. Can a double-row anchorage technique improve tendon healing in arthroscopic rotator cuff repair?: a prospective, nonrandomized, comparative study of double-row and single-row anchorage techniques with computed tomographic arthrography tendon healing assessment. Am J Sports Med 2007;35(8):1247-1253.
- Checchia SL, Doneux PS, Miyazaki AN, et al. Biceps tenodesis associated with arthroscopic repair of rotator cuff tears. J Shoulder Elbow Surg 2005;14(2):138-144.
- 21. Cofield RH, Parvizi J, Hoffmeyer PJ, et al. Surgical repair of chronic rotator cuff tears: a prospective long-term study. J Bone Joint Surg Am 2001;83(1):71-77.

- 22. Cole BJ, McCarty III LP, Kang RW, et al. Arthroscopic rotator cuff repair: prospective functional outcome and repair integrity at minimum 2-year follow-up. J Shoulder Elbow Surg 2007;16(5):579-585.
- 23. Colegate-Stone T, Allom R, Tavakkolizadeh A, et al. An analysis of outcome of arthroscopic versus mini-open rotator cuff repair using subjective and objective scoring tools. Knee Surg Sports Traumatol Arthrosc 2009;17(6):691-694.
- 24. Cools A, Declercq G, Sneyers C, et al. Isokinetic muscle strength and functional restoration following surgical repair of the rotator cuff: a prospective study. Isokinet Exerc Sci 2006;14(3):291-300.
- 25. Costouros JG, von Campe A, Gerber C. Arthroscopic rotator cuff repair leads to less postoperative fatty infiltration than open repair. Proceeding of the 20th Congress of the European Society for Surgery of the Shoulder and the Elbow; 2006 Sep 20-23; Athens (Greece), 2006.
- Cummins CA, Strickland S, Appleyard RC, et al. Rotator cuff repair with bioabsorbable screws: an in vivo and ex vivo investigation. Arthroscopy 2003;19(3):239-248.
- 27. Davidson PA, Rivenburgh DW. Rotator cuff repair tension as a determinant of functional outcome. J Shoulder Elbow Surg 2000;9(6):502-506.
- De Carli A, Vulpiani M, Russo A, et al. Reparable rotator cuff tears: surgery vs shock wave therapy. Proceeding of the 20th Congress of the European Society for Surgery of the Shoulder and the Elbow; 2006 Sep 20-23; Athens (Greece), 2006.
- 29. DeFranco MJ, Bershadsky B, Ciccone J, et al. Functional outcome of arthroscopic rotator cuff repairs: a correlation of anatomic and clinical results. J Shoulder Elbow Surg 2007;16(6):759-765.
- Delbrouck C, Dauty M, Huguet D, et al. Reeducation des ruptures de coiffe de l'epaule operees: prise en charge en hospitalisation en internat ou en hospitalisation de jour (a propos de 76 observations). [Rehabilitation after shoulder rotator cuff surgery: in-patient or dayhospitalization (about 76 cases). Ann Readapt Med Phys 2003;46(4):207-213. (Fre.)
- Deutsch A, Kroll DG, Hasapes J, et al. Repair integrity and clinical outcome after arthroscopic rotator cuff repair using single-row anchor fixation: a prospective study of single-tendon and twotendon tears. J Shoulder Elbow Surg 2008;17(6):845-852.

- 32. Deutsch A. Arthroscopic repair of partial-thickness tears of the rotator cuff. J Shoulder Elbow Surg 2007;16(2):193-201.
- Ellman H, Kay SP, Wirth M. Arthroscopic treatment of full-thickness rotator cuff tears: 2- to 7-year follow-up study. Arthroscopy 1993;9(2):195-200.
- Favard L, Berhouet J, Colmar M, et al. Massive rotator cuff tears in patients younger than 65 years. What treatment options are available? Orthop Traumatol Surg Res 2009;95(4 Suppl):19-26.
- 35. Fenlin Jr JM, Chase JM, Rushton SA, et al. Tuberoplasty: creation of an acromiohumeral articulation-a treatment option for massive, irreparable rotator cuff tears. J Shoulder Elbow Surg 2002;11(2):136-142.
- 36. Franceschi F, Longo UG, Ruzzini L, et al. No advantages in repairing a type II superior labrum anterior and posterior (SLAP) lesion when associated with rotator cuff repair in patients over age 50: a randomized controlled trial. Am J Sports Med 2008;36(2):247-253.
- Franceschi F, Longo UG, Ruzzini L, et al. To detach the long head of the biceps tendon after tenodesis or not: outcome analysis at the 4-year follow-up of two different techniques. Int Orthop 2007;31(4):537-545.
- Franceschi F, Ruzzini L, Longo UG, et al. Equivalent clinical results of arthroscopic singlerow and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. Am J Sports Med 2007;35(8):1254-1260.
- Fuchs B, Gilbart MK, Hodler J, et al. Clinical and structural results of open repair of an isolated onetendon tear of the rotator cuff. J Bone Joint Surg Am 2006;88(2):309-316.
- 40. Gartsman GM, O'Connor DP. Arthroscopic rotator cuff repair with and without arthroscopic subacromial decompression: a prospective, randomized study of one-year outcomes. J Shoulder Elbow Surg 2004;13(4):424-426.
- 41. Gartsman GM, Brinker MR, Khan M. Early effectiveness of arthroscopic repair for fullthickness tears of the rotator cuff: an outcome analysis. J Bone Joint Surg Am 1998;80(1):33-40.
- 42. Gartsman GM. Massive, irreparable tears of the rotator cuff: results of operative debridement and subacromial decompression. J Bone Joint Surg Am 1997;79(5):715-721.
- 43. Gazielly DF, Gleyze P, Montagnon C. Functional and anatomical results after rotator cuff repair. Clin Orthop Relat Res 1994;(304):43-53.

- 44. Ghroubi S, Chaari M, Elleuch H, et al. Le devenir fonctionnel et la qualite de vie des ruptures de la coiffe des rotateurs non operees. [Functional and quality of life outcome of none operated rotator cuff tears]. Ann Readapt Med Phys 2008;51(9):714-721. (Fre.)
- 45. Gladstone JN, Bishop JY, Lo IK, et al. Fatty infiltration and atrophy of the rotator cuff do not improve after rotator cuff repair and correlate with poor functional outcome. Am J Sports Med 2007;35(5):719-728.
- Grasso A, Milano G, Salvatore M, et al. Single-row versus double-row arthroscopic rotator cuff repair: a prospective randomized clinical study. Arthroscopy 2009;25(1):4-12.
- 47. Hata Y, Saitoh S, Murakami N, et al. Atrophy of the deltoid muscle following rotator cuff surgery. J Bone Joint Surg Am 2004;86(7):1414-1419.
- Hayes K, Ginn KA, Walton JR, et al. A randomised clinical trial evaluating the efficacy of physiotherapy after rotator cuff repair. Aust J Physiother 2004;50(2):77-83.
- 49. Hawkins RH, Dunlop R. Nonoperative treatment of rotator cuff tears. Clin Orthop Relat Res 1995;(321):178-188.
- 50. Heers G, Anders S, Werther M, et al. Effektivitat der physiotherapie in eigenregie bei rotatorenmanschettendefekten. [Efficacy of home exercises for symptomatic rotator cuff tears in correlation to the size of the defect]. Sportverletz Sportschaden 2005;19(1):22-27. (Ger.)
- 51. Henn III RF, Kang L, Tashjian RZ, et al. Patients with workers' compensation claims have worse outcomes after rotator cuff repair. J Bone Joint Surg Am 2008;90(10):2105-2113.
- 52. Hsu SL, Ko JY, Chen SH, et al. Surgical results in rotator cuff tears with shoulder stiffness. J Formos Med Assoc 2007;106(6):452-461.
- 53. Iannotti JP, Codsi MJ, Kwon YW, et al. Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears: a randomized, controlled trial. J Bone Joint Surg Am 2006;88(6):1238-1244.
- 54. Iannotti JP, Bernot MP, Kuhlman JR, et al. Postoperative assessment of shoulder function: a prospective study of full-thickness rotator cuff tears. J Shoulder Elbow Surg 1996;5(6):449-457. [10-year followup data: Galatz LM, Griggs S, Cameron BD, et al. Prospective longitudinal analysis of postoperative shoulder function : a tenyear follow-up study of full-thickness rotator cuff tears. J Bone Joint Surg Am 2001 Jul;83(7):1052-1056.]

- 55. Ide J, Tokiyoshi A, Hirose J, et al. Arthroscopic repair of traumatic combined rotator cuff tears involving the subscapularis tendon. J Bone Joint Surg Am 2007;89(11):2378-2388.
- Ide J, Maeda S, Takagi K. Arthroscopic transtendon repair of partial-thickness articular-side tears of the rotator cuff: anatomical and clinical study. Am J Sports Med 2005;33(11):1672-1679.
- Ide J, Maeda S, Takagi K. A comparison of arthroscopic and open rotator cuff repair. Arthroscopy 2005;21(9):1090-1098.
- 58. Ito J, Morioka T. Surgical treatment for large and massive tears of the rotator cuff. Int Orthop 2003;27(4):228-231.
- 59. Kane TP, Rogers P, Hazelgrove J, et al. Pulsed radiofrequency applied to the suprascapular nerve in painful cuff tear arthropathy. J Shoulder Elbow Surg 2008;17(3):436-440.
- 60. Kim SH, Ha KI, Park JH, et al. Arthroscopic versus mini-open salvage repair of the rotator cuff tear: outcome analysis at 2 to 6 years' follow-up. [review]. Arthroscopy 2003;19(7):746-754.
- 61. Kirschenbaum D, Coyle J, Leddy JP, et al. Shoulder strength with rotator cuff tears: pre- and postoperative analysis. Clin Orthop Relat Res 1993;(288):174-178.
- 62. Klinger HM, Spahn G, Baums MH, et al. Arthroscopic debridement of irreparable massive rotator cuff tears: a comparison of debridement alone and combined procedure with biceps tenotomy. Acta Chir Belg 2005;105(3):297-301.
- 63. Klinger HM, Steckel H, Ernstberger T, et al. Arthroscopic debridement of massive rotator cuff tears: negative prognostic factors. Arch Orthop Trauma Surg 2005;125(4):261-266.
- 64. Klintberg Hultenheim I, Gunnarsson A-C, et al. Early loading in physiotherapy treatment after fullthickness rotator cuff repair: a prospective randomized pilot-study with a two-year follow-up. Clin Rehabil 2009;23(7):622-638.
- 65. Klepps S, Bishop J, Lin J, et al. Prospective evaluation of the effect of rotator cuff integrity on the outcome of open rotator cuff repairs. Am J Sports Med 2004;32(7):1716-1722.
- 66. Ko S-H, Friedman D, Seo D-K, et al. A prospective therapeutic comparison of simple suture repairs to massive cuff stitch repairs for treatment of smalland medium-sized rotator cuff tears. Arthroscopy 2009;25(6):583-589.

- 67. Ko SH, Lee CC, Friedman D, et al. Arthroscopic single-row supraspinatus tendon repair with a modified mattress locking stitch: a prospective, randomized controlled comparison with a simple stitch. Arthroscopy 2008;24(9):1005-1012.
- Kose KC, Tezen E, Cebesoy O, et al. Mini-open versus all-arthroscopic rotator cuff repair: comparison of the operative costs and the clinical outcomes. Adv Ther 2008;25(3):249-259.
- 69. Koubaa S, Ben Salah FZ, Lebib S, et al. Traitement conservateur des ruptures transfixiantes de la coiffe des rotateurs: etude prospective ouverte. A propos de 24 patients. [Conservative management of fullthickness rotator cuff tears: a prospective study of 24 patients]. Ann Readapt Med Phys 2006;49(2):62-67. (Fre.)
- Kreuz PC, Remiger A, Lahm A, et al. Comparison of total and partial traumatic tears of the subscapularis tendon. J Bone Joint Surg Br 2005;87(3):348-351.
- Lafosse L, Brozska R, Toussaint B, et al. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am 2007;89(7):1533-1541.
- Lafosse L, Jost B, Reiland Y, et al. Structural integrity and clinical outcomes after arthroscopic repair of isolated subscapularis tears. J Bone Joint Surg Am 2007;89(6):1184-1193.
- 73. LaStayo PC, Wright T, Jaffe R, et al. Continuous passive motion after repair of the rotator cuff: a prospective outcome study. J Bone Joint Surg Am 1998;80(7):1002-1011.
- 74. Leroux JL, Thomas E, Azema MJ, et al. Functional pattern of 115 rotator cuff tears. Eur J Phys Rehabil Med 1993;3(6):242-247.
- Levy O, Mullett H, Roberts S, et al. The role of anterior deltoid reeducation in patients with massive irreparable degenerative rotator cuff tears. J Shoulder Elbow Surg 2008;17(6):863-870.
- Levy O, Venkateswaran B, Even T, et al. Mid-term clinical and sonographic outcome of arthroscopic repair of the rotator cuff. J Bone Joint Surg Br 2008;90(10):1341-1347.
- 77. Lichtenberg S, Liem D, Magosch P, et al. Influence of tendon healing after arthroscopic rotator cuff repair on clinical outcome using single-row Mason-Allen suture technique: a prospective, MRI controlled study. Knee Surg Sports Traumatol Arthrosc 2006;14(11):1200-1206.

- 78. Liem D, Bartl C, Lichtenberg S, et al. Clinical outcome and tendon integrity of arthroscopic versus mini-open supraspinatus tendon repair: a magnetic resonance imaging-controlled matched-pair analysis. Arthroscopy 2007;23(5):514-521.
- 79. Lim JTK, Acornley A, Dodenhoff RM. Recovery after arthroscopic subacromial decompression: prognostic value of the subacromial injection test. Arthroscopy 2005;21(6):680-683.
- Lunn JV, Castellanos-Rosas J, Tavernier T, et al. A novel lesion of the infraspinatus characterized by musculotendinous disruption, edema, and late fatty infiltration. J Shoulder Elbow Surg 2008;17(4):546-553.
- Maier D, Jaeger M, Suedkamp NP, et al. Stabilization of the long head of the biceps tendon in the context of early repair of traumatic subscapularis tendon tears. J Bone Joint Surg Am 2007;89(8):1763-1769.
- 82. Mallon WJ, Misamore G, Snead DS, et al. The impact of preoperative smoking habits on the results of rotator cuff repair. J Shoulder Elbow Surg 2004;13(2):129-132.
- Marc T, Gaudin T, Teissier J. Rehabilitation after rotator cuff repairs: factors influencing functional outcome at two years. Kinesitherapie Revue 2009;(89):36-44. (Fre).
- 84. Matis N, Hubner C, Aschauer E, et al. Arthroscopic transosseous reinsertion of the rotator cuff. Oper Orthop Traumatol 2006;18(1):1-18.
- McBirnie JM, Miniaci A, Miniaci SL. Arthroscopic repair of full-thickness rotator cuff tears using bioabsorbable tacks. Arthroscopy 2005;21(12):1421-1427.
- McCallister WV, Parsons IM, Titelman RM, et al. Open rotator cuff repair without acromioplasty. J Bone Joint Surg Am 2005;87(6):1278-1283.
- McIntyre LF, Norris M, Weber B. Comparison of suture welding and hand-tied knots in mini-open rotator cuff repair. Arthroscopy 2006;22(8):833-836.
- Michael JWP, Konig DP, Imhoff AB, et al. Effektivitat der postoperativen behandlung mittels motorisierter bewegungsschienen (CPM) bei patienten mit ruptur der rotatorenmanschette. [Efficiency of a postoperative treatment after rotator cuff repair with a continuous passive motion device (CPM)]. Z Orthop Ihre Grenzgeb 2005;143(4):438-445. (Ger.)
- Milano G, Grasso A, Salvatore M, et al. Arthroscopic rotator cuff repair with and without subacromial decompression: a prospective randomized study. Arthroscopy 2007;23(1):81-88.

- Millar NL, Wu X, Tantau R, et al. Open versus two forms of arthroscopic rotator cuff repair. Clin Orthop Related Res 2009;467(4):966-978.
- 91. Milroy DR, Marland JD, Parent EC, et al. Rotator cuff repair: the effect of a standardized postoperative physical therapy protocol versus a nonstandardized post-operative protocol. 2008 Combined Sections Meeting. Nashville, Tennessee, February 6-9, 2008. J Orthop Sports Phys Ther 2008;38(1):A17-A18.
- Misamore GW, Ziegler DW, Rushton JL. Repair of the rotator cuff: a comparison of results in two populations of patients. J Bone Joint Surg Am 1995;77(9):1335-1339.
- 93. Mohtadi NG, Hollinshead RM, Sasyniuk TM, et al. A randomized clinical trial comparing open to arthroscopic acromioplasty with mini-open rotator cuff repair for full-thickness rotator cuff tears: disease-specific quality of life outcome at an average 2-year follow-up. Am J Sports Med 2008;36(6):1043-1051.
- 94. Montgomery T, Yerger B. Management of rotator cuff tears: a comparison of arthroscopic debridement and surgical repair. J Shoulder Elbow Surg 1994;3(2):70-78.
- 95. Moosmayer S, Lund G., Seljom U, et al. Comparison between surgery and physiotherapy in the treatment of small and medium-sized tears of the rotator cuff: a randomized controlled study of 103 patients with one-year followup. J Bone Joint Surg Am 2010; 92B(1):83-91.
- 96. Moser M, Jablonski MV, Horodyski M, et al. Functional outcome of surgically treated massive rotator cuff tears: a comparison of complete repair, partial repair, and debridement. Orthopedics 2007;30(6):479-482.
- Motycka T, Lehner A, Landsiedl F. Comparison of debridement versus suture in large rotator cuff tears: long-term study of 64 shoulders. Arch Orthop Trauma Surg 2004;124(10):654-658.
- 98. Mullett H, Venkat V, Massoud S, et al. Small & Medium Rotator Cuff Tears: Comparison of Arthroscopic Rotator Cuff Repair vs Arthroscopic Subacromial Decompression. Proceeding of the 20th Congress of the European Society for Surgery of the Shoulder and the Elbow; 2006 Sep 20-23; Athens (Greece), 2006.
- Nam SC, Yong GR. Functional outcome of arthroscopic repair with concomitant manipulation in rotator cuff tears with stiff shoulder. Am J Sports Med 2008;36(7):1323-1329.

- 100. Nho SJ, Brown BS, Lyman S, et al. Prospective analysis of arthroscopic rotator cuff repair: prognostic factors affecting clinical and ultrasound outcome. J Shoulder Elbow Surg 2009;18(1):13-20.
- Ogilvie-Harris DJ, Demaziere A. Arthroscopic debridement versus open repair for rotator cuff tears: a prospective cohort study. J Bone Joint Surg Br 1993;75(3):416-420.
- 102. Oh JH, Kim SH, Lee HK, et al. Moderate preoperative shoulder stiffness does not alter the clinical outcome of rotator cuff repair with arthroscopic release and manipulation. Arthroscopy 2008;24(9):983-991.
- 103. Pai VS, Lawson DA. Rotator cuff repair in a district hospital setting: outcomes and analysis of prognostic factors. J Shoulder Elbow Surg 2001;10(3):236-241.
- Park JY, Lhee SH, Choi JH, et al. Comparison of the clinical outcomes of single- and double-row repairs in rotator cuff tears. Am J Sports Med 2008;36(7):1310-1316.
- 105. Pearsall AW, Ibrahim KA, Madanagopal SG. The results of arthroscopic versus mini-open repair for rotator cuff tears at mid-term follow-up. J Orthop Surg 2007;2:24.
- 106. Park JY, Chung KT, Yoo MJ. A serial comparison of arthroscopic repairs for partial- and fullthickness rotator cuff tears. Arthroscopy 2004;20(7):705-711.
- Pillay R. Arthroscopic subacromial decompression for chronic shoulder impingement. J Orthop Surg 1994;2(1):67-70.
- 108. Porcellini G, Paladini P, Campi F, et al. Shoulder instability and related rotator cuff tears: arthroscopic findings and treatment in patients aged 40 to 60 years. Arthroscopy 2006;22(3):270-276.
- Prasad N, Odumala A, Elias F, et al. Outcome of open rotator cuff repair: an analysis of risk factors. Acta Orthop Belg 2005;71(6):662-666.
- 110. Raab MG, Rzeszutko D, O'Connor W, et al. Early results of continuous passive motion after rotator cuff repair: a prospective, randomized, blinded, controlled study. Am J Orthop 1996;25(3):214-220.
- 111. Randelli PS, Arrigoni P, Cabitza P, et al. Autologous platelet rich plasma for arthroscopic rotator cuff repair: a pilot study. Disabil Rehabil 2008;30(20):1584-1589.
- 112. Roddey TS, Olson SL, Gartsman GM, et al. A randomized controlled trial comparing 2 instructional approaches to home exercise instruction following arthroscopic full-thickness rotator cuff repair surgery. J Orthop Sports Phys Ther 2002;32(11):548-559.

- 113. Rokito AS, Cuomo F, Gallagher MA, et al. Longterm functional outcome of repair of large and massive chronic tears of the rotator cuff. J Bone Joint Surg Am 1999;81(7):991-997.
- 114. Sauerbrey AM, Getz CL, Piancastelli M, et al. Arthroscopic versus mini-open rotator cuff repair: a comparison of clinical outcome. Arthroscopy 2005;21(12):1415-1420.
- 115. Scheibel M, Brown A, Woertler K, et al. Preliminary results after rotator cuff reconstruction augmented with an autologous periosteal flap. Knee Surg Sports Traumatol Arthrosc 2007;15(3):305-314.
- 116. Scheibel M, Lichtenberg S, Habermeyer P. Reversed arthroscopic subacromial decompression for massive rotator cuff tears. J Shoulder Elbow Surg 2004;13(3):272-278.
- 117. Scheuermann R, Behrens P, Egbers HJ, et al. [The early functional physiotherapy of the shoulder backed up by an active shoulder support]. Aktuelle Traumatol 1991;21(2):58-63. (Ger.)
- 118. Severud EL, Ruotolo C, Abbott DD, et al. Allarthroscopic versus mini-open rotator cuff repair: a long-term retrospective outcome comparison. [review] Arthroscopy 2003;19(3):234-238.
- 119. Shibata Y, Midorikawa K, Emoto G, et al. Clinical evaluation of sodium hyaluronate for the treatment of patients with rotator cuff tear. J Shoulder Elbow Surg 2001;10(3):209-216.
- 120. Sugaya H, Maeda K, Matsuki K, et al. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair: a prospective outcome study. J Bone Joint Surg Am 2007;89(5):953-960.
- 121. Sugaya H, Maeda K, Matsuki K, et al. Functional and structural outcome after arthroscopic fullthickness rotator cuff repair: single-row versus dual-row fixation. Arthroscopy 2005;21(11):1307-1316.
- 122. Tashjian RZ, Henn RF, Kang L, et al. Effect of medical comorbidity on self-assessed pain, function, and general health status after rotator cuff repair. J Bone Joint Surg Am 2006;88(3):536-540.
- 123. Tauro JC. Stiffness and rotator cuff tears: incidence, arthroscopic findings, and treatment results. Arthroscopy 2006;22(6):581-586.
- 124. Tauro JC. Arthroscopic repair of large rotator cuff tears using the interval slide technique. Arthroscopy 2004;20(1):13-21.
- 125. Torrens C, Lopez JM, Verdier E, et al. Open anterior acromioplasty with preservation of the coracoacromial ligament: a modified surgical technique. J Shoulder Elbow Surg 2003;12(1):9-14.

- 126. Trenerry K, Walton JR, Murrell GA. Prevention of shoulder stiffness after rotator cuff repair. Clin Orthop Relat Res 2005;(430):94-99.
- 127. Vad VB, Warren RF, Altchek DW, et al. Negative prognostic factors in managing massive rotator cuff tears. Clin J Sport Med 2002;12(3):151-157.
- 128. Vaz S.Pries. [Bursectomy and acromial resection in arthroscopic treatment of sub-acromial impingement]. Orthop traumatol 2000;10(1):13-19. (Fre.)
- 129. Verma NN, Dunn W, Adler RS, et al. Allarthroscopic versus mini-open rotator cuff repair: a retrospective review with minimum 2-year followup. Arthroscopy 2006;22(6):587-594.
- Vitale MA, Vitale MG, Zivin JG, et al. Rotator cuff repair: an analysis of utility scores and costeffectiveness. J Shoulder Elbow Surg 2007;16(2):181-187.
- Waibl B, Buess E. Partial-thickness articular surface supraspinatus tears: a new transtendon suture technique. Arthroscopy 2005;21(3):376-381.
- 132. Walton JR, Bowman NK, Khatib Y, et al. Restore orthobiotic implant: not recommended for augmentation of rotator cuff repairs. J Bone Joint Surg Am 2007;89:786-791.
- 133. Warren RF, Tetreault P, Lehtinen J, et al. Arthroscopic versus mini-open rotator cuff repair: a cohort comparison study. Arthroscopy 2005;21(3):328-332.
- 134. Wilson F, Hinov V, Adams G. Arthroscopic repair of full-thickness tears of the rotator cuff: 2- to 14year follow-up. Arthroscopy 2002;18(2):136-144.
- 135. Yamada N, Hamada K, Nakajima T, et al. Comparison of conservative and operative treatments of massive rotator cuff tears. Tokai J Exp Clin Med 2000;25(4-6):151-163.
- 136. Youm T, Murray DH, Kubiak EN, et al. Arthroscopic versus mini-open rotator cuff repair: a comparison of clinical outcomes and patient satisfaction. J Shoulder Elbow Surg 2005;14(5):455-459.
- 137. Zumstein MA, Jost B. The clinical and structural long-term results of open repair of massive tears of the rotator cuff. J Bone Joint Surg Am 2008;90(11):2423-2431.

Appendix F. List of Excluded Studies and Unobtained Studies

Eight hundred and forty-four studies were excluded. The reasons for exclusion are as follows: (1) the study was not primary research (n=153), (2) the study was published before 1990 (n=4), (3) the study enrolled 10 or fewer participants (n=34), (4) no baseline data was provided (n=89), (5) inappropriate study design (n=182), (6) the study population did not meet our criteria (n=15), (7) rotator cuff (RC) tears were not confirmed using diagnostic imaging (n=107), (8) the primary intention of the study was not the treatment of RC tears (n=59), (9) the study intervention did not meet our criteria (n=47), (10) there were no numeric outcome of interest reported (n=39), (11) the followup duration was less than 12 months in operative studies (n=23), (12) the study was not published in English (n=79), (13) the article was a multiple publication of an included study (n=13). In addition, 29 studies could not be retrieved through the univeristy interlibrary loan service.

Excluded – Not Primary Research (N = 153)

The following studies were excluded because they were not primary research.

- 1. Ahmad CS, Levine W. Arthroscopic rotator cuff repair. Orthopedics 2004;27(6):570-574.
- 2. Altchek D. Arthroscopy of the shoulder. Scand J Med Sci Sports 1995;5(2):71-75.
- Anderl W. Neuentwicklungen in der orthopadischchirurgischen therapie der schulter: schulterdiagnostik. Radiologe 2004;44(6):613-619. (Fre).
- Andrews JR. Diagnosis and treatment of chronic painful shoulder: review of nonsurgical interventions. Arthroscopy 2005;21(3):333-347.
- 5. Augereau B. [Surgical treatment of rotator cuff ruptures. Shoulder surgery in the adult: A collection of SOFCOT lectures] 1993;137-154. (Fre).
- 6. Augereau B. Indications therapeutiques [Fullthickness tears of the rotator cuff, including subscapularis: conclusions and therapeutic indications]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):136-138. (Fre).
- Augustine SJ, McCluskey GM. Mini-open rotator cuff repair. Sports Med Arthrosc 2000 Jul;8(3):229-238.
- Azorin M, Cordesse G. Reeducation des ruptures des muscles de la coiffe operees. Kinesither Sci 1993;(327):34-40. (Fre).

- 9. Banner I, Peyre M. Place du traitement medicamenteux et des infiltrations dans la prise en charge medicale des lesions de la coiffe des rotateurs. J Traumatol Sport 2007;24(2):93-98. (Fre).
- 10. Bauer C, Gesslein M. Rotatorenmanschetten-Ruptur [Rupture of the rotator cuff]. MMW Fortschr Med 2008 Feb 7;150(6):41. (Ger).
- Bauer GJ, Kniesel B. Arthroscopic reconstruction of the rotor cuff. Unfallchirurg 2006;109(8):619-627.
- 12. Beaudreuil J, Revel M. Physiopathologie et reeducation des lesions de la coiffe des rotateurs. Actual Rheumatol 1998;422-435.
- Bigliani LU. Die beziehung von akromialarchitektur zu erkrankungen der rotatorenmanschette. Orthopade 1991;20(5):302-309. (Ger).
- Bleton R. Les ruptures des tendons des muscles de la coiffe des rotateurs de l'epaule. Kinesither Sci 1993;(327):27-33. (Fre).
- Blevins FT, Warren RF. Diagnostic arthroscopy and arthroscopic management of rotator cuff tears. Master Techniques in Orthopaedic Surgery; The Shoulder. New York, New York: Raven Press; 1995. p. 399-416.
- 16. Blevins FT. Rotator cuff pathology in athletes. Sports Med 1997;24(3):205-220.

- 17. Bøhmer AS, Staff PH, Brox JI. Supervised exercises in relation to rotator cuff disease (impingement syndrome stages II and III): a treatment regimen and its rationale. Physiother Theory Pract 1998;14(2):93-105.
- Bohsali KI. Current concepts review: complications of total shoulder arthroplasty. J Bone Joint Surg Am 2006;88(10):2279-2292.
- Bover T, Frank A, Societe francaise de rhumatologie Fp. L' arthroscopie dans la pathologie de la coiffe des rotateurs de l' epaule. Seizieme journee de Bichat «Appareil locomoteur» - 29 mars 2003. Seance pleniere (1ere partie). Rhumatologie 2003;55(2):22-30. (Fre).
- Breazeale N, Craig E. Partial-thickness rotator cuff tears: pathogenesis and treatment. The rotator cuff, Part II. Orthop Clin North Am 1997;28(2):145-155.
- 21. Brems JJ. Repair of massive rotator cuff tears: method of mobilization and tissue coverage. In Craig EV (ed) The Shoulder. New York, Raven Press 1995:35-54.
- Brewster C, Moynes DR. Rehabilitation of the shoulder following rotator cuff injury or surgery. J Orthop Sports Phys Ther 1993;18(2):422-426.
- Brislin K, Rubenstein D, Wetzler M, et al. Operative repair of anterior instability and rotator cuff tears in athletes. Oper Tech Sports Med 2002 Apr;10(2):64-68.
- Browning DG, Desai MM. Rotator cuff injuries and treatment. Prim Care 2004;31(4):807.
- Buchbinder R, Green S, Youd JM. Corticosteroid injections for shoulder pain. Cochrane Database Syst Rev CD004016. 2003;(1).
- Buckley P, Grana WA. How to treat rotator cuff injuries. Phys Sportsmed 1993 May;21(5):144t.
- Budoff JE. The etiology of rotator cuff disease and treatment of partial-thickness pathology. J Hand Surg Am 2005;5(3):139-152.
- Burkhart SS. Arthroscopic treatment of massive rotator cuff tears. Clin Orthop Relat Res 2001;(390):107-118.
- 29. Burkhart SS, Klein JR. Arthroscopic treatment of full-thickness rotator cuff tears in the athlete. Oper Tech Sports Med 2004 Apr;12(2):122-125.

- Burns JP, Snyder SJ, Albritton M. Arthroscopic rotator cuff repair using tripleloaded anchors, suture shuttles, and suture savers. J Am Acad Orthop Surg 2007;15(7):432-444.
- Centre for Reviews and Dissemination. Arthroscopic versus open acromioplasty: a systematic review [structured abstract]. 2008.
- Checroun AJ, Dennis MG, Zuckerman JD. Open versus arthroscopic decompression for subacromial impingement: a comprehensive review of the literature from the last 25 years. [Review] [41 refs]. Bull Hosp Joint Dis 1998;57(3):145-151.
- Christel P, Parier J, Djian P, et al. Les ruptures isolees du tendon du muscle sous scapulaire chez le sportif [Isolated lesion of subscapularis]. Rhumatologie 1992;44(9/10):225-228. (Fre).
- Codman EA. Rupture of the supraspinatus tendon. Clin Orthop Relat Res 1990;(254):3-26.
- 35. Coiffe des rotateurs et masso-kinesitherapie. Kinesither Sci 2002;(424):28-31. (Fre).
- 36. Colne P. Bilan kinesitherapique des lesions de la coiffe des rotateurs: quelques aspects particuliers de la prise en charge kinesitherapique a travers une analyse de la litterature recente [Physical therapy for rotator cuff tears: specific management techniques reported in the literature]. Kinesitherapie 2001 Nov;34-37. (Fre).
- Colne P. Mobilisations de l'epaule et techniques de renforcement. Kinesitherapie 2002;(4):35-37. (Fre).
- Conway JE, Romeo A. Arthroscopic repair of partial-thickness rotator cuff tears and slap lesions in professional baseball players: repair of athletic shoulder Injuries. Orthop Clin North Am 2001;32(3):viii, 443-viii, 456.
- Cordasco FA, Bigliani LU. Large and massive tears: technique of open repair. The rotator cuff, Part II. Orthop Clin North Am 1997;28(2):179-193.
- 40. Craig EV. Open anterior acromioplasty for full-thickness rotator cuff tears. Master techniques in orthopaedic surgery: The shoulder 1995;3-33.
- 41. Cross T, Crichton K. Rotator cuff problems in sport. Med Today 2006;7(11):75-79.
- 42. Dalton SE. The conservative management of rotator cuff disorders. Br J Rheumatol 1994;33(7):663-667.

- Darnault A, Heuleu J, Daniel F, et al. Les lésions dégénératives de la coiffe: stratégies thérapeutiques. [Therapeutic strategies for degenerative rotator cuff lesions]. Rhumatologie 2001;53(4):17-19. (Fre).
- 44. Darnault A, Heuleu J. Les lesions degeneratives de la coiffe: strategies therapeutiques? Rhumatologie 2001;53(4):17-19. (Fre).
- De Lecluse J, Peyre M, Societe francaise de rhumatologie Fp. Les tendinopathies non rompues de la coiffe: place de la reeducation. Seizieme journee de Bichat «Appareil locomoteur» - 29 mars 2003. Seance pleniere (1ere partie). Rhumatologie 2003;55(2):15-19. (Fre).
- Dermid JC, Holtby R. All-arthroscopic versus mini-open repair of small or moderate-sized rotator cuff tears: a protocol for a randomized trial [NCT00128076]. BMC Musculoskelet Disord 2006;7(25):25.
- Dietz SO, Habermeyer P, Magosch P. Current concepts in treatment of rotator cuff tears. Zentralbl Chir 2002;127(3):194-202.
- Digiovanni J, Marra G. Hemiarthroplasty for glenohumeral arthritis with massive rotator cuff tears: total shoulder arthroplasty. Orthop Clin North Am 1998;29(3):477-489, ix.
- 49. Dines DM, Moynihan DP, Dines JS, et al. Irreparable rotator cuff tears: what to do and when to do it; The surgeon's dilemma. J Bone Joint Surg Am 2006;88(10):2294-2302.
- Douoguih WA, Shaffer BS. Avoiding complications in arthroscopic subacromial space and instability surgery. Oper Tech Sports Med 2004;12(2):91-98.
- 51. Dumontier C, Roukoz S. Tendinites et petites ruptures des muscles de la coiffe: traitement chirurgical. Cah Kinésithér 1993;162(4):29-35. (Fre).
- 52. Ehrler S, Chapron J. Place de l'ergotherapie dans la reeducation et la readaptation apres lesion de la coiffe des rotateurs. Journal d'ergotherapie 1993;15(1):26-27. (Fre).
- Esch JC. Arthroscopic subacromial decompression and postoperative management. Orthop Clin North Am 1993;24(1):161-171.
- Favard L, Bacle G, Berhouet J, et al. La chirurgie reparatrice de la coiffe des rotateurs.
 20e Congres francais de rhumatologie, Paris, 2-5 decembre 2007. Rev Rhum Ed Fr 2007;74(10-11):954-960. (Fre).

- 55. Favard L, Bacle G, Berhouet J. Rotator cuff repair. Joint Bone Spine 2007;74(6):551-557.
- 56. Fichez O. Pathologie de la coiffe des rotateurs et conflit sous-acromial de l'epaule du lanceur. J Traumatol Sport 1999;16(4):240-243.
- Finnish Office for Healthcare Technology Assessment (FinOHTA). Shoulder impingement syndrome (project) (brief record). 2008.
- Flurin PH, Guillo S. Reparation arthroscopique des ruptures transfixiantes de la coiffe: chirurgie arthroscopique du membre superieur. Chir Main 2006;25(Suppl 1):S60-S69. (Fre).
- Fongemie AE, Buss DD, Rolnick SJ. Management of shoulder impingement syndrome and rotator cuff tears. Am Fam Physician 1998;57(4):667-674.
- 60. Fouse M, Nottage WM. All-arthroscopic rotator cuff repair. Sports Med Arthrosc 2007;15(4):208-215.
- Gachter A. Stellenwert der arthroskopie in der diagnose und therapie von schultergelenksverletzungen [Value of arthroscopy in the diagnosis and therapy of shoulder joint injuries]. Der Chirurg 1993;64(3):157-162. (Ger).
- Gartsman GM. Arthroscopic rotator cuff repair. Clinical orthopaedics and related research 2001;390:95-106.
- 63. Gartsman GM. Combined arthroscopic and open treatment of tears of the rotator cuff. J Bone Joint Surg Am 1997;79(5):776-783.
- 64. Gartsman GM, Hammerman SM. Fullthickness tears: arthroscopic repair. Orthop Clin North Am 1997;28(1):83-98.
- 65. Gartsman GM. Rotator cuff repair: why I prefer arthroscopy. Sports Med Arthrosc 1999 Apr;7(2):85-92.
- 66. Gazielly D. Les ruptures transfixiantes de la coiffe des rotateurs: caractéristiques d'une bonne réparation à ciel ouvert [Full-thickness tears of the rotator cuff, including subscapularis: characteristics of open surgical repair]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):139. (Fre).
- 67. Gazielly DF. Rupture de la coiffe des rotateurs de l'epaule. Cahiers d'enseignement de la SOFCOT 1997;62:165-185. (Fre).
- 68. Gerber C. Epaule: la reinsertion de la coiffe quelques details techniques. Ann Orthop Ouest 2001;(33):25-26. (Fre).

- 69. Gohlke F, Rolf O, Bohm D. Open reconstruction of the rotator cuff. Orthopade 2007;36(9):834.
- Gortner U. Schmerzbehandlung mit komplexer reflexzonentherapie mach jost thomas am beispiel von insertionstendopathien oder artropathien an der schulter. Krankengymnastik 1999;51(7):8. (Ger)
- Goutallier D, Postel J. Traitement chirurgical des larges ruptures de la coiffe des rotateurs. Actual Rheumatol 1994;398-407.
- 72. Goutallier D, Postel JM. Faut-il reparer les ruptures de la coiffe de l'epaule? Actual Rheumatol 2002;438-449.
- 73. Goutallier D, Postel JM. A propos de l'article "Etude par arthroscanner de la cicatrisation tendineuse apres reparation arthroscopique de la coiffe des rotateurs: analyse des facteurs predictifs a propos d'une serie consecutive de 167 reparations ". Rev Chir Orthop Reparatrice Appar Mot 2007;93(8):863-864. (Fre).
- 74. Green S, Buchbinder R, Hetrick S. Acupuncture for shoulder pain. [Review] [40 refs]. Cochrane Database Syst Rev CD005319. 2005;(2).
- 75. Gudmestad J. Arm yourself against injury: a torn rotator cuff can mean searing pain, slow healing, and even surgery. But yoga can strengthen your shoulders and help prevent problems. Yoga J 2003 Dec;(178):129-131.
- Gupta R, Leggin BG, Iannotti JP. Results of surgical repair of full-thickness tears of the rotator cuff. Orthop Clin North Am 1997 Apr;28(2):241-248.
- Haas M. Verletzungen im bereich des schultergelenks und ihre krankengymnastiche behandlung. Krankengymnastik 1992;44(9):1106-1124. (Ger).
- Handelberg FWJ, Societe francaise de chirurgie orthopedique et traumatologique. Protheses d' epaule et rupture de coiffe. Conferences d' enseignement 2002. Cahiers d'enseignement de la SOFCOT 2002;79:21-31. (Fre).
- 79. Hardy P. Indication de l' arthroscopie dans les lesions de la coiffe des rotateurs. XVIIe Journees de reeducation de la main et du membre superieur, Paris, 18-19 janvier 2002. Kinesither Sci 2001;(415):43-45. (Fre).

- Hardy P, Societe francaise de rhumatologie Fp. Tendinopathie non rompue de la coiffe des rotateurs. Seizieme journee de Bichat "Appareil locomoteur". 29 mars 2003. Seance pleniere (1ere partie). Rhumatologie 2003;55(2):20-21. (Fre).
- Haye M, Institut national de la kinesitherapie PFo. Proposition therapeutique. Confrontations en kinesitherapie, Paris, 6-7 octobre 2006. Kinesither Sci 2006;(470):25-26. (Fre).
- Jensen KL, Williams GR, Jr., Russell IJ, et al. Rotator cuff tear arthropathy. J Bone Joint Surg Am 1999 Sep;81(9):1312-1324.
- 83. Jokiranta J, Vastamaki M. Massive rotator cuff tears. Ann Chir Gynaecol 1996;85(2):128-131.
- Joncour V, Jully J. Coussin d' abduction et ajustement postural apres refection de coiffe. Kinesither Sci 1991;302:15-18. (Fre).
- Karas EH, Iannotti JP. Failed repair of the rotator cuff: evaluation and treatment of complications. J Bone Joint Surg Am 1997;79(5):784-793.
- Kasten P, Loew M. How to treat massive rotator cuff tears. Orthopade 2007;36(9):855-861.
- Kempf JF, Bonnomet F. Place tu traitement chirurgical dans la pathologie de la coiffe des rotateurs. J Med Strasb 1995;26(1-2):15-19. (Fre).
- Kerkour K, Meier JL, Mansuy J. Reeducation apres lesion degenerative de la coiffe des rotateurs. Schweiz Z Sportmed Sporttraumatol 2000;48(1):28-36. (Fre).
- Kozak TK, Cofield RH. Surgery for rotator cuff tears. In: Morrey BF, editor. Reconstructive surgery of the joints. Vols 1 and 2. 2nd ed. New York: Churchill Livingstone Inc; 1996. p. 835-849.
- 90. Krabak BJ, Sugar R, McFarland EG. Practical nonoperative management of rotator cuff injuries. Clin J Sport Med 2003;13(2):102-105.
- Lafosse L, Brzoska R, Toussaint B, et al. The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am 2008;90(Suppl 10):275-286.
- 92. Lampert C, Gaechter A. Arthroskopie von schulter und ellbogen [Arthroscopy of shoulder and elbow. Basel Contributions to Surgery; Models for interdisciplinary management: 25th anniversary of the Department of Surgery in Basel] 1993;90-95. (Ger).

- Le Corroller T, Cohen M. L' intervalle des rotateurs: des lesions cachees? J Radiol 2007;88(11):1669-1677. (Fre).
- Liebenson C. Self-management of shoulder disorders - Part 3: Treatment. J Bodyw Mov Ther 2006 Jan;10(1):65-70.
- Lilleby H. Indikationen zur operativen schulterarthroskopie [Indications for surgical shoulder arthroscopy]. In: Hempfling H, editor. Arthroskopie: Indikation, Bedeutung, Begutachtung. Stuttgart, Germany: Gustav Fischer Verlag; 1990. p. 143-144. (Ger).
- 96. Lohr JF, Uhthoff HK. Epidemiologie und pathophysiologie der rotatorenmanschettenruptures [Epidemiology and pathophysiology of rotator cuff tears]. Orthopade 2007;36(9):788. (Ger).
- Ludolph E, Schroter F, Besig K. Die begutachtung der rotatorenmanschettenveranderung. Aktuelle Traumatol 1997;27(1):31-34. (Ger).
- Ludolph E. Der rotatorenmanschettenschaden: gutachtliche gesichtspunkte. Aktuelle Traumatol 1992;22(2):82-83. (Ger).
- 99. Meister K, Andrews JR. Classification and treatment of rotator cuff injuries in the overhand athlete. J Orthop Sports Phys Ther 1993;18(2):413-421.
- Mestdagh H, Urvoy P. A surgical approach for the repair of large tears of the rotator cuff. Acta Orthop Belg 1992;58(3):359-361.
- Millstein ES, Snyder SJ. Arthroscopic management of partial, full-thickness, and complex rotator cuff tears: Indications, techniques, and complications. Arthroscopy 2003;19(10):189-199.
- 102. Mole D, Sirveaux F. Traitements, résultants fonctionnel et anatomique de la série [Fullthickness tears of the rotator cuff, including subscapularis: principles of surgical technique]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):100-104. (Fre).
- 103. Monet J, Dauzac C. Principes de reeducation apres reparation chirurgicale des lesions degeneratives de la coiffe (lambeau deltoidien). Cah Kinésithér 1993;162(4):66-72. (Fre).
- 104. National Coordinating Centre for Health Technology Assessment (NCCHTA). The clinical and cost-effectiveness of surgical (arthroscopic or open) versus rest then exercise management for tears of the rotator cuff (UKUFF trial), HTA ref 05/47/02, primary research (project) (brief record). 2008;ST.

- Neviaser RJF. Evaluation and management of failed rotator cuff repairs. The rotator cuff, Part II. Orthop Clin North Am 1997;28(2):215-224.
- 106. Nho SJ, Shindle M, American Academy of Orthopaedic Surgeons RIUSS. Systematic review of arthroscopic rotator cuff repair and mini-open rotator cuff repair. Selected scientific exhibits: the annual meeting of the American Academy of Orthopaedic Surgeons, San Diego, CA, February 14-18, 2007. J Bone Joint Surg Am 2007;89(Suppl 3):127-136.
- 107. Noel E. Evolution naturelle des lesions de la coiffe des rotateurs. Lyon Mediterr Med Med Sud Est 1997;33(6-7):2390-2393. (Fre).
- 108. Noel E. Les ruptures de la coiffe des rotateurs. Concours medical Paris 2005;127(15):823-827. (Fre).
- Nottage WM. Rotator cuff repair with or without acromioplasty. Arthroscopy 2003;19(10 Suppl 1):229-232.
- 110. Nove-Josserand L. Arthroscopie de l'epaule. Rupture partielle de la coiffe des rotateurs: chirurgie arthroscopique du membre superieur. Chir Main 2006;25(Suppl 1):S50-S59. (Fre).
- Ozbaydar M, Chung S, Diller D, et al. Arthroscopic reconstruction of the rotator cuff. Orthopade 2007;36(9):825.
- Paulos LE, Franklin JL, Beck CL, Jr. Arthroscopic management of rotator cuff tears. In: Mcginty, JB, editor. Operative Arthroscopy. New York: Raven Press; 1991. p. 529-542.
- 113. Pearce C, Ricketts D, Wall S, et al. Open repair of massive rotator cuff tears in patients aged sixty-five years or over: is it worthwhile? [comment]. J Shoulder Elbow Surg 2005;14(6):657.
- Peterson CA, Altchek DW. Arthroscopic treatment of rotator cuff disorders. Clin Sports Med 1996 Oct;15(4):715-736.
- 115. Piasecki DP, Nicholson GP. Tears of the subscapularis tendon in athletes-diagnosis and repair techniques. Clin Sports Med 2008;27(4):731.
- 116. Pisan M, Gerber C. Clinical examination of the rotator cuff. Curr Orthop 2000;14(3):155-160.
- Pocholle M. Reeducation apres reparation de la coiffe des rotateurs de l'epaule. Ann Kinésithér 1997;24(8):353-361. (Fre).
- 118. Pollock RGF. Full-thickness tears: mini-open repair. The rotator cuff, Part II. Orthop Clin North Am 1997;28(2):169-177.

- Povacz P, Resch H. Die rotatorenmanschettenruptur [Rupture of the rotator cuff]. Wien Med Wochenschr 1996;146(6-7):135-138. (Ger).
- 120. Reardon DJ, Maffulli N. Clinical evidence shows no difference between single- and double-row repair for rotator cuff tears. Arthroscopy 2007;23(6):670-673.
- 121. Reilly P, Emery R. Full thickness rotator cuff tears. Curr Orthop 2000;14(3):173-181.
- 122. Resch H. Primar schliessbare rotatorenmanschettenrupturen. Aktuelle Traumatol 1999;29(1):A1-A6. (Ger).
- 123. Richards DP, Burkhart SS. Subscapularis tears: arthroscopic repair techniques: advanced shouler arthroscopy. Orthop Clin North Am 2003;34(4):485-498.
- 124. Rockwood CAW. Protheses d' epaule et deficience de la coiffe des rotateurs: protheses d' epaule. Cahiers d'enseignement de la SOFCOT 1999;68:219-225. (Fre).
- Rodriguez-Pinero Duran M, Rodriguez-Burgos C, Cardenas-Clemente J, et al. Arthroplasty of the shoulder. Rehabil 2007;41(6):248-257.
- 126. Rudzki JR, Shaffer B. New approaches to diagnosis and arthroscopic management of partial-thickness cuff tears. Clin Sports Med 2008;27(4):691.
- Ruotolo C, Nottage WM. Surgical and nonsurgical management of rotator cuff tears. Arthroscopy 2002;18(5):527-531.
- Ruotolo C, Nottage WM, Flatow EL, et al. Controversial topics in shoulder arthroscopy. Arthroscopy 2002 Feb;18(2 Suppl 1):65-75.
- 129. Ryu RK, Burkhart SS, Parten PM, et al. Complex topics in arthroscopic subacromial space and rotator cuff surgery. Arthroscopy 2002;18(2 Suppl 1):51-64.
- 130. Scheib JS. Diagnosis and rehabilitation of the shoulder impingement syndrome in the overhand and throwing athlete. Rheum Dis Clin North Am 1990;16(4):971-988.
- Schoene ML. New questions about rotator cuff surgery: should acromioplasty always accompany rotator cuff repair? Sports Med Dig 2000 May;22(5):49-56.
- 132. Sklaar J. Test to predict treatment outcome: determining the potential success of conservative treatment of rotator cuff imoingement. S Afr J Physiother 1995;51(1):13.

- Speed CA. Fortnightly review: corticosteroid injections in tendon lesions. Br Med J 2001;323(7309):382-386.
- 134. Sperner G, Resch H, Golser K. Klinisches management bei läison der rotatorenmanschette [Clinical management in lesions of the rotator cuff]. Unfallchirurg 1990;93(7):309-314. (Ger).
- 135. Stetson WB, Ryu RKN. Evaluation and arthroscopic treatment of partial rotator cuff tears. Sports Med Arthrosc 2004;12(2):114-126.
- 136. Stetson WB, Ryu RKN, Bittar ES. Arthroscopic treatment of partial rotator cuff tears. Oper Tech Sports Med 2004;12(2):135-148.
- Sudkamp NP. Die rotatorenmanschettenruptur [Rotator cuff rupture]. Zentralbl Chir 2001 Mar;126(3):177-183. (Ger).
- 138. Terrade P, Gallois D. Ruptures de coiffes operees: implications pratiques en reeducation. Surgical treatment of rotator cuff tears: practical implications for rehabilitation. Sports Med 2006 Apr;(181):25-26.
- Terrade P, Gallois D. Ruptures de coiffes operees: implications pratiques en reeducation. Surgical treatment of rotator cuff tears: practical implications for rehabilitation. Sports Med 2006 May;(182):15-16.
- 140. Thelen P, Societe francaise de rhumatologie Fp. Les calcifications rebelles de la coiffe : ponction-aspiration-infiltration. Seizieme journee de Bichat "Appareil locomoteur" - 29 mars 2003. Seance pleniere (1ere partie). Rhumatologie 2003;55(2):12-14.
- 141. Thierry M. Criteres de suivi en reeducation et d'orientation en ambulatoire ou en SSR apres chirurgie des ruptures de coiffe ou arthroplasties d'epaule: Syntheses des recommandations professionnelles. La reeducation de l' epaule prend son envol. Kinesitherapie scientifique 2008;489:27-29.
- 142. Thomazeau H. Shoulder arthroscopy and rotator cuff tears repair. Rev Chir Orthop Reparatrice Appar Mot 2008;94(8 Suppl):394-397.
- 143. Tonino PM, Gerber C, Itoi E, et al. Complex shoulder disorders: evaluation and treatment. J Am Acad Orthop Surg 2009;17(3):125-136.
- 144. Travis RD, Burkhead WZ. Technique for repair of the subscapularis tendon: repair of athletic Shoulder Injuries. Orthop Clin North Am 2001;32(3):495-500.

- 145. Trojian T, Stevenson JH, Agrawal N. What can we expect from nonoperative treatment options for shoulder pain? J Fam Pract 2005;54(3):216-223.
- 146. Walch G, Riand N. Ruptures aigues de la coiffe des rotateurs: traumatismes recents de l' epaule. Cahiers d'enseignement de la SOFCOT 1996;56:255-260. (Fre).
- 147. Walch G, Calderone S. Les lesions de la coiffe des rotateurs liees au sport. Rev Chir Orthop Reparatrice Appar Mot 1998;84(Suppl 1):29. (Fre).
- 148. Warner JJP, Warren RF. Consideration and management of rotator cuff tears in athletes. Ann Chir Gynaecol 1991;80(2):160-167.

- 149. Warner JJP. The treatment of stiffness of the shoulder after repair of the rotator cuff. J Bone Joint Surg Am 1997;79(8):1260-1269.
- 150. Wolff AB, Magit DP, Miller SR, et al. Arthroscopic fixation of bursal-sided rotator cuff tears. Arthroscopy 2006;22(11):1247.e1.
- 151. Yamaguchi K, Flatow EL. Arthroscopic evaluation and treatment of the rotator cuff: arthroscopy of the upper extremity. Orthop Clin North Am 1995;26(4):643-659.
- 152. Yamaguchi K. Mini-open rotator cuff repair: an updated perspective. J Bone Joint Surg Am 2001;83(5):764-772.
- 153. Zhao H, Wu HS. Evolution of arthroscopy: from a technique to a subspecialty. Chin Med J 2008;121(15):1462-1468.

Excluded – Published Before 1990 (N = 4)

The following studies were excluded because they were published before 1990.

- 1. Biedert R, Kentsch A. [Arthroscopic subacromial decompression in chronic impingement syndrome]. Unfallchirurg 1989;92(10):500-504. (Ger).
- 2. Neer CS. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am 1972;54(1):41-50.
- Saragaglia D, Bellon P, Plawecki S, et al. [The impingement syndrome 50 cases operated on by Neer's anterior acromioplasty]. Rhumatologie 1989;41(8):235-239. (Fre).
- 4. Takagishi N. Conservative treatment of the ruptures of the rotator cuff. Orthopaedic Survey 1978;2(3):186-187.

Excluded – Enrolled ≤10 Participants (N = 34)

The following studies were excluded because 10 or fewer participants were enrolled.

- 1. Abrahams S. Acupuncture treatment for a rotator cuff tear, and avoidance of surgery. AACP Journal 2005;(2):38-42.
- 2. Ainsworth R. Physiotherapy rehabilitation in patients with massive, irreparable rotator cuff tears. Musculoskeletal Care 2006 Sep;4(3):140-151.
- 3. Auethavekiat P, Michet J. Rotator-cuff tear. New Egypt J Med 2006;354(19):e20.
- 4. Badhe SP, Lawrence TM, Smith FD, et al. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg 2008 Jan;17(1 Suppl 35):35S-39S.
- Beauchamp M, Roy JD. Arthroscopic repair of large and massive rotator cuff tears performed under local anaesthesia and sedation. J Shoulder Elbow Surg 2009;18(5):e18-e20.
- Bennett WF. Arthroscopic repair of isolated subscapularis tears: a prospective cohort with 2- to 4-year follow-up. Arthroscopy 2003 Feb;19(2):131-143.
- Boyles RE, Flynn TW, Whitman JM. Manipulation following regional interscalene anesthetic block for shoulder adhesive capsulitis: a case series. Man Ther 2005;10(1):80-87.
- 8. Deberardino TM, Owens BD. All-inside arthroscopic repair of partial-thickness supraspinatus tendon tear. Tech Shoulder Elbow Surg 2007;8(3):117-119.
- Harryman DT. Management of stiffness after rotator cuff tears and repairs. Sports Med Arthrosc 1999 Jul;7(3):174-187.
- Hartsell HD. Postsurgical shoulder strength in the older patient. J Orthop Sports Phys Ther 1993 Dec;18(6):667-672.
- Hepp P, Engel T, Osterhoff G, et al. Knotless anatomic double-layer double-row rotator cuff repair: a novel technique re-establishing footprint and shape of full-thickness tears. Arch Orthop Trauma Surg 2009;129(8):1031-1036.
- Herrera MF, Bauer G, Reynolds F, et al. Infection after mini-open rotator cuff repair. J Shoulder Elbow Surg 2002 Nov;11(6):605-608.

- 13. Hoellrich RG, Gasser SI, Morrison DS, et al. Electromyographic evaluation after primary repair of massive rotator cuff tears. J Shoulder Elbow Surg 2005 May;14(3):269-272.
- Holmes TT, Buzzell JE, Dunn WR, et al. Intraarticular pain pump catheter breakage after arthroscopic shoulder surgery: a case series. J Shoulder Elbow Surg 2007;16(6):e6-e9.
- 15. Itoi E, Tabata S. Rotator cuff tears in the adolescent. Orthopedics 1993;16(1):78-81.
- Jully JL, Scheffer JC, Katz D. Place du traitement fonctionnel dans les ruptures de coiffe des rotateurs. J Réadapt Méd 1991;11(4):227-230. (Fre).
- Kilinc AS, Ebrahimzadeh MH, Lafosse L. Subacromial internal spacer for rotator cuff tendon repair: "the balloon technique." Arthroscopy: The Journal of Arthroscopy & Related Surgery 2009;25(8):921-924.
- Kim KC, Rhee KJ, Shin HD, et al. Arthroscopic footprint reconstruction of bursalside delaminated rotator cuff tears using the suture-bridge technique. Knee Surg Sports Traumatol Arthrosc 2009;17(7):840-843.
- Kirkley A, Griffin S, McLintock H, et al. The development and evaluation of a diseasespecific quality of life measurement tool for shoulder instability. The Western Ontario Shoulder Instability Index (WOSI). Am J Sports Med 1998;26(6):764-772.
- 20. Leonhardt G, Ferbert A. Atemsynchrone muskelaktivitat in proximalen arm-und schultermuskeln nach traumatischer plexus und wurzellasion. Nervenarzt 1991;62(4):252-255. (Ger).
- 21. Lo IKY, Burkhart SS. Arthroscopic repair of massive, contracted, immobile rotator cuff tears using single and double interval slides: technique and preliminary results. Arthroscopy 2004 Jan;20(1):22-33.
- Matsen FA III. Clinical practice. Rotator-cuff failure. N Engl J Med 2008;358(20):2138-2147.
- 23. McCreesh K. Evidence based prognosis setting in the case of a conservatively managed rotator cuff tear. Physiother Irel 2007;28(1):31-35.
- Melillo AS, Savoie III FH, Field LD. Massive rotator cuff tears: debridement versus repair. Orthop Clin North Am 1997 Jan;28(1):117-124.

- 25. Nord KD, Gothelf T. Rotator Cuff Repair Utilizing the Anterolateral Portal: The 3D Repair. 24th Annual Meeting of the Mid-America Orthopaedic Association, San Antonio, Texas, April 19-23, 2006.
- 26. Norwood LA, Fowler HL. Rotator cuff tears a shoulder arthroscopy complication. Am J Sports Med 1989;17(6):837-841.
- Oh JH, Kim SH, Lee HK, et al. Trans-rotator cuff portal is safe for arthroscopic superior labral anterior and posterior lesion repair: clinical and radiological analysis of 58 SLAP lesions. Am J Sports Med 2008;36(10):1913-1921.
- Ostrander III RV, Andrews J. Arthroscopic triple-row rotator cuff repair: a modified suture-bridge technique. Orthopedics 2009;32(8):566.
- 29. Richards AM, Curtis MJ. Fracture of an os acromiale with associated rupture of the coracoclavicular ligaments. J Shoulder Elbow Surg 2008;17(6):e8-e11.

- Richman N, Curtis A, Hayman M. Acromionsplitting approach through an os acromiale for repair of a massive rotator cuff tear. Arthroscopy 1997 Oct;13(5):652-655.
- Soyer J, Vaz S, Pries P, et al. The relationship between clinical outcomes and the amount of arthroscopic acromial resection. Arthroscopy 2003 Jan;19(1):34-39.
- 32. Steenbrink F, de Groot JH, Veeger HE, et al. Pathological muscle activation patterns in patients with massive rotator cuff tears, with and without subacromial anaesthetics. Man Ther 2006 Aug;11(3):231-237.
- Sundberg G. [Patients' experiences of the rehabilitation period and long-term effects of rehabilitation after rotator cuff repair]. Nord Fysio 2004;8(4):183-189. (Swe).
- 34. Wilcox RB, Harris BA, Arslanian LE, et al. Functional outcomes following rotator cuff repair based on tissue quality: a pilot study. (abstract). J Orthop Sporsts Phys Ther 2006 Jan;36(1):a9-a10.

Excluded – No Baseline Data (N = 89)

The following uncontrolled studies were excluded because no baseline data was reported.

- Abrams JS. Arthroscopic techniques for massive rotator cuff repairs. Tech Shoulder Elbow Surg 2007;8(3):126-134.
- Altchek DW, Warren RF, Wickiewicz TL, et al. Arthroscopic acromioplasty: technique and results. J Bone Joint Surg Am 1990 Sep;72(8):1198-1207.
- 3. Behrens P, Egbers HJ. Die fruhfunktionelle behandlung der verletzten schulter unterstutzt durch eine aktive schulterbandage. Aktuelle Traumatol 1991;21(2):58-63.
- Bittar ES. Arthroscopic management of massive rotator cuff tears. Arthroscopy 2002 Nov;18(9 Suppl 2):104-106.
- Bonutti PM, Cremens MJ, Lee FS, et al. Use of an allograft bone button for rotator cuff repair. Orthopedics 2002 Feb;25(2):149-151.
- Braune C, von Eisenhart-Rothe R, Welsch F, et al. Mid-term results and quantitative comparison of postoperative shoulder function in traumatic and non-traumatic rotator cuff tears. Arch Orthop Trauma Surg 2003 Oct;123(8):419-424.
- Budoff JE, Rodin D, Ochiai D, et al. Arthroscopic rotator cuff debridement without decompression for the treatment of tendinosis. Arthroscopy 2005 Sep;21(9):1081-1089.
- Chin PY, Sperling JW, Cofield RH, et al. Anterior acromioplasty for the shoulder impingement syndrome: long-term outcome. J Shoulder Elbow Surg 2007 Nov;16(6):697-700.
- Cordasco FA, Backer M, Craig EV, et al. The partial-thickness rotator cuff tear: is acromioplasty without repair sufficient? Am J Sports Med 2002 Mar;30(2):257-260.
- Costouros JG, Porramatikul M, Lie DT, et al. Reversal of suprascapular neuropathy following arthroscopic repair of massive supraspinatus and infraspinatus rotator cuff tears. Arthroscopy 2007 Nov;23(11):1152-1161.
- Dawson J, Hill G, Fitzpatrick R, et al. Comparison of clinical and patient-based measures to assess medium-term outcomes following shoulder surgery for disorders of the rotator cuff. Arthritis Rheum 2002 Oct 15;47(5):513-519.

- Ellman H. Diagnosis and treatment of incomplete rotator cuff tears. Clin Orthop Relat Res 1990;(254):64-74.
- Essman JA, Bell RH, Askew M. Full-thickness rotator-cuff tear: an analysis of results. Clin Orthop Relat Res 1991 Apr;(265):170-177.
- Fealy S, Kingham TP, Altchek DW. Arthroscopically assisted (mini-open) rotator cuff repair. Sports Med Arthrosc 1999;7(2):76-84.
- 15. Fealy S, Kingham TP, Altchek DW. Mini-open rotator cuff repair using a two-row fixation technique: outcomes analysis in patients with small, moderate, and large rotator cuff tears. Arthroscopy 2002 Jul;18(6):665-670.
- Fealy S, Adler RS, Drakos MC, et al. Patterns of vascular and anatomical response after rotator cuff repair. Am J Sports Med 2006 Jan;34(1):120-127.
- Feng S, Guo S, Nobuhara K, et al. Prognostic indicators for outcome following rotator cuff tear repair. J Orthop Surg 2003 Dec;11(2):110-116.
- Flynn LM. Shoulder impingement syndrome in recreational athletes. J Neurol Orthop Med Surg 1990;11(2):111-114.
- Fokter SK, Cicak N, Skorja J. Functional and electromyographic results after open rotator cuff repair. Clin Orthop Relat Res 2003 Oct;(415):121-130.
- Franceschi JP, Curvale G, Acquaviva P, et al. Traitement chirurgical des ruptures de la coiffe des rotateurs [Surgical treatment of ruptures of the rotator cuff]. Rev Rhum Mal Osteoartic 1991 Jun;58(6):415-418. (Fre).
- Gerber C, Krushell RJ. Isolated rupture of the tendon of the subscapularis muscle: clinical features in 16 cases. J Bone Joint Surg Br 1991 May;73(3):389-394.
- Getahun TY, MacDermid JC, Patterson SD. Concurrent validity of patient rating scales in assessment of outcome after rotator cuff repair. J Musculoskelet Res 2000;4(2):119-127.
- 23. Gleyze P, Kempf JF, Orthopaedica Belgica B. Resultats cliniques et anatomiques d' une serie de 20 ruptures de la coiffe des rotateurs reparees par agrafage endoscopique. Acta Orthop Belg 1995;61(Suppl 1):32-36. (Fre).

- 24. Goto M, Suzuki K, Shimada T. Relationship between lifestyle and shoulder motor function after reconstruction of rotator cuff tear. J Phys Ther 2007;19(4):243-249.
- 25. Goutallier D, Postel JM. Influence de la degenerescence musculaire du supra-et de l' infra-spinatus sur le pronostic des reparations chirurgicales de la coiffe des rotateurs. Acta Orthop Belg 1998;64(Suppl 2):42-45. (Fre).
- 26. Gualtieri G, Gualtieri I, Gagliardi S, et al. The results of the surgical treatment of breakage of the rotator cuff. Chir Organi Mov 1991 Oct;76(4):335-339.
- 27. Habernek H, Schmid L, Frauenschuh E. Five year results of rotator cuff repair. Br J Sports Med 1999 Dec;33(6):430-433.
- Hambly N, Fitzpatrick P, MacMahon P, et al. Rotator cuff impingement: correlation between findings on MRI and outcome after fluoroscopically guided subacromial bursography and steroid injection. Am J Roentgenol 2007 Nov;189(5):1179-1184.
- Harryman DT, Mack LA, Wang KY, et al. Repairs of the rotator cuff: correlation of functional results with integrity of the cuff. J Bone Joint Surg Am 1991 Aug;73(7):982-989.
- 30. Harryman DT, Hettrich CM, Smith KL, et al. A prospective multipractice investigation of patients with full-thickness rotator cuff tears: the importance of comorbidities, practice, and other covariables on self-assessed shoulder function and health status. J Bone Joint Surg Am 2003 Apr;85(4):690-696.
- Hoe-Hansen CE, Palm L, Norlin R. The influence of cuff pathology on shoulder function after arthroscopic subacromial decompression: a 3- and 6-year follow-up study. J Shoulder Elbow Surg 1999 Nov;8(6):585-589.
- 32. Holibka R, Kalina R, Pach M, et al. Arthroscopic treatment of ruptures of the rotator cuff. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005 Dec;149(2):277-280.
- 33. Hollinshead RM, Mohtadi NG, Vande Guchte RA, et al. Two 6-year follow-up studies of large and massive rotator cuff tears: comparison of outcome measures. J Shoulder Elbow Surg 2000 Sep;9(5):373-381.
- Huber H. Debridement arthroscopique d' une rupture degenerative massive de la coiffe des rotateurs. Rev Med Suisse Romande 2004;124(5):261-263. (Fre).

- Jacobs S, Williams H, Moir J, et al. Full thickness rotator cuff tears long-term followup. Eur J Orthop Surg Traumatol 2000;10(1):61-64.
- 36. Jully JL, Autivy J, Joncour V. Objectifs hebdomadiares et surveillance de la rééducation des ruptures de coiffe opérées [Weekly objectives and monitoring rehabilitation of operated rotator cuff tears]. Ann Kinésithér 1990;17(3):107-111. (Fre).
- Kartus J, Kartus C, Rostgard-Christensen L, et al. Long-term clinical and ultrasound evaluation after arthroscopic acromioplasty in patients with partial rotator cuff tears. Arthroscopy 2006;22(1):44-49.
- 38. Kempf JF, Mole D, Gleyze P, et al. Resultats du traitement endoscopique des tendinopathies de la coiffe des rotateurs (ruptures completes exclues). 1ere partie: Les tendinopathies non calcifiees [Results of endoscopic treatment of tendinopathies of the rotator cuff (excluding total ruptures). 1: non-calcifying tendinopathies]. Rev Chir Orthop Reparatrice Appar Mot 1993;79(7):519-531. (Fre).
- Kessler KJ, Bullens-Borrow AE, Zisholtz J. LactoSorb plates for rotator cuff repair. Arthroscopy 2002 Mar;18(3):279-283.
- 40. Kilian O, Balser G, Heiss C, et al. Subjektives und klinisches outcome nach rekonstruktion der rotatorenmanschette im hoheren lebensalter [Subjective and clinical outcome after rotator cuff repair in elderly patients]. Z Orthop Unfallchir 2008 Jul;146(4):471-477. (Ger).
- 41. 41. Kim KC, Rhee KJ, Shin HD. Deformities associated with the suture-bridge technique for full-thickness rotator cuff tears. Arthroscopy 2008;24(11):1251-7.
- 42. Kim KC, Rhee KJ, Shin HD, et al. Arthroscopic transosseous rotator cuff repair. Orthopedics 2008 Apr;31(4):327-330.
- 43. Kulenkampff HA, Reichelt A. Der klinische verlauf der rotatorenmanschettenruptur nach konservativer therapie [Clinical course of ruptures of the rotator cuff after conservative therapy]. Orthop Prax 1990;26(8):493-496. (Ger).
- 44. Kwon YW, Kalainov DM, Rose HA, et al. Management of early deep infection after rotator cuff repair surgery. J Shoulder Elbow Surg 2005 Jan;14(1):1-5.
- 45. Kyrola K, Niemitukia L, Jaroma H, et al. Long-term MRI findings in operated rotator cuff tear. Acta radiol 2004 Aug;45(5):526-533.

- 46. Lam F, Mok D. Open repair of massive rotator cuff tears in patients aged sixty-five years or over: is it worthwhile? J Shoulder Elbow Surg 2004 Sep;13(5):517-521.
- Leroux JL, Hebert P, Mouilleron P, et al. Postoperative Shoulder Rotators Strength in Stage-Ii and Stage-Iii Impingement Syndrome. Clin Orthop Relat Res 1995;(320):46-54.
- Lupo R, Benazzo F, Finardi E, et al. Surgery in massive ruptures of the rotator cuff: results as related to prognosis. Chir Organi Mov 2000 Oct;85(4):389-394.
- Lupo R, Rapisarda S, Bottinelli O, et al. Ultrasound and MRI for the long-term evaluation of surgical repair of the rotator cuffs. Chir Organi Mov 2001 Jan;86(1):21-27.
- 50. 50. Mansat P, Cofield RH, Kersten TE, et al. Complications of rotator cuff repair. Orthop Clin North Am 1997 Apr;28(2):205-213.
- 51. Marcon D, Paysant J. Place de la medecine physique et de readaptation avant et apres chirurgie reparatrice de la coiffe des rotateurs de l'epaule : a propos d'une revision a deux ans d'une serie de 42 operes. Medecine physique et readaptation. Ann Med Nancy 1997;36(5-6):299-305.
- 52. McFarland EG, Neira CA, Gutierrez MI, et al. Clinical significance of the arthroscopic drivethrough sign in shoulder surgery. Arthroscopy 2001 Jan;17(1):38-43.
- 53. McFarland EG, Park HB, Kim TK, et al. Limited lateral acromioplasty for rotator cuff surgery. Orthopedics 2005;28(3):256-259.
- Miller SL, Hazrati Y, Cornwall R, et al. Failed surgical management of partial thickness rotator cuff tears. Orthopedics 2002 Nov;25(11):1255-1257.
- 55. Motycka T, Kriegleder B, Landsiedl F. Results of open repair of the rotator cuff: a long-term review of 79 shoulders. Arch Orthop Trauma Surg 2001;121(3):148-151.
- Neviaser RJ, Neviaser TJ, Neviaser JS. Anterior dislocation of the shoulder and rotator cuff rupture. Clin Orthop Relat Res 1993;291(291):103-106.
- 57. Nobuhara K, Hata Y, Komai M. Surgical procedure and results of repair of massive tears of the rotator cuff. Clin Orthop Relat Res 1994 Jul;(304):54-59.

- Norlin R, Adolfsson L. Small full-thickness tears do well ten to thirteen years after arthroscopic subacromial decompression. J Shoulder Elbow Surg 2008 Jan;17(1 Suppl):12S-16S.
- Owens BD, Nelson BJ, Taylor DC. Acute brachial plexus compression after pectoralis major transfer for subscapularis insufficiency. Am J Sports Med 2008;36(1):173-175.
- Payne LZ, Altchek DW, Craig EV, et al. Arthroscopic treatment of partial rotator cuff tears in young athletes: a preliminary report. Am J Sports Med 1997 May;25(3):299-305.
- 61. Petruccelli E, Cominetti G, Masse A. La riparazione della cuffia dei rotatori a cielo aperto: risultati a medio termine [Open repair of the rotator cuff tear: results at mean followup]. Minerva Ortop Traumatol 2001;52(4-5):217-224. (Ita, Eng)
- Plafki C, Hedtmann A, Fett H, et al. Ergebnisse der operativen therapie von rupturen der rotatorenmanschette der schulter [Results of surgical therapy of ruptures of the rotator cuff of the shoulder]. Z Orthop Ihre Grenzgeb 1997 Jul;135(4):360-367. (Ger).
- 63. Porcellini G, Baccarani G, Campi F, et al. Isokinetic testing to evaluate patients submitted to surgery for the treatment of surgical lesion of the rotator cuff. Chir Organi Mov 1996 Jul;81(3):295-302.
- 64. Razmjou H, Lincoln S, Axelrod T, et al. Factors contributing to failure of rotator cuff surgery in persons with work-related injuries. Physiother Can 2008;60(2):125-133.
- Reynolds SB, Dugas JR, Cain EL, et al. Debridement of small partial-thickness rotator cuff tears in elite overhead throwers. Clin Orthop Relat Res 2008 Mar;466(3):614-621.
- 66. Riand N, Boulahia A, Walch G. Conflit postero-superieur de l'epaule chez le sportif: resultats du debridement arthroscopique [Posterosuperior impingement of the shoulder in the athlete: results of arthroscopic debridement in 75 patients]. Rev Chir Orthop Reparatrice Appar Mot 2002 Feb;88(1):19-27. (Fre).
- 67. Rockwood CA, Lyons FR. Shoulder impingement syndrome: diagnosis, radiographic evaluation, and treatment with a modified neer acromioplasty. J Bone Joint Surg Am 1993;75(3):409-424.

- Romeo AA, Hang DW, Bach BR, Jr., et al. Repair of full thickness rotator cuff tears: gender, age, and other factors affecting outcome. Clin Orthop Relat Res 1999 Oct;(367):243-255.
- 69. Romeo AA, Cohen, Carreira DS. Traumatic anterior shoulder instability. Orthop Clin North Am 2001;32(3):399-409.
- Savoie FH. Costs analysis of successful rotator cuff repair surgery: an outcome study. Comparison of Gatekeeper system in surgical patients. Arthroscopy 1995;11(6):672-676.
- 71. Schiepers P, Pauwels P, Penders W, et al. La place de l'arthroscopie dans la pathologie sousacromiale: etude retrospective d'une serie d'acromioplasties arthroscopiques [The role of arthroscopy in subacromial pathology: retrospective study of a series of arthroscopic acromioplasties]. Acta Orthop Belg 2000 Dec;66(5):438-448. (Fre).
- Selvanetti A, Giombini A, Caruso I. Nonoperative treatment of partial-thickness rotator cuff tears in overhead athletes. Med Sci Sports Exerc 1998;30(5 Suppl):S260.
- 73. Shen PH, Lien SB, Shen HC, et al. Long-term functional outcomes after repair of rotator cuff tears correlated with atrophy of the supraspinatus muscles on magnetic resonance images. J Shoulder Elbow Surg 2008 Jan;17(1 Suppl):1S-7S.
- 74. Smith KL, Harryman DT, Antoniou J, et al. A prospective, multipractice study of shoulder function and health status in patients with documented rotator cuff tears. J Shoulder Elbow Surg 2000 Sep;9(5):395-402.
- 75. Snyder S, Foos G. Arthroscopic treatment of bursal side and full thickness rotator cuff tears. Ann Chir Gynaecol 1996;85(2):117-125.
- 76. Snyder SJ, Pachelli AF, Del PW, et al. Partial thickness rotator cuff tears: results of arthroscopic treatment. Arthroscopy 1991;7(1):1-7.
- 77. Solomon DJ, Provencher MT, Bell SJ, et al. Arthroscopic rotator cuff repair in active duty military personnel: a young cohort of patients with rotator cuff tears. Oper Tech Sports Med 2005;13(3):136-142.

- Sonnery-Cottet B, Edwards TB, Noel E, et al. Rotator cuff tears in middle-aged tennis players: results of surgical treatment. Am J Sports Med 2002 Jul;30(4):558-564.
- Suenaga N, Minami A, Kaneda K. Postoperative subcoracoid impingement syndrome in patients with rotator cuff tear. J Shoulder Elbow Surg 2000 Jul;9(4):275-278.
- Theermann R, Refior HJ. Welche faktoren beeinflussen das ergebnis der rotatormanschetten-rekonstruktion [Factors influencing the result of reconstructions of the rotator cuff]. Orthop Prax 1991;27(1):9-14. (Ger).
- Walmsley RP, Hartsell H. Shoulder strength following surgical rotator cuff repair: a comparative analysis using Isokinetic testing. J Orthop Sporsts Phys Ther 1992;15(5):215-222.
- Warner JJP, Goitz RJ, Irrgang JJ, et al. Arthroscopic-assisted rotator cuff repair: patient selection and treatment outcome. J Shoulder Elbow Surg 1997 Sep;6(5):463-472.
- 83. Weber SC. Arthroscopic debridement and acromioplasty versus mini-open repair in the management of significant partial-thickness tears of the rotator cuff. Orthop Clin North Am 1997 Jan;28(1):79-82.
- Weber SC. Arthroscopic debridement and acromioplasty versus mini-open repair in the treatment of significant partial-thickness rotator cuff tears. Arthroscopy 1999 Mar;15(2):126-131.
- Wolf EM, Pennington WT, Agrawal V. Arthroscopic rotator cuff repair: 4- to 10-year results. Arthroscopy 2004 Jan;20(1):5-12.
- Wolf EM, Pennington WT, Agrawal V. Arthroscopic side-to-side rotator cuff repair. Arthroscopy 2005;21(7):881-887.
- 87. Worland RL. Treatment of rotator cuff impingement. Orthop Rev 1993;22(1):76-79.
- Wulker N, Melzer C, Wirth CJ. Shoulder surgery for rotator cuff tears: ultrasonographic 3-year follow-up of 97 cases. Acta Orthop Scand 1991 Apr;62(2):142-147.
- Zandi H, Coghlan JA, Bell SN. Mini-incision rotator cuff repair: a longitudinal assessment with no deterioration of result up to nine years. J Shoulder Elbow Surg 2006 Mar;15(2):135-139.

Excluded – Ineligible Study Design (N = 182)

The following studies were excluded because the study design did not meet the eligibility criteria. For the original review, these included before-and-after studies in which the data collection was either retrospective or unclear (n=142). For the review update, all uncontrolled studies were excluded, regardless of the direction of data collection (n=40).

- Abbot AE, Li X, Busconi BD. Arthroscopic treatment of concomitant superior labral anterior posterior (SLAP) lesions and rotator cuff tears in patients over the age of 45 years. Am J Sports Med 2009;37(7):1358-1362.
- 2. Adams CR, Schoolfield JD, Burkhart SS. The results of arthroscopic subscapularis tendon repairs. Arthroscopy 2008;24(12):1381-1389.
- Anderson K, Boothby M, Aschenbrener D, et al. Outcome and structural integrity after arthroscopic rotator cuff repair using 2 rows of fixation: minimum 2-year follow-up. Am J Sports Med 2006;34(12):1899-1905.
- Atkinson RN, Comley AS, Van EJ, et al. Successful early mobilization of major cuff repair using a suture post. J Shoulder Elbow Surg 2006 Mar;15(2):183-187.
- 5. Auplish S, Funk L. Rotator cuff tears in athletes. Br J Hosp Med 2009;70(5):271-275.
- Balestro JC, Jacquot N. Resultats des tenotomies et des tenodeses du long biceps dans les lesions irreparables de la coiffe des rotateurs. Rev Chir Orthop Reparatrice Appar Mot 2007;93(8):5S42-5S48. (Fre).
- Baudet B, Boussaton M. Resultats a long terme de la decompression sous-acromiale par arthroscopie, dans les larges ruptures de coiffe. J Traumatol Sport 1997;14(4):212-216. (Fre).
- 8. Baydar M, Akalin E, El O, et al. The efficacy of conservative treatment in patients with full-thickness rotator cuff tears. Rheumatol Int 2009;29(6):623-628.
- 9. Bellumore Y, Mansat M, Assoun J. Resultats de la chirurgie reparatrice de la coiffe des rotateurs: correlation radio-clinique [Results of the surgical repair of the rotator cuff: radioclinical correlation]. Rev Chir Orthop Reparatrice Appar Mot 1994;80(7):582-594. (Fre).
- Berhouet J, Collin P, Benkalfate T, et al. Massive rotator cuff tears in patients younger than 65 years. Epidemiology and characteristics. Orthop Traumatol Surg Res 2009;95(4 Suppl):13-18.

- Bezer M, Kocaoglu B, Erol B, et al. Rotator kilif yirtiklarinda acik cerrahi onarimin uzun donem sonuclari [Long-term results of open surgical repair of rotator cuff tears]. Acta Orthop Traumatol Turc 2004;38(2):110-114. (Tur).
- Bigiliani LU, Kimmel J, McCann PD, et al. Repair of rotator cuff tears in tennis players. Am J Sports Med 1992;20(2):112-117.
- Bigliani LU, Cordasco FA, Mcllveen SJ, et al. Operative repair of massive rotator cuff tears. J Shoulder Elbow Surg 1992;1:120-130.
- Blevins FT, Warren RF, Cavo C, et al. Arthroscopic assisted rotator cuff repair: results using a mini-open deltoid splitting approach. Arthroscopy 1996;12(1):50-59.
- 15. Bokor DJ, Hawkins RJ, Huckell GH, et al. Results of nonoperative management of fullthickness tears of the rotator cuff. Clin Orthop Relat Res 1993;(294):103-110.
- Bond JL, Dopirak RM, Higgins J, et al. Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: technique and preliminary results. Arthroscopy 2008;24(4):403-409.
- 17. Boyle O, Glasson JM, Pollock RG, et al. Arthroscopically assisted rotator cuff repair with a limited portal-extension approach. Man Ther 1999;4(1):44-48.
- Brown TD, Newton PM, Steinmann SP, et al. Rotator cuff tears and associated nerve injuries. Orthopedics 2000;23(4):329-332.
- 19. Bruns J, Henning R, Behrens P. Arthrolysis of the shoulder for ruptures of the rotator cuff. Int Orthop 1997;21(3):157-160.
- Burkhart SS. Arthroscopic debridement and decompression for selected rotator cuff tears: clinical results, pathomechanics, and patient selection based on biomechanical parameters. [Review]. Orthop Clin North Am 1993;24(1):111-123.
- 21. Burkhart SS, Nottage WM, Ogilvie-Harris DJ, et al. Partial repair of irreparable rotator cuff tears. Arthroscopy 1994;10(4):363-370.

- Burkhart SS, Danaceau SM, Pearce CE. Arthroscopic rotator cuff repair: Analysis of results by tear size and by repair technique. Margin convergence versus direct tendon-tobone repair. Arthroscopy 2001;17(9):905-912.
- 23. Burkhart SS, Barth JR, Richards DP, et al. Arthroscopic repair of massive rotator cuff tears with stage 3 and 4 fatty degeneration. Arthroscopy 2007;23(4):347-354.
- 24. Burns JP, Snyder SJ. Arthroscopic rotator cuff repair in patients younger than fifty years of age. J Shoulder Elbow Surg 2008;17(1):90-66.
- Calmet J, Esteve C, Mellado JM, et al. Rotura masiva del manguito de los rotadores: resultados del tratamiento quirurgico [Massive rupture of the rotator cuff: results of surgical treatment]. Rev Ortop Traumatol 2002;46(4):294-299. (Spa).
- 26. Calmet J, Mellado JM, Garcia-Forcada IL, et al. MR Assessment of the Repaired Rotator Cuff in Patients Older than 65. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sep 20-23, 2006.
- Castagna A, Conti M, Markopoulos N, et al. Arthroscopic repair of rotator cuff tear with a modified Mason-Allen stitch: mid-term clinical and ultrasound outcomes. Knee Surg Sports Traumatol Arthrosc 2008 May;16(5):497-503.
- Castagna A, le Rose G, Conti M, et al. Predictive factors of subtle residual shoulder symptoms after transtendinous arthroscopic cuff repair a clinical study. Am J Sports Med 2009;37(1):103-108.
- 29. Castanga A, Markopoulos N, Conti M, et al. Arthroscopic repair of full thickness rotator cuff tears using a modified Mason Allen stitch: clinical and sonographic results at two years follow up. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sep 20-23, 2006.
- 30. 30. Castricini R, Panfoli N, Nittoli R, et al. Transtendon arthroscopic repair of partial-thickness, articular surface tears of the supraspinatus: results at 2 years. Musculoskelet Surg 2009;93 Suppl 1:S49-S54.
- Chun JM, Kim SY, Kim JH. Arthroscopically assisted mini-deltopectoral rotator cuff repair. Orthopedics 2008;31(1):74.

- 32. Ciampi P, Vitali M, Fraschini GF. Repair of massive rotator cuff tears in patients older than 65 years. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sep 20-23, 2006.
- Cicak N. [The results of the surgical treatment of rotator cuff tears]. Lijec Vjesn 1998;120(12):365-369.
- Clayton RA, Court-Brown CM. The epidemiology of musculoskeletal tendinous and ligamentous injuries. Injury 2008;39(12):1338-1344.
- 35. Cole BJ, Alford W, Pylawka T, et al. Arthroscopic rotator cuff repair: prospective evaluation at minimum 2-year follow-up. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, IL, Mar 22-26, 2006.
- Conti M, Garofalo R, Delle RG, et al. Postoperative rehabilitation after surgical repair of the rotator cuff. Musculoskelet Surg 2009;93 Suppl 1:S55-S63.
- 37. Costouros JG, Porramatikul M, Lie DT, et al. Suprascapular neuropathy associated with massive rotator cuff tears: a rationale for arthroscopic rotator cuff repair. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sep 20-23, 2006.
- Cruz Lopez F, Gomez Espindola JC, Mazan Diaz A, et al. [Clinical-ultrasonographic assessment in arthroscopic rotator cuff repair after 1-year follow-up]. Acta Ortop Mex 2009;23(1):9-14.
- De BT, Dubuc JE, Joris D, et al. Results of arthroscopic acromioplasty for chronic rotator cuff lesion. Acta Orthop Belg 2004;70(6):520-524.
- 40. Duralde XA, Bair B. Massive rotator cuff tears: the result of partial rotator cuff repair. J Shoulder Elbow Surg 2005;14(2):121-127.
- 41. Duralde XA, Greene RT. Mini-open rotator cuff repair via an anterosuperior approach. J Shoulder Elbow Surg 2008;17(5):715-721.
- 42. Edwards TB, Walch G, Sirveaux F, et al. Repair of tears of the subscapularis. J Bone Joint Surg Am 2005 Apr;87(4):725-730.
- 43. Edwards TB, Walch G, Nove-Josserand L, et al. Arthroscopic debridement in the treatment of patients with isolated tears of the subscapularis. Arthroscopy 2006;22(9):941-946.

- 44. Edwards TB, Walch G, Sirveaux F, et al. Repair of tears of the subscapularis: surgical technique. [Review]. J Bone Joint Surg Am 2006;88(Suppl 1):1-10.
- 45. El-Zahaar MS, Bebars M. The value of the continuous passive motion after repair of the rotator cuff tear in athletes (an arthroscopic study). J Neurol Orthop Med Surg 1995;16(4):246-252.
- Erol O, Ozcakar L, Celiker R. Shoulder rotator strength in patients with stage I-II subacromial impingement: relationship to pain, disability, and quality of life. J Shoulder Elbow Surg 2008;17(6):893-897.
- 47. Farron A, De RB. Chirurgie de la coiffe des rotateurs: indications et resultats [Surgery of the rotator cuff: indications and results]. Rev Med Suisse Romande 1992 Aug;112(8):691-694. (Fre).
- Flurin PH, Landreau P, Societe francaise d'artroscopie. Reparation arthroscopique des lesions transfixiantes de la coiffe: etude retrospective multicentrique de 576 cas. Congres: Dix-huitieme journee de Bichat, "appareil locomoteur". 28 janvier 2005. Seance pleniere. Rhumatologie 2005;57(1):19-25.
- Flurin PH, Landreau P, Boileau P, et al. Arthroscopic rotator cuff repair. Correlations of clinical results with integrity of the tendon. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, IL, Mar 22-26, 2006.
- Flurin PH, Landreau P, Gregory T, et al. Cuff integrity after arthroscopic rotator cuff repair: correlation with clinical results in 576 cases. Arthroscopy 2007;23(4):340-346.
- 51. Flury MP, John M, Goldhahn J, et al. Rupture of the subscapularis tendon (isolated or in combination with supraspinatus tear): when is a repair indicated? J Shoulder Elbow Surg 2006;15(6):659-664.
- 52. Frank A. Ruptures transfixiantes de la coiffe des rotateurs: décompression sous-acromiale sans réparation: Quelles coiffes faut-il réparer et comment? [Transfixing ruptures of the rotator cuff: subacromial decompression without repair: cuff selection and repair techniques]. Rhumatologie 2002;54(2):16-24. (Fre).
- Frank JB, ElAttrache NS, Dines JS, et al. Repair site integrity after arthroscopic transosseous-equivalent suture-bridge rotator cuff repair. Am J Sports Med 2008;36(8):1496-1503.

- 54. Galatz LM, Ball CM, Teefey SA, et al. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 2004;86(2):219-224.
- Gartsman GM. Arthroscopic acromioplasty for lesions of the rotator cuff. J Bone Joint Surg Am 1990;72(2):169-180.
- 56. Gartsman GM, Milne JC. Articular surface partial-thickness rotator cuff tears. J Shoulder Elbow Surg 1995;4(6):409-415.
- Gartsman GM, Khan M, Hammerman SM. Arthroscopic repair of full-thickness tears of the rotator cuff. J Bone Joint Surg Am 1998;80(6):832-840.
- 58. Gazielly DF, Gleyze P, Montagnon C, et al. Resultats fonctionnels et anatomiques apres traitement chirurgical des ruptures de la coiffe des rotateurs. 2eme partie: evaluation fonctionnelle et anatomique postoperatoire des ruptures de la coiffe des rotateurs [Functional and anatomical results after surgical treatment of ruptures of the rotator cuff. 2: postoperative functional and anatomical evaluation of ruptures of the rotator cuff]. Rev Chir Orthop Reparatrice Appar Mot 1995;81(1):17-26. (Fre).
- 59. Gerber C, Hersche O, Farron A. Isolated rupture of the subscapularis tendon. J Bone Joint Surg Am 1996;78(7):1015-1023.
- 60. Gerber C, Fuchs B, Hodler J. The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am 2000;82(4):505-515.
- 61. Gleyze P, Otero F, Kempf JF. Ruptures de la coiffe des rotateurs de l'epaule: traitement symptomatique par acromioplastie sous arthroscopie: resultats et analyse des 31 premiers cas [Rotator cuff tears: symptomatic treatment by arthroscopic subacromal decompression: results and analysis of the 31 first cases]. Rhumatologie 1995;47(2):37-46. (Fre).
- 62. Gleyze P, Thomazeau H, Flurin PH, et al. Reparation endoscopique des ruptures de la coiffe des rotateurs [Arthroscopic rotator cuff repair: a multicentric retrospective study of 87 cases with anatomical assessment]. Rev Chir Orthop Reparatrice Appar Mot 2000;86(6):566-574. (Fre).
- 63. Goldberg BA, Nowinski RJ, Matsen III FA. Outcome of nonoperative management of fullthickness rotator cuff tears. Clin Orthop Relat Res 2001;(382):99-107.

- 64. Goldberg BA, Lippitt SB, Matsen III FA. Improvement in comfort and function after cuff repair without acromioplasty. Clin Orthop Relat Res 2001;(390):142-150.
- 65. Goutallier D, Postel JM, Lavau L, et al. Influence de la degenerescence graisseuse des muscles supraepineux et infraepineux sur le pronostic des reparations chirurgicales de la coiffe des rotateurs [Impact of fatty degeneration of the suparspinatus and infraspinatus msucles on the prognosis of surgical repair of the rotator cuff]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(7):668-676. (Fre).
- 66. Goutallier D, Postel JM, Gleyze P, et al. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J Shoulder Elbow Surg 2003;12(6):550-554.
- Grondel RJ, Savoie III FH, Field LD. Rotator cuff repairs in patients 62 years of age or older. J Shoulder Elbow Surg 2001;10(2):97-99.
- 68. Goutallier D, Postel JM, Radier C, et al. Longterm functional and structural outcome in patients with intact repairs 1 year after open transosseous rotator cuff repair. J Shoulder Elbow Surg 2009;18(4):521-528.
- Green A, Bradley MP, Tocci SL, et al. Patient satisfaction after rotator cuff repair. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, IL, Mar 22-26, 2006.
- Habernek H, Weinstabl R, Schabus R, et al. A new approach to the subacromial space: technique and 2-year results in 28 rotator-cuff repair cases. Acta Orthop Scand 1993;64(1):92-94.
- Hanusch BC, Goodchild L, Finn P, et al. Large and massive tears of the rotator cuff: functional outcome and integrity of the repair after a mini-open procedure. J Bone Joint Surg Br 2009;91(2):201-205.
- Hardy P, Duparc J. Chirurgie arthroscopique reparatrice de la coiffe des rotateurs (sousscapulaire exclu). Conferences d'enseignement 2006. Cahiers d'enseignement de la SOFCOT 2006;91:1-23. (Fre).
- 73. Hata Y, Saitoh S, Murakami N, et al. Volume changes of supraspinatus and infraspinatus muscles after supraspinatus tendon repair: a magnetic resonance imaging study. J Shoulder Elbow Surg 2005;14(6):631-635.

- 74. Hattrup SJ. Rotator cuff repair: relevance of patient age. J Shoulder Elbow Surg 1995;4(2):95-100.
- 75. Hawkins RJ, Morin WD, Bonutti PM. Surgical treatment of full-thickness rotator cuff tears in patients 40 years of age or younger. J Shoulder Elbow Surg 1999;8(3):259-265.
- Henn III RF, Kang L, Tashjian RZ, et al. Patients' preoperative expectations predict the outcome of rotator cuff repair. J Bone Joint Surg Am 2007;89(9):1913-1919.
- 77. Hersch JC, Sgaglione NA. Arthroscopically assisted mini-open rotator cuff repairs: functional outcome at 2- to 7-year follow-up. Am J Sports Med 2000;28(3):301-311.
- Hirooka A, Yoneda M, Wakaitani S, et al. Augmentation with a Gore-Tex patch for repair of large rotator cuff tears that cannot be sutured. J Orthop Sci 2002;7(4):451-456.
- 79. Huberty DP, Schoolfield JD, Brady PC, et al. Incidence and treatment of postoperative stiffness following arthroscopic rotator cuff repair. Arthroscopy 2009;25(8):880-890.
- Huijsmans PE, Pritchard MP, Berghs BM, et al. Arthroscopic rotator cuff repair with double-row fixation. J Bone Joint Surg Am 2007;89(6):1248-1257.
- 81. Iossifidis A, Gill I. Results of arthroscopic rotator cuff repair. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sep 20-23, 2006.
- Ito Y, Nakao Y, Tomo H, et al. Significance of the muscular power evaluation with isokinetic dynamometer in shoulders with rotator cuff tears. 52nd Annual Meeting of the Orthopaedic Research Society, Chicago, IL, Mar 19-22, 2006.
- Itoi E, Tabata S. Conservative treatment of rotator cuff tears. Clin Orthop Relat Res 1992;(275):165-173.
- Itoi E, Tabata S. Rotator cuff tears in anterior dislocation of the shoulder. Int Orthop 1992;16(3):240-244.
- 85. Itoi E, Tabata S. Incomplete rotator cuff tears: results of operative treatment. Clin Orthop Relat Res 1992;(284):128-135.
- 86. Jaffe M, Frank A, Beaufils P. L'acromioplastie endoscopique dans les ruptures completes de la coiffe des rotateurs [Endoscopic acromioplasty in total rupture of the rotator cuff]. Rev Chir Orthop Reparatrice Appar Mot 1994;80(5):369-738. (Fre).

- Jiang CY, Feng H, Hong L, et al. [Arthroscopic rotator cuff repair for the treatment of rotator cuff tear]. Zhonghua Wai Ke Za Zhi 2006;44(4):249-253. (Chi).
- Jones CK, Savoie FH. Arthroscopic repair of large and massive rotator cuff tears. Arthroscopy 2003;19(6):564-571.
- Juvenspan M, Conso C, Gaudin P, et al. Rupture isolee du tendon du muscle subscapularis: resultats des reparations a ciel ouvert [Isolated tear of the subscapularis tendon: results of open repair]. J Traumatol Sport 2005;22(1):5-12. (Fre).
- 90. Kamath G, Galatz LM, Keener JD, et al. Tendon integrity and functional outcome after arthroscopic repair of high-grade partialthickness supraspinatus tears. J Bone Joint Surg Am 2009;91(5):1055-1062.
- 91. Kempf JF, Gleyze P, Bonnomet F, et al. A multicenter study of 210 rotator cuff tears treated by arthroscopic acromioplasty. Arthroscopy 1999;15(1):56-66.
- Kim SH, Oh I, Park JS, et al. Intra-articular repair of an isolated partial articular-surface tear of the subscapularis tendon. Am J Sports Med 2005;33(12):1825-1830.
- Kim SJ, Lee JW, Kim BS. Arthroscopic decompression for subacromial impingement syndrome. J Korean Med Sci 1997;12(2):123-127.
- 94. Kreuz PC, Remiger A, Erggelet C, et al. Isolated and combined tears of the subscapularis tendon. Am J Sports Med 2005;33(12):1831-1837.
- 95. Krishnan SG, Harkins DC, Schiffern SC, et al. Arthroscopic repair of full-thickness tears of the rotator cuff in patients younger than 40 years. Arthroscopy 2008;24(3):324-328.
- 96. Kronberg M, Wahlstrom P, Brostrom LA. Shoulder function after surgical repair of rotator cuff tears. J Shoulder Elbow Surg 1997;6(2):125-130.
- Lahteenmaki HE, Virolainen P, Hiltunen A, et al. Results of early operative treatment of rotator cuff tears with acute symptoms. J Shoulder Elbow Surg 2006;15(2):148-153.
- Lahteenmaki HE, Hiltunen A, Virolainen P, et al. Repair of full-thickness rotator cuff tears is recommended regardless of tear size and age: a retrospective study of 218 patients. J Shoulder Elbow Surg 2007;16(5):586-590.

- 99. Lee E, Bishop JY, Braman JP, et al. Outcomes after arthroscopic rotator cuff repairs. J Shoulder Elbow Surg 2007;16(1):1-5.
- Levy HJ, Uribe JW, Delaney LG. Arthroscopic assisted rotator cuff repair: preliminary results. Arthroscopy 1990;6(1):55-60.
- Levy HJ, Gardner RD, Lemak LJ. Arthroscopic subacromial decompression in the treatment of full-thickness rotator cuff tears. Arthroscopy 1991;7(1):8-13.
- 102. Lichtenberg S, Liem D, Magosch P, et al. Influence of tendon healing after arthroscopic rotator cuff repair on clinical outcome using single row Mason-Allen suture technique - a prospective, MRI controlled study. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sep 20-23, 2006.
- 103. Liem D, Alci S, Dedy N, et al. Clinical and structural results of partial supraspinatus tears treated by subacromial decompression without repair. Knee Surg Sports Traumatol Arthrosc 2008;16(10):967-972.
- 104. Liem D, Lengers N, Dedy N, et al. Arthroscopic debridement of massive irreparable rotator cuff tears. Arthroscopy 2008;24(7):743-748.
- 105. Liu SH, Baker CL. Arthroscopically assisted rotator cuff repair: correlation of functional results with integrity of the cuff. Arthroscopy 1994;10(1):54-60.
- Liu SH. Arthroscopically-assisted rotator-cuff repair. J Bone Joint Surg Br 1994;76(4):592-595.
- 107. Lo I, Burkhart SS. Arthroscopic revision of rotator cuff repairs of failed repairs of the rotator cuff. Arthroscopy Association of North America 22nd Annual Meeting, Phoenix, AZ, Apr 24-28, 2003.
- Maman E, Harris C, White L, et al. Outcome of nonoperative treatment of symptomatic rotator cuff tears monitored by magnetic resonance imaging. J Bone Joint Surg Am 2009;91(8):1898-1906.
- 109. Mansat P, Frankle M, Cofield RH. Les lesions du tendon du subscapulaire: etude descriptive et resultats des reparations chirurgicales. Rev Rhum Ed Fr 2003;70(9):720-726. (Fre).
- 110. Mansat P, Frankle MA, Cofield RH. Tears in the subscapularis tendon: descriptive analysis and results of surgical repair. Joint Bone Spine 2003;70(5):342-347.

- 111. Marc T. Le traitement fonctionnel des ruptures de coiffe: protocole et resultats chez un groupe de 21 patients. XVIIe Journees de reeducation de la main et du membre superieur, Paris, 18-19 janvier 2002. Kinesither Sci 2001;(415):46-48. (Fre).
- 112. Massoud SN, Levy O, Copeland SA. Subacromial decompression: treatment for small- and medium-sized tears of the rotator cuff. J Bone Joint Surg Br 2002;84(7):955-960.
- 113. Maynou C, Mehdi N, Cassagnaud X, et al. Resultats de la tenotomie arthroscopique du chef long du biceps brachial dans les ruptures transfixiantes de la coiffe des rotateurs non reparees: a propos de 40 cas [Clinical results of arthroscopic tenotomy of the long head of the biceps brachii in full thickness tears of the rotator cuff without repair: 40 cases]. Rev Chir Orthop Reparatrice Appar Mot 2005;91(4):300-306. (Fre).
- McIntyre LF, Norris M, Weber B. Comparison of suture welding and hand-tied knots in miniopen rotator cuff repair. Arthroscopy 2006;22(8):833-836.
- 115. Melis B, Nemoz C, Walch G. Muscle fatty infiltration in rotator cuff tears: Descriptive analysis of 1688 cases. Orthop Traumatol Surg Res 2009;95(5):319-324.
- 116. Mellado JM, Calmet J, Olona M, et al. Surgically repaired massive rotator cuff tears: MRI of tendon integrity, muscle fatty degeneration, and muscle atrophy correlated with intraoperative and clinical findings. Am J Roentgenol 2005;184(5):1456-1463.
- 117. Millar AL, Lasheway PA, Eaton W, et al. A retrospective, descriptive study of shoulder outcomes in outpatient physical therapy. J Orthop Sports Phys Ther 2006;36(6):403-414.
- 118. Moore DR, Cain EL, Schwartz ML, et al. Allograft reconstruction for massive, irreparable rotator cuff tears. Am J Sports Med 2006;34(3):392-396.
- 119. Moulinoux P, Clavert P, Dagher E, et al. Arthroscopic repair of rotator cuff tears. Oper Orthop Traumatol 2007;19(3):231-254.
- 120. Murray Jr TF, Lajtai G, Mileski RM, et al. Arthroscopic repair of medium to large fullthickness rotator cuff tears: outcome at 2- to 6year follow-up. J Shoulder Elbow Surg 2002;11(1):19-24.

- 121. Musil D, Sadovsky P, Stehlik J. Masivni ruptura rotatorove manzety: srovnani miniopen a artroskopicke rekonstrukce. Cast 1. Mini-open technika [Massive tears of rotator cuff: comparison of mini-open and arthroscopic techniques. Part 1. Mini-open technique]. Acta Chir Orthop Traumatol Cech 2006;73(6):387-393. (Cze).
- 122. Nakamura N, Ito Y, Tomo H, et al. Second look arthroscopic evaluation for mini-open rotator cuff repair. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sep 20-23, 2006.
- 123. Namdari S, Henn III RF, Green A. Traumatic anterosuperior rotator cuff tears: the outcome of open surgical repair. J Bone Joint Surg Am 2008;90(9):1906-1913.
- 124. Neri BR, Vollmer EA, Kvitne RS. Isolated type II superior labral anterior posterior lesions: age-related outcome of arthroscopic fixation. Am J Sports Med 2009;37(5):937-942.
- 125. Nho SJ, Shindle MK, Adler RS, et al. Prospective analysis of arthroscopic rotator cuff repair: subgroup analysis. J Shoulder Elbow Surg 2009;18(5):697-704.
- 126. Oh JH, Kim SH, Ji HM, et al. Prognostic factors affecting anatomic outcome of rotator cuff repair and correlation with functional outcome. Arthroscopy 2009;25(1):30-39.
- 127. Oizumi N, Suenaga N, Fukuda K, et al. Massive rotator cuff tears repaired on top of humeral head by McLaughlin's procedure. J Shoulder Elbow Surg 2007;16(3):321-326.
- 128. Olsewski JM, Depew AD. Arthroscopic subacromial decompression and rotator cuff debridement for stage II and stage III impingement. Arthroscopy 1994;10(1):61-68.
- 129. Orthopaedic residents & fellows' conference. South Med J 1994;87(9):S76.
- Ozbaydar MU, Tonbul M, Yalaman O. Rotator mansetin tam kat yirtiklarinda artroskopik tamir sonuclari [The results of arthroscopic repair of full-thickness tears of the rotator cuff]. Acta Orthop Traumatol Turc 2005;39(2):114-120. (Tur).
- Ozbaydar MU, Tonbul M, Yurdoglu C, et al. Rotator manset yirtiklarinin artroskopik yardimli mini-acik yontemle tamiri [Arthroscopic-assisted mini-open repair of rotator cuff tears]. Acta Orthop Traumatol Turc 2005;39(2):121-127. (Tur).

- 132. Ozbaydar MU, Tonbul M, Tekin AC, et al. Artroskopik rotator manset onarimi: sonuclar ve belirleyici faktorlerin analizi [Arthroscopic rotator cuff repair: evaluation of outcomes and analysis of prognostic factors]. Acta Orthop Traumatol Turc 2007;41(3):169-174. (Tur).
- 133. Papacharalampous X, Maris JS, Ferousis J, Primetis H, et al. Magnetic resonance imaging for the evaluation of rotator cuff lesions. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sept 20-23, 2006.
- 134. Park TS, Kim TS. Comparative study of arthroscopic treatment of full thickness rotator cuff tear with or without frozen shoulder. Arthroscopy Association of North America 23rd Annual Meeting, Orlando, FL, Apr 22-25, 2004.
- 135. Park JY, Levine WN, Marra G, et al. Portalextension approach for the repair of small and medium rotator cuff tears. Am J Sports Med 2000;28(3):312-316.
- 136. 136. Park JY, Yoo MJ, Kim MH. Comparison of surgical outcome between bursal and articular partial thickness rotator cuff tears. Orthopedics 2003;26(4):387-90.
- 137. Paulos LE, Meislin RJ, Drawbert J. The acromion-splitting approach for large and massive rotator cuff tears. Am J Sports Med 1994;22(3):306-312.
- 138. Paulos LE, Kody MH. Arthroscopically enhanced "miniapproach" to rotator cuff repair. Am J Sports Med 1994;22(1):19-25.
- 139. Pfahler M, Branner S, Refior HJ. Die komplette rotatorenmanschettenruptur: differenzierte op-techniken und mittelfristige ergebnisse [Complete rotator cuff rupture: differential surgical techniques and intermediate-term results]. Z Orthop Ihre Grenzgeb 1999;137(4):295-300. (Ger).
- 140. PL-RR-268-SA. Phys Ther 1998;78(5):S88.
- 141. Porat S, Nottage WM, Fouse MN. Repair of partial thickness rotator cuff tears: a retrospective review with minimum two-year follow-up. J Shoulder Elbow Surg 2008;17(5):729-731.
- 142. Posada A, Uribe JW, Hechtman KS, et al. Mini-deltoid splitting rotator cuff repair: do results deteriorate with time? Arthroscopy 2000;16(2):137-141.

- 143. Postel JM, Goutallier D, Baldoncini J. Traitement des ruptures associees des supraepineux et infra-epineux par suture apres avancement tendino-musculaire [Treatment of associated ruptures of supraspinatus and infraspinatus by suture with musculo tendinous advancement]. Rev Chir Orthop Reparatrice Appar Mot 2004;90(5 Suppl):1S162-1S166. (Fre).
- 144. Ratti C, Murena L, Surace MF, et al. Clinical and ultrasound results after arthroscopic repair of the rotator cuff. Chir Organi Mov 2005;90(2):95-104.
- 145. Rebuzzi E, Coletti N, Schiavetti S, et al. Arthroscopic rotator cuff repair in patients older than 60 years. Arthroscopy 2005;21(1):48-54.
- 146. Roye RP, Grana WA, Yates CK. Arthroscopic subacromial decompression: two- to sevenyear follow-up. Arthroscopy 1995;11(3):301-306.
- Ryu RK. Arthroscopic subacromial decompression: a clinical review. Arthroscopy 1992;8(2):141-147.
- 148. Saragaglia D, Montbarbon E, Picard F, et al. Les ruptures isolees du tendon du muscle supra-epineux: resultats de 49 reparations chirurgicales [Isolated rupture of the tendon of the supra spinatus muscle: results of 49 surgical repair]. Rev Chir Orthop Reparatrice Appar Mot 1995;81(7):575-580. (Fre).
- 149. Saragaglia D, Montbarbon E, Picard F, et al. Les ruptures isolees du tendon du muscle supra-epineux: isolated teas of supra-spinatus. Rhumatologie 1995;47(6):213-217. (Fre).
- 150. Shinners TJ, Noordsij PG, Orwin JF. Arthroscopically assisted mini-open rotator cuff repair. Arthroscopy 2002;18(1):21-26.
- Sperling JW, Cofield RH, Schleck C. Rotator cuff repair in patients fifty years of age and younger. J Bone Joint Surg Am 2004;86(10):2212-2215.
- 152. Suenaga N, Minami A. Coracoacromial arch decompression in rotator cuff surgery. Int Orthop 2000;24(4):212-216.
- 153. Sugaya H, Maeda K, Moriishi J et al. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. J Bone Joint Surg 2007;89(5):953-960.

- 154. Sukthankar A, Nyffeler RW, Werner CML, Gerber C. Lateral Extension of the Acromion and Rotator Cuff Tears. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow, Athens, Sep 20-23, 2006.
- 155. Tauber M, Koller H, Resch H. Transosseous arthroscopic repair of partial articular-surface supraspinatus tendon tears. Knee Surg Sports Traumatol Arthrosc 2008;16(6):608-613.
- 156. Tauro JC. Arthroscopic rotator cuff repair: analysis of technique and results at 2- and 3year follow-up. Arthroscopy 1998;14(1):45-51.
- 157. Tauro JC. Long term results of arthroscopic rotator cuff repair. Arthroscopy Association of North America 23rd Annual Meeting, Orlando, FL, Apr 22-25, 2004.
- 158. Thomazeau H, Gleyze P, Frank A, et al. Le debridement endoscopique des ruptures transfixiantes de la coiffe des rotateurs: etude retrospective multicentrique de 283 cas a plus de 3 ans de recul [Arthroscopic debridement of full-thickness tears of the rotator cuff: a retrospective multicenter study of 283 cases with 3-year follow-up]. Rev Chir Orthop Reparatrice Appar Mot 2000;86(2):136-142. (Fre).
- 159. Thomazeau H, Gleyze P. Le traitement par deridement arthroscopique des ruptures associes des supra et infraspinatus non rearables par suture directe [Treatment by arthroscopic debridement of the associated ruptures of supraspinatus and infraspinatus unrepairable by direct suture]. Rev Chir Orthop Reparatrice Appar Mot 2004;90(5 Suppl):1S166-168. (Fre).
- 160. Van Linthoudt D, Deforge J, Malterre L, et al. Suture de la coiffe des rotateurs: resultats a long terme. Rev Rhum Ed Fr 2003;70(7):582-587. (Fre).
- Van Linthoudt D, Deforge J, Malterre L, et al. Rotator cuff repair: long-term results. Joint Bone Spine 2003;70(4):271-275.
- 162. Van Riet RP, O'Leary ST, Hooper A, et al. Rotator cuff strength following open subscapularis tendon repair. Acta Orthop Belg 2008;74(2):173-179.
- 163. Visuri T, Kiviluoto O, Eskelin M. Carbon fiber for repair of the rotator cuff: a 4-year follow-up of 14 cases. Acta Orthop Scand 1991;62(4):356-359.
- 164. Vives MJ, Miller LS, Rubenstein DL, et al. Repair of rotator cuff tears in golfers. Arthroscopy 2001;17(2):165-172.

- 165. Voos JE, Pearle AD, Mattern CJ, et al. Outcomes of combined arthroscopic rotator cuff and labral repair. Am J Sports Med 2007;35(7):1174-1179.
- 166. Walch G, Marechal E, Maupas J, et al. Traitement chirurgical des ruptures de la coiffe des rotateurs: facteurs de pronostic [Surgical treatment of rotator cuff rupture: prognostic factors]. Rev Chir Orthop Reparatrice Appar Mot 1992;78(6):379-388. (Fre).
- 167. Walch G, Marechal E. Traitement chirurgical des ruptures de la coiffe des rotateurs: facteurs de pronostic [Surgical treatment of rotator cuff tears]. Rev Chir Orthop Reparatrice Appar Mot 1992;78(6):379-388. (Fre).
- 168. Walch G, Edwards TB, Boulahia A, et al. Arthroscopic tenotomy of the long head of the biceps in the treatment of rotator cuff tears: clinical and radiographic results of 307 cases. J Shoulder Elbow Surg 2005;14(3):238-246.
- Wasilewski SA, Frankl U. Rotator cuff pathology: arthroscopic assessment and treatment. Clin Orthop Relat Res 1991;(267):65-70.
- 170. Watson EM, Sonnabend DH. Outcome of rotator cuff repair. J Shoulder Elbow Surg 2002;11(3):201-211.
- 171. Wessel RN, Rasenberg EJJ, Guldemond NA, et al. Arthroscopic Rotator Cuff Repair: Clinical Results. 53rd Congress of the Nordic Orthopaedic Federation, Oslo (Norway), May 31-Jun 2, 2006.
- 172. Wirth MA, Basamania C, Rockwood CA Jr. Nonoperative management of full-thickness tears of the rotator cuff. Orthop Clin North Am 1997;28(1):59-67.
- 173. Wirth MA. Nonoperative management of fullthickness tears of the rotator cuff. The rotator cuff, Part I. Orthop Clin North Am 1997;28(1):59-67.
- 174. Worland RL, Arredondo J, Angles F, et al. Repair of massive rotator cuff tears in patients older than 70 years. J Shoulder Elbow Surg 1999 Jan;8(1):26-30.
- 175. Wright SA, Cofield RH. Management of partial-thickness rotator cuff tears. J Shoulder Elbow Surg 1996 Nov;5(6):458-466.
- 176. Yamanaka K, Matsumoto T. The joint side tear of the rotator cuff: a follow up study by arthrography. Clin Orthop Relat Res 1994 Jul;(304):68-73.

- 177. Yel M, Shankwiler JA, Noonan Jr JE, et al. Results of decompression and rotator cuff repair in patients 65 years old and older: 6- to 14-year follow-up. Am J Orthop 2001 Apr;30(4):347-352.
- 178. Yoo JC, Ahn JH, Yang JH, et al. Correlation of Arthroscopic Repairability of Large to Massive Rotator Cuff Tears With Preoperative Magnetic Resonance Imaging Scans. Arthroscopy - Journal of Arthroscopic and Related Surgery 2009;25(6):573-582.
- 179. Yoo JC, Kim JH, Lee YS, et al. Arthroscopic double mattress repair in incomplete subscapularis tears. Orthopedics 2008;31(9):851-854.
- 180. Zanchi A, Minati S, Boi M, et al. La ricostruzione a cielo aperto nelle rotture massive inveterate della cuffia dei rotatori [The opened reconstruction in the inveterate massive tears of the rotator cuff: our experience]. Minerva Ortop Traumatol 2008;59(5):275-281. (Ita).
- 181. Zingg PO, Jost B, Sukthankar A, et al. Clinical and structural outcomes of nonoperative management of massive rotator cuff tears. J Bone Joint Surg Am 2007 Sep;89(9):1928-1934.
- Zvijac JE, Levy HJ, Lemak LJ. Arthroscopic subacromial decompression in the treatment of full thickness rotator cuff tears: a 3- to 6-year follow-up. Arthroscopy 1994 Oct;10(5):518-523.

Excluded – Not Population of Interest (N = 15)

The following studies were excluded because they failed to meet our population inclusion criteria.

- Brooks A, Domb B, ElAttrache N, et al. Hightension double-row footprint repair versus reduced-tension single-row repair in massive rotator cuff tears. J Investig Med 2008;56(1):209.
- 2. Deutsch A. Arthroscopic rotator cuff repair: The effect of depth of suture passage on threedimensional repair site surface area and load to failure using single-row anchor fixation. J Shoulder Elbow Surg 16(2):e41.
- 3. Domb BG, Gloustrian RE, Brooks A, et al. High-tension double-row footprint repair compared with reduced-tension single-row repair for massive rotator cuff tears. J Bone Joint Surg Am 2008;90(Suppl 4):35-39.
- Ecklund KJ, Chu EH, McGarry MH, et al. Reverse Shoulder Arthroplasty Restores Abductor Muscle Efficiency in Massive Rotator Cuff Tears. Journal of the American Academy of Orthopaedic Surgeons 2007; 15(6):340-349.
- Jia XL, Fan RF, Li HQ, et al. Diagnosis and treatment of traumatic subscapularis tendon ruptur. Zhongguo Gu Shang 2009;22(2):118-119.
- Koh JL, Szomor Z, Murrell GA, et al. Supplementation of rotator cuff repair with a bioresorbable scaffold. Am J Sports Med 2002 May;30(3):410.
- Lopez-Vidriero E, Costic R, Lara J, et al. Biomechanical properties of different placement of achors for rotator cuff repair.
 53rd Annual Meeting of the Orthopaedic Research Society, San Diego, CA, Feb 11-14, 2007.
- 8. Magermans DJ, Chadwick EKJ, Veeger HEJ, et al. Biomechanical analysis of tendon transfers for massive rotator cuff tears. Clin Biomech 2004;19(4):350-357.

- Manigrasso MB, Meier SW. Rotator Cuff Repair: The effect of dual-row fixation on tendon-bone motion at the repair interface. 52nd Annual Meeting of the Orthopaedic Research Society, Chicago, IL, Mar 19-22, 2006.
- Meier SW, Meier JD, Levy AS. Rotator cuff repair: The effect of double-row fixation vs. single-row fixation on three-dimensional repair site. Arthroscopy Association of North America 23rd Annual Meeting, Orlando, FL, Apr 22-25, 2004.
- Min K, Siskosky M, Lee T. Transosseous equivalent arthroscopic rotator cuff repair using push lock versus conventional doublerow fixation. J Investig Med 2007;55(1 Suppl S):S134.
- Park MC, Pirolo JM, Park CJ, et al. The effect of abduction and rotation on footprint contact for single-row, double-row, and modified double-row rotator cuff repair techniques. Am J Sports Med 2009;37(8):1599-1608.
- Park MC, Pirolo JM, Park CJ, et al. The effect of internal and external rotation on footprint contact comparing double-row and transosseous-equivalent rotator cuff repair techniques. 54th Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, Mar 2-5, 2008.
- Steenbrink F, de Groot JH, Veeger HE, et al. Glenohumeral stability in simulated rotator cuff tears. J Biomech 2009;42(11):1740-1745.
- 15. Tamborlane J, Oka R, Mahar A, Pedowitz R. Strength of double row arthroscopic rotator cuff repair.52nd Annual Meeting of the Orthopaedic Research Society, Chicago, IL, Mar 19-22, 2006.

Excluded – Not Confirmed Rotator Cuff Tear (N = 107)

The following studies were excluded because RC tears were not confirmed using diagnostic imaging or intraoperative findings.

- 1. Abboud JA, Silverberg D, Pepe M, et al. Surgical treatment of os acromiale with and without associated rotator cuff tears. J Shoulder Elbow Surg 2006 May;15(3):265-270.
- Adamietz B, Sauer R, Keilholz L. Bestrahlung beim impingementsyndrom des schultergelenks [Radiotherapy for shoulder impingement]. Strahlenther Onkol 2008 May;184(5):245-250. (Ger).
- Adebajo AO, Nash P, Hazleman BL. A prospective double blind dummy placebo controlled study comparing triamcinolone hexacetonide injection with oral diclofenac 50 mg TDS in patients with rotator cuff tendinitis. J Rheumatol 1990 Sep;17(9):1207-1210.
- Adolfsson L, Lysholm J. Results of arthroscopic acromioplasty related to rotator cuff lesions. Int Orthop 1993;17(4):228-231.
- Akpinar S, Hersekli MA, Ozalay M, et al. [Arthroscopic acromioplasty in the treatment of subacromial impingement syndrome]. Artroplasti Artroskopik Cerrahi 2003;14(2):94-97.
- Alfredson H, Harstad H, Haugen S, et al. Sclerosing polidocanol injections to treat chronic painful shoulder impingement syndrome: results of a two-centre collaborative pilot study. Knee Surg Sports Traumatol Arthrosc 2006;14(12):1321-1326.
- Alvarez CM, Litchfield R, Jackowski D, et al. A prospective, double-blind, randomized clinical trial comparing subacromial injection of betamethasone and xylocaine to xylocaine alone in chronic rotator cuff tendinosis. Am J Sports Med 2005;33(2):255-262.
- Andersen NH, Sojbjerg JO, Johannsen HV, et al. Self-training versus physiotherapistsupervised rehabilitation of the shoulder in patients treated with arthroscopic subacromial decompression: a clinical randomized study. J Shoulder Elbow Surg 1999 Mar;8(2):99-101.
- 9. Baltaci G, Bayrakci T, V, Binnet M, et al. Rehabilitation in arthroscopic subacromial decompression: six-year follow-up. Fizyoterapi Rehabilitasyon 2007;18(3):201-208.

- Bartolozzi A, Andreychik D, Ahmad S. Determinants of outcome in the treatment of rotator cuff disease. Clin Orthop Relat Res 1994 Nov;(308):90-97.
- Bengtsson M, Lunsjo K, Hermodsson Y, et al. High patient satisfaction after arthroscopic subacromial decompression for shoulder impingement: a prospective study of 50 patients. Acta Orthop 2006 Feb;77(1):138-142.
- 12. Bennell K, Coburn S, Wee E, et al. Efficacy and cost-effectiveness of a physiotherapy program for chronic rotator cuff pathology: a protocol for a randomised, double-blind, placebo-controlled trial. BMC Musculoskelet Disord 2007;8:86.
- Bezer M, Aydin N, Erol B, et al. Artroskopik ve acik anterior akromiyoplasti: gec donem sonuclar [Late results of arthroscopic and open anterior acromioplasty]. Acta Orthop Traumatol Turc 2004;38(2):115-119. (Tur).
- 14. Bingol U, Altan L, Yurtkuran M. Low-power laser treatment for shoulder pain. Photomed Laser Surg 2005;23(5):459-464.
- 15. Blaine T, Moskowitz R, Udell J, et al. Treatment of persistent shoulder pain with sodium hyaluronate: a randomized, controlled trial. A multicenter study. J Bone Joint Surg Am 2008 May;90(5):970-979.
- Boileau P. Arthroscopic bristow procedure for anterior instability in shoulders with a stretched or deficient capsule: the "belt-and-suspenders" operative technique and preliminary results. Arthroscopy 2007;23(6):593-601.
- Boileau P, Parratte S, Chuinard C, et al. Arthroscopic treatment of isolated type II SLAP lesions: biceps tenodesis as an alternative to reinsertion. Am J Sports Med 2009;37(5):929-936.
- Brox JI, Staff PH, Ljunggren AE, et al. Arthroscopic surgery compared with supervised exercises in patients with rotator cuff disease (stage II impingement syndrome)[erratum appears in BMJ 1993 Nov 13;307(6914):1269]. Br Med J 1993 Oct 9;307(6909):899-903.

- Budoff JE, Nirschl RP, Guidi EJ. Debridement of partial-thickness tears of the rotator cuff without acromioplasty: long-term follow-up and review of the literature. [Review] [58 refs]. J Bone Joint Surg Am 1998 May;80(5):733-748.
- 20. Burns TP, Turba JE. Arthroscopic treatment of shoulder impingement in athletes. Am J Sports Med 1992;20(1):13-16.
- Cabot A, Cabot JC. Minimal incision acromioplasty. Orthopedics 2002;25(12):1347-1350.
- 22. Carreira DS, Mazzocca A. A prospective outcome evaluation of arthroscopic bankart repairs : minimum 2-year follow-up. Am J Sports Med 2006;34(5):771-777.
- 23. Cheng AS, Hung LK. Randomized controlled trial of workplace-based rehabilitation for work-related rotator cuff disorder. J Occup Rehabil 2007 Sep;17(3):487-503.
- 24. Dayican A, Ozturk C, Portakal S, et al. [The results of anterior acromioplasty for the treatment of the impingement syndrome in the shoulder]. Artroplasti Artroskopik Cerrahi 2002;13(2):73-77. (Tur).
- 25. Di Fabio RP, Boissonnault W. Physical therapy and health-related outcomes for patients with common orthopaedic diagnoses. J Orthop Sports Phys Ther 1998 Mar;27(3):219-230.
- Di Lorenzo L, Pappagallo M, Gimigliano R, et al. Pain relief in early rehabilitation of rotator cuff tendinitis: any role for indirect suprascapular nerve block? Eura Medicophys 2006 Sep;42(3):195-204.
- Dickens VA, Williams JL, Bhamra MS. Role of physiotherapy in the treatment of subacromial impingement syndrome: a prospective study. Physiotherapy 2005;91(3):159-164.
- Doneux PS, Miyazaki AN, Pinheiro Jr JA, et al. Incidencia de dor acromioclavicular apos descompressao subacromial artroscopica [Incidence of acromioclavicular pain after arthroscopic subacromial decompression]. Rev Bras Ortop 1998;33(5):329-332. (Por).
- 29. Doneux PS, Miyazaki AN, Pinheiro Jr JA, et al. Tratamento da sindrome do impacto em tenistas [Treatment of impingement syndrome in tennis players]. Rev Bras Ortop 1998;33(12):939-944. (Por).

- Ellman H, Kay SP. Arthroscopic subacromial decompression for chronic impingement: twoto five-year results. J Bone Joint Surg Br 1991 May;73(3):395-398.
- Ferreiro Marzoa I, Veiga Suarez M, Guerra Pena JL, et al. Rehabilitating treatment of painful shoulder. Rehabil 2005;39(3):113-120.
- Frieman BG, Fenlin JM, Jr. Anterior acromioplasty: effect of litigation and workers' compensation. J Shoulder Elbow Surg 1995 May;4(3):175-181.
- Friis J, Jarner D, Toft B, et al. Comparison of two ibuprofen formulations in the treatment of shoulder tendonitis. Clin Rheumatol 1992 Mar;11(1):105-108.
- Garcia Diaz MF, Medina SM. Evolucion y caracteristicas de los pacientes con hombro doloroso en atencion primaria [Evolution and characteristics of primary care patients with painful shoulder]. Aten Primaria 2005;35(4):192-197. (Spa).
- 35. Garmann S, Dilmac N, Marquardt B, et al. Endergebnis nach operativer behandlung von schultergelenksinfekten [Final results after operative treatment of shoulder joint infections]. Z Orthop Ihre Grenzgeb 2003 Nov;141(6):643-649. (Ger).
- 36. Genc A, Ozcan A, Gelecek N. Evre II Rotator Manset Yaylanmalarinin Teadavysynde Pyroksykam Fonoforez Uygulamasinin Etkynlydy [The effectiveness of piroxicam phonophoresis for treatment of stage II rotator cuff injuries]. Artroplasti Artroskopik Cerrahi 2002;13(1):23-26. (Tur).
- 37. Ginsberg F, Famaey JP. Double-blind, randomized crossover study of the percutaneous efficacy and tolerability of a topical indomethacin spray versus placebo in the treatment of tendinitis. J Int Med Res 1991 Mar;19(2):131-136.
- Giombini A, Di CA, Safran MR, et al. Shortterm effectiveness of hyperthermia for supraspinatus tendinopathy in athletes: a shortterm randomized controlled study. Am J Sports Med 2006 Aug;34(8):1247-1253.
- 39. Godges JJ, Mattson-Bell M, Thorpe D, et al. The immediate effects of soft tissue mobilization with proprioceptive neuromuscular facilitation on glenohumeral external rotation and overhead reach. J Orthop Sports Phys Ther 2003;33(12):713-718.

- Gosse F, Ruhmann O, Wirth CJ. Arthrodesis of the glenohumeral joint using a 4.5-mm reconstruction plate. Oper Orthop Traumatol 2003;15(2):170-187. (Ger, Eng).
- 41. Greve JM, Rossi JD, Cossermelli W, et al. Reabilitacao funcional das lesoes tendinosas degenerativas do ombro [Functional rehabilitation of degenerative tendinous injuries of the shoulder]. Rev Hosp Clin Fac Med Sao Paulo 1991 Mar;46(2):78-81. (Spa).
- 42. Grymel-Kulesza E, Polak A. Wplyw kompleksowej terapii obejmujacej cwiczenia czynne, masaz[dot] klasyczny, krioterapie oraz laczne dzialanie ultradzwiekow i pradu elektrycznego w leczeniu uszkodzen pierscienia rotatorow [The effect of a multimodality therapy including active exercises, classic massage, cryotherapy and a combination of ultrasound and electrical stimulation on rotator cuff injuries]. Fizjoterapia Polska 2007;7(2):107-123. (Pol).
- 43. 43. Haahr JP, Andersen JH.
 Exercises may be as efficient as subacromial decompression in patients with subacromial stage II impingement: 4-8-years' follow-up in a prospective, randomized study. Scand J Rheumatol 2006;35(3):224-8.
- Hartwig CH, Burkhard R. Operative release of the impingement syndrome. Indication, technique, results. Arch Orthop Trauma Surg 1996;115(5):249-254.
- 45. Hsieh KH, Lee PY, Lee TS, et al. Functional assessment for shoulder impingement syndrome after anterior acromioplasty. Chin Med J 1997 Jun;59(6):354-358.
- Huang G, Xue Q, Sun C. [Impingement syndrome of the subacromial area: analysis of 42 cases]. Zhonghua Wai Ke Za Zhi 1997 Jan;35(1):35-37. (Chi).
- Hyvonen P, Lohi S, Jalovaara P. Open acromioplasty does not prevent the progression of an impingement syndrome to a tear. Nineyear follow-up of 96 cases. J Bone Joint Surg Br 1998 Sep;80(5):813-816.
- Imhoff A, Ledermann T. Arthroscopic subacromial decompression with and without the Holmium:YAG-laser: a prospective comparative study. Arthroscopy 1995 Oct;11(5):549-556.
- 49. Innocenti M, Muncibi F, Coppacchioli D, et al. Arthroscopic treatment of non-calcific rotator cuff tendinitis. Journal of Sports Traumatology and Related Research 1999;21(3):140-144.

- 50. Itzkowitch D, Ginsberg F, Leon M, et al. Periarticular injection of tenoxicam for painful shoulders: a double-blind, placebo controlled trial. Clin Rheumatol 1996 Nov;15(6):604-609.
- Jerosch J, Strauss JM, Schneider T. Die arthroskopische subacromiale dekompression: 1-3 Jahresergebnisse. [Arthroscopic subacromial decompression: 1-3 year results]. Z Orthop Ihre Grenzgeb 1992 Sep;130(5):406-412. (Ger).
- 52. Jully JL, Scheffer JC, Katz D. Coiffes non operees. Kinesither Sci 1995;(344):7-10. (Fre).
- 53. Katz D, V. Luxations et fractures luxations inveterees de l'epaule traitees par arthroplastie: a propos de 14 cas. Ann Orthop Ouest 2005;(37):93-96. (Fre).
- 54. Kleinhenz J, Streitberger K, Windeler J, et al. Randomised clinical trial comparing the effects of acupuncture and a newly designed placebo needle in rotator cuff tendinitis. Pain 1999 Nov;83(2):235-241.
- Lathia AT, Jung SM, Chen LX. Efficacy of acupuncture as a treatment for chronic shoulder pain. J Altern Complement Med 2009;15(6):613-618.
- 56. Lewis JS, Wright C, Green A. Subacromial impingement syndrome: the effect of changing posture on shoulder range of movement. J Orthop Sports Phys Ther 2005;35(2):72-87.
- Lill H, Korner J, Hepp P, et al. Age-dependent prognosis following conservative treatment of traumatic anterior shoulder dislocation. Eur J Trauma 2001;27(1):29-33.
- 58. MacDermid JC, Ramos J, Drosdowech D, et al. The impact of rotator cuff pathology on isometric and isokinetic strength, function, and quality of life. J Shoulder Elbow Surg 2004;13(6):593-598.
- 59. Marc T, Societe francaise des masseurs kinesitherapeutes du sport SFMKS Fp. Protocole et resultats de la reeducation des tendinopathies de la coiffe des rotateurs: sport, sante et prevention. Kinesither Sci 2003;(437):25-30. (Fre).
- Mayerhoefer ME, Breitenseher MJ, Wurnig C, et al. Shoulder impingement: relationship of clinical symptoms and imaging criteria. Clin J Sport Med 2009;19(2):83-89.

- Mole D, Kempf JF, Gleyze P, et al. Resultats du traitement arthroscipique des tendinopathies non rompues de la coiffe des rotateurs. 2e partie: les calcifications de la coiffe des rotateurs [Results of endoscopic treatment of non-broken tendinopathies of the rotator cuff. 2: calcifications of the rotator cuff]. Rev Chir Orthop Reparatrice Appar Mot 1993;79(7):532-541. (Fre).
- Morrison DS, Frogameni AD, Woodworth P. Nonoperative treatment of subacromial impingement syndrome. J Bone Joint Surg Am 1997 May;79(5):732-737.
- 63. Naredo E, Cabero F, Beneyto P, et al. A randomized comparative study of short term response to blind injection versus sonographicguided injection of local corticosteroids in patients with painful shoulder. J Rheumatol 2004;31(2):308-314.
- 64. Nicoletti SJ, Carrera EF, Neto NA, et al. Tratamento artroscopico da sindrome do pincamento subacromial, come e sem acromioplastia: resultados apos seguimento medio de 45 meses [Arthroscopic subacromial bursectomy with and without acromioplasty for treatment of impingement syndrome: functional results after a 45 month follow-up]. Rev Bras Ortop 1998;33(5):333-337. (Por).
- Nobuhara K, Sugiyama D, Ikeda H, et al. Contracture of the shoulder. Clin Orthop Relat Res 1990 May;(254):105-110.
- Odenbring S, Wagner P, Atroshi I. Long-term outcomes of arthroscopic acromioplasty for chronic shoulder impingement syndrome: a prospective cohort study with a minimum of 12 years' follow-up. Arthroscopy 2008;24(10):1092-1098.
- Ogilvie-Harris DJ, Boynton E. Arthroscopic acromioplasty: extravasation of fluid into the deltoid muscle. Arthroscopy 1990;6(1):52-54.
- 68. Pagan Conesa JA, Mas MJ, Sanchez MA, et al. Analisis prospectivo de una serie de artroscopias de hombro en el tratamiento de la patologia del manguito rotador. [Prospective analysis of a series of shoulder arthroscopies in the treatment of rotator cuff tears]. Rev Ortop Traumatol 2003;47(1):16-25. (Spa).
- 69. Paoloni JA, Appleyard RC, Nelson J, et al. Topical glyceryl trinitrate application in the treatment of chronic supraspinatus tendinopathy: a randomized, double-blinded, placebo-controlled clinical trial. Am J Sports Med 2005 Jun;33(6):806-813.

- Patel VR, Singh D, Calvert PT, et al. Arthroscopic subacromial decompression: results and factors affecting outcome. J Shoulder Elbow Surg 1999 May;8(3):231-237.
- Paulos LE, Franklin JL. Arthroscopic shoulder decompression development and application: a five year experience. Am J Sports Med 1990 May;18(3):235-244.
- 72. Pigozzi F, Giombini A, Parisi A, et al. The application of shock-waves therapy in the treatment of resistant chronic painful shoulder: a clinical experience. J Sports Med Phys Fitness 2000 Dec;40(4):356-361.
- 73. Pogliaghi S, Malgrati D. A new taping technique for shoulder impingement. Eura Medicophys 1998;34(3):137-144.
- Rabin SI, Post M. A comparative study of clinical muscle testing and Cybex evaluation after shoulder operations. Clin Orthop Relat Res 1990 Sep;(258):147-156.
- 75. Rahme H, Solem-Bertoft E, Westerberg CE, et al. The subacromial impingement syndrome: a study of results of treatment with special emphasis on predictive factors and paingenerating mechanisms. Scand J Rehabil Med 1998 Dec;30(4):253-262.
- Rao SE, Muzammil S, Hobbs NJ. Subacromial decompression for shoulder impingement syndrome. J Coll Physicians Surg Pak 2006 Mar;16(3):208-211.
- Razmjou H, Holtby R, Myhr T. Gender differences in quality of life and extent of rotator cuff pathology. Arthroscopy 2006;22(1):57-62.
- Rockwood CA, Jr., Williams GR, Jr., Burkhead WZ, Jr. Debridement of degenerative, irreparable lesions of the rotator cuff. J Bone Joint Surg Am 1995 Jun;77(6):857-866.
- Russell AL. Piroxicam 0.5% topical gel compared to placebo in the treatment of acute soft tissue injuries: a double-blind study comparing efficacy and safety. Clin Invest Med 1991 Feb;14(1):35-43.
- Saab M, Randall PE. Treatment of acute supraspinatus tendinitis: physiotherapy or steroid injection? Eur J Emerg Med 1997 Sep;4(3):176.
- Sachs RA, Stone ML, Devine S. Open vs. arthroscopic acromioplasty: a prospective, randomized study. Arthroscopy 1994 Jun;10(3):248-254.

- 82. San Segundo RM, Valdes JM, Fernandez TR. Conservative treatment in shoulder pain: ultrasounds respect sham insonation: a clinical trial. Rehabil 2008;42(2):61-66.
- Schneider T, Strauss JM, Hoffstetter I, et al. Shoulder joint stability after arthroscopic subacromial decompression. Arch Orthop Trauma Surg 1994;113(3):129-133.
- Schneider T, Straus JM, Fink B, et al. Influence de la stabilite articulaire sur les resultats de la decompression sous-acromiale par voie arthroscopique. Acta Orthop Belg 1996;62(2):94-99.
- Schroder J, V. Open versus arthroscopic treatment of chronic rotator cuff impingement. Arch Orthop Trauma Surg 2001;121(5):241-244.
- Shi Y. Experience of comprehensive rehabilitation treatment on 60 cases of muscle strain at neck and shoulder. Chin J Clin Rehab 2003;7(2):313.
- 87. Smith AM, Mardones RM, Sperling JW, et al. Early complications of operatively treated proximal humeral fractures. J Shoulder Elbow Surg 2007;16(1):14-24.
- Sonnabend DH. Treatment of primary anterior shoulder dislocation in patients older than 40 years of age: conservative versus operative. Clin Orthop Relat Res 1994 Jul;(304):74-77.
- Spangehl MJ, Hawkins RH, McCormack RG, et al. Arthroscopic versus open acromioplasty: a prospective, randomized, blinded study. J Shoulder Elbow Surg 2002 Mar;11(2):101-107.
- Speer KP, Lohnes J, Garrett Jr WE. Arthroscopic subacromial decompression: results in advanced impingement syndrome. Arthroscopy 1991;7(3):291-296.
- Stephens SR, Warren RF, Payne LZ, et al. Arthroscopic acromioplasty: a 6- to 10-year follow-up. Arthroscopy 1998 May;14(4):382-388.
- 92. Strobel G. Therapeutischelangzeitwirkung unterschiedlicher intraartikularer injektionsbehandlung der schmerzhaften schulter: auswirkung auf Schmerz, Beweglichkeit und Arbeitsfahigkeit [Longterm therapeutic effect of different intraarticular injection treatments of the painful shoulder: effect on pain, mobility and work capacity]. Rehabilitation (Stuttg) 1996 Aug;35(3):176-178. (Ger).

- Stuart MJ, Azevedo AJ, Cofield RH. Anterior acromioplasty for treatment of the shoulder impingement syndrome. Clin Orthop Relat Res 1990 Nov;(260):195-200.
- Tasto JP, Cummings J, Medlock V, et al. The tendon treatment center: new horizons in the treatment of tendinosis. Arthroscopy 2003 Dec;19(Suppl 1):213-223.
- 95. Thelen MD, Dauber JA, Stoneman PD. The clinical efficacy of Kinesio Tape for shoulder pain: a randomized, double-blinded, clinical trial. J Orthop Sports Phys Ther 2008;38(7):389-395.
- 96. Thomas M, Grunert J, Standtke S, et al. Seilzugisokinetik in der schulterrehabilitation: erste ergebnisse. [Isokinetic pulley-system in shoulder rehabilitation: first results]. Z Orthop Ihre Grenzgeb 2001;139(1):80-86. (Ger).
- 97. Van Holsbeeck E., DeRycke J, Declercq G, et al. Subacromial impingement: open versus arthroscopic decompression. Arthroscopy 1992;8(2):173-178.
- 98. Vecchio P, Cave M, King V, et al. A doubleblind study of the effectiveness of low level laser treatment of rotator cuff tendinitis. Br J Rheumatol 1993 Aug;32(8):740-742.
- 99. Vecchio PC, Hazleman BL, King RH. A double-blind trial comparing subacromial methylprednisolone and lignocaine in acute rotator cuff tendinitis. Br J Rheumatol 1993 Aug;32(8):743-745.
- 100. Volpon JB, Muniz AAS. Resultado do tratamento cirurgico do pincamento do manguito rotador do ombro pela descompressao subacromial [Results of the surgical treatment of the shoulder rotator cuff impingement by subacromial decompression]. Rev Bras Ortop 1997;32(1):65-69. (Por).
- Watson J, Helliwell P, Morton V, et al. Shoulder acute pain in primary healthcare: is retraining effective for GP principals? SAPPHIRE: a randomized controlled trial. Rheumatology 2008;47(12):1795-1802.
- Wiley P. Low-energy extracorporeal shockwave treatment for tendinitis of the supraspinatus. Clin J Sport Med 2002;12(4):262.
- 103. Wittenberg RH, Rubenthaler F, Wolk T, et al. Surgical or conservative treatment for chronic rotator cuff calcifying tendinitis: a matchedpair analysis of 100 patients. Arch Orthop Trauma Surg 2001;121(1-2):56-59.

- 104. Wright RW, Heller MA, Quick DC, et al. Arthroscopic decompression for impingement syndrome secondary to an unstable os acromiale. Arthroscopy 2000 Sep;16(6):595-599.
- 105. Yamaguchi K, Buchbinder R, Green S, et al. Arthrographic distension with saline and steroid reduced pain and disability and improved range of motion in the short term in patients with painful stiff shoulder. J Bone Joint Surg Am 2004;86(8):1837.
- 106. Yu CM, Chen CH, Liu HT, et al. Subacromial injections of corticosteroids and xylocaine for painful subacromial impingement syndrome. Chang Gung Med J 2006 Sep;29(5):474-479.
- Zuinen C. Diclofenac/misoprostol vs diclofenac/placebo in treating acute episodes of tendinitis/bursitis of the shoulder. Drugs 1993;45(Suppl 1):17-23.

Excluded – Primary Intention Was Not Treatment of RC Tears (N = 59)

The following studies were excluded because their primary intention was not the treatment of RC tears.

- 1. Allom R, Colegate-Stone T, Gee M, et al. Outcome analysis of surgery for disorders of the rotator cuff: a comparison of subjective and objective scoring tools. J Bone Joint Surg Br 2009;91(3):367-373.
- Arcand MA, O'Rourke P, Zeman CA, et al. Revision surgery after failed subacromial decompression. Int Orthop 2000;24(2):61-64.
- Arntz CT, Matsen FA, III, Jackins S. Surgical management of complex irreparable rotator cuff deficiency. J Arthroplasty 1991 Dec;6(4):363-370.
- Barbier C, Caillat-Miousse JL. Etude radiologique preliminaire de l'influence de "l' abaissement actif " de la tete humerale, sur la variation de l'espace sous-acromial: la recherche en Kinesitherapie. Ann Kinésithér 2000;27(1):12-20. (Fre).
- Baumann B, Genning K, Bohm D, et al. Arthroscopic prevalence of pulley lesions in 1007 consecutive patients. J Shoulder Elbow Surg 2008 Jan;17(1):14-20.
- Bigliani LU, Cordasco FA, McIlveen SJ, et al. Operative treatment of failed repairs of the rotator cuff. J Bone Joint Surg Am 1992 Dec;74(10):1505-1515.
- Blauth W, Gartner J. Ergebnisse postoperativer arthrographien nach Naht rupturierter rotatorenmanschetten [Postoperative results of arthrography following suturing of ruptured rotator cuff]. Orthopade 1991 Sep;20(4):262-265. (Ger).
- Boileau P, Krishnan SG, Coste JS, et al. Arthroscopic biceps tenodesis: a new technique using bioabsorbable interference screw fixation. Arthroscopy 2002 Nov;18(9):1002-1012.
- Braune C, Gramlich H. Der makroskopische aspekt der rotatorenmanschettenruptur bei traumatischen und atraumatischen rupturformen. Unfallchirurg 2000;103(6):462-467. (Ger).
- Burkhead J, Schiffern SC, Krishnan SG. Use of Graft Jacket as an augmentation for massive rotator cuff tears. Semin Arthroplasty 2007;18(1):11-18.

- Camos P, Ceriani A, Gnemmi GC, et al. Il conflitto subacromiale [Shoulder impingement syndrome]. Minerva Ortop Traumatol 1996;47(12):677-681. (Ita).
- Chen AL, Shapiro JA, Ahn AK, et al. Rotator cuff repair in patients with type I diabetes mellitus. J Shoulder Elbow Surg 2003 Sep;12(5):416-421.
- Chui CH, Lee C, Seow KH. The results of open acromioplasty in impingement syndrome—a retrospective study. Singapore Med J 1997 Jan;38(1):22-24.
- Cummins CA, Murrell GA. Mode of failure for rotator cuff repair with suture anchors identified at revision surgery. J Shoulder Elbow Surg 2003 Mar;12(2):128-133.
- Della Sala SW, Bianchini G. La risonanza Magnetica nello studio della spalla dolorosa: raffronto chirugico in 30 casi consecutive [Magnetic resonance in the study of the painful shoulder: the surgical comparison in 30 consecutive cases]. Radiol Med 1996 Apr;91(4):348-355. (Ita).
- Djurasovic M, Marra G, Arroyo JS, et al. Revision rotator cuff repair: factors influencing results. J Bone Joint Surg Am 2001 Dec;83(12):1849-1855.
- Ekeberg OM, Bautz-Holter E, Tveita EK, et al. Subacromial ultrasound guided or systemic steroid injection for rotator cuff disease: randomised double blind study. BMJ 2009;338:3112.
- Epstein B, Childers MK. The use of gabapentin for neuropathic and musculoskeletal pain: a case series. J Neurol Rehabil 1998;12(2):81-86.
- Field LD, Warren RF, O'Brien SJ, et al. Isolated closure of rotator interval defects for shoulder instability. Am J Sports Med 1995;23(5):557-563.
- 20. Flurin PH. Ruptures traumatiques de la coiffe des rotateurs chez le rugbyman. J Traumatol Sport 2007;24(4):203-206.

- Fornara P, Caniggia M, Ceffa R, et al. Studio preoperatorio con proiezione radiografica "outlet-view" in 150 pazienti operati per sindrome da conflitto subacromiale[Preoperative study with "outletview" radiographic projection in 150 patients undergoing shoulder impingement syndrome surgery]. Minerva Ortop Traumatol 2001;52(6):245-249. (Ita).
- 22. Fuchs S, Langenbrick A. Haufigkeit, symptomatik und relevanz von klinisch manifesten rotatorenmanschettenlasionen im alter. Aktuelle Traumatol 1999;29(1):1-7. (Ger).
- 23. Gradl G, Dietze A, Arndt D, et al. Angular and sliding stable antegrade nailing (Targon PH) for the treatment of proximal humeral fractures. Arch Orthop Trauma Surg 2007;127(10):937-944.
- 24. Hamada K, Fukuda H, Mikasa M, et al. Roentgenographic findings in massive rotator cuff tears: a long-term observation. Clin Orthop Relat Res 1990 May;(254):92-96.
- Hartsell HD, Forwell L. Postoperative eccentric and concentric isokinetic strength for the shoulder rotators in the scapular and neutral planes. J Orthop Sports Phys Ther 1997 Jan;25(1):19-25.
- Hattrup SJ, Cofield RH, Cha SS. Rotator cuff repair after shoulder replacement. J Shoulder Elbow Surg 2006 Jan;15(1):78-83.
- Hiemstra LA, Sasyniuk TM, Mohtadi NG, et al. Shoulder strength after open versus arthroscopic stabilization. Am J Sports Med 2008;36(5):861-867.
- Jacquot N. Le long biceps peut-il etre sain dans les ruptures de la coiffe des rotateurs? Epidemiologie et comportement dynamique. Rev Chir Orthop Reparatrice Appar Mot 2007;93(8):5S30-5S31. (Fre).
- 29. Jerosch J, Schroder M, Schneider T. [Arthroscopic resection of the acromioclavicular joint: indications, surgical technique, outcome]. Unfallchirurg 1998 Sep;101(9):691-696. (Ger).
- Joo HO, Sae HK, Ho KL, et al. Trans-rotator cuff portal is safe for arthroscopic superior labral anterior and posterior lesion repair: clinical and radiological analysis of 58 SLAP lesions. Am J Sports Med 2008;36(10):1913-1921.

- Levigne C, Boileau P, Favard L, et al. Scapular notching in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2008;17(6):925-935.
- 32. Lo IKY, Burkhart SS. Arthroscopic revision of failed rotator cuff repairs: technique and results. Arthroscopy 2004 Mar;20(3):250-267.
- Lo IKY, Burkhart SS. Immediate postoperative fluid retention and weight gain after shoulder arthroscopy. Arthroscopy 2005 May;21(5):605-610.
- Ma HL, Hung SC, Wang ST, et al. The reoperation of failed rotator cuff repairs. J Chin Med Assoc 2003 Feb;66(2):96-102.
- 35. Mazoue CG, Andrews JR. Repair of fullthickness rotator cuff tears in professional baseball players. Am J Sports Med 2006 Feb;34(2):182-189.
- McKee MD, Yoo DJ. The effect of surgery for rotator cuff disease on general health status: results of a prospective trial. J Bone Joint Surg Am 2000 Jul;82(7):970-979.
- Mormino MA, Gross RM, McCarthy JA. Captured shoulder: a complication of rotator cuff surgery. Arthroscopy 1996 Aug;12(4):457-461.
- 38. Murrell G, Marshall J, Cummins C. Rotator cuff repair: an evaluation of the mode of failure in rotator cuff repairs identified at revision surgery (n = 21) in 342 consecutive rotator cuff repairs repaired with suture anchors. J Sci Med Sport 2002;5(4 Suppl):86.
- Paavolainen P, Ahovuo J. Ultrasonography and arthrography in the diagnosis of tears of the rotator cuff. J Bone Joint Surg Am 1994 Mar;76(3):335-340.
- 40. Park JY, Lee WS, Lee ST. The strength of the rotator cuff before and after subacromial injection of lidocaine. J Shoulder Elbow Surg 2008 Jan;17(1 Suppl 8):8S-11S.
- 41. Pichon H, Startun V, Barthelemy R, et al. Étude comparative de deux techniques de section du tendon du muscle subscapulaire dans l'opération de Latarjet [Comparative study of the anatomic and clinical effect of Weaver or subtotal subscapularis tendon section in Latarjet procedure]. Rev Chir Orthop Reparatrice Appar Mot 2008 Feb;94(1):12-18.
- 42. Post M. Complications of rotator cuff surgery. Clinical orthopaedics and related research 1990;(254):97-104.

- 43. Rittmeister M, Kerschbaumer F. Grammont reverse total shoulder arthroplasty in patients with rheumatoid arthritis and nonreconstructible rotator cuff lesions. J Shoulder Elbow Surg 2001 Jan;10(1):17-22.
- Rozing PM. A posterosuperior approach to the shoulder. J Shoulder Elbow Surg 2008;17(3):431-435.
- Savoie FH. Arthroscopic management of posterior instability: evolution of technique and results. Arthroscopy 2008;24(4):389-396.
- 46. Schroder RJ, Scheibel M, Tsynman A, et al. Magnetresonanztomographische Untersuchung des Musculus subscapularis nach offener vorderer Schulterstabilisierung [Magnetic resonance analysis of the subscapularis muscle after open anterior shoulder stabilization]. Rofo 2006 Jul;178(7):706-712. (Ger).
- 47. Scibek JS, Mell A, Downie B, Carpenter J, et al. Shoulder kinematics in patients with full thickness rotator cuff tears following a subacromial injection. University of Michigan; 2005.
- 48. Seltzer DG, Zvijac J. The technique of arthroscopy-assisted rotator cuff repair. Tech Orthop 1993;8(3):212-224.
- 49. Skoff HD. Conservative open acromioplasty. J Bone Joint Surg Br 1995 Nov;77(6):933-936.
- 50. Sonnabend DH, Watson EM. Structural factors affecting the outcome of rotator cuff repair. J Shoulder Elbow Surg 2002 May;11(3):212-218.
- Stark JT, Zbreski MG, Kruger MJ. Resistance training volume during rehabilitation predicts functional outcomes in workers' compensation rotator cuff repair. Faseb J 2007;21(5):A581.

- 52. Suder PA, Hougaard K, Frich LH, et al. Intraarticular findings in the chronically painful shoulder: a study of 32 posttraumatic cases. Acta Orthop Scand 1994;65(3):339-343.
- 53. Urvoy P, Boileau G. Confrontation et validation de plusieurs methodes d' evaluation des resultats apres chirurgie de la coiffe des rotateurs: plaidoyer pour une expression. Rev Chir Orthop Reparatrice Appar Mot 1991;77(3):171-178. (Fre).
- 54. Viola RW, Boatright KC, Smith KL, et al. Do shoulder patients insured by workers' compensation present with worse self-assessed function and health status? J Shoulder Elbow Surg 2000;9(5):368-372.
- 55. Walch G, Boulahia A. Le signe du clairon et le "dropping sign" dans les ruptures de la coiffe des rotateurs. J Traumatol Sport 1999;16(1):50-56. (Fre).
- Warner JJP, Higgins L, Parsons IM, et al. Diagnosis and treatment of anterosuperior rotator cuff tears. J Shoulder Elbow Surg 2001 Jan;10(1):37-46.
- 57. Wildner M. Lost to follow-up. J Bone Joint Surg Br 1995;77(4):657.
- Yagci B, Manisali M, Yilmaz E, et al. Indirect MR arthrography of the shoulder in detection of rotator cuff ruptures. Eur Radiol 2001;11(2):258-262.
- 59. Yen D. Limitations of isokinetic testing to determine shoulder strength after rotator cuff repair. Iowa Orthop J 2005;25:141-144.

Excluded – Not Intervention of Interest (N = 47)

The following studies were excluded because they did not examine an intervention of interest for this review.

- Apoil AM. Kinesitherapie apres reparation de la coiffe par lambeau de deltoide. Pathologie musculo-tendineuse du membre superieur: de l' epaule a la main. Kinesither Sci 2000;(404):21-23. (Fre).
- Arntz CT, Jackins S, Matsen FA, III. Prosthetic replacement of the shoulder for the treatment of defects in the rotator cuff and the surface of the glenohumeral joint.[erratum appears in J Bone Joint Surg Am 1993 Jul;75(7):1112]. J Bone Joint Surg Am 1993 Apr;75(4):485-491.
- Atalar AC, Demirhan M, Uysal M. Biseps uzun baßÝnÝn subakromiyal sÝkÝßma sendromuna etkisi ve artroskopik yardÝmlÝ tenodezi [The role of the long head of the biceps in subacromial impingement syndrome and arthroscopic assisted tenodesis]. Acta Orthop Traumatol Turc 2002;36(5):408-412. (Tur).
- 4. Augereau B, Bensaida M, Vandenbussche E, et al. Plastie par lambeau de deltoide des ruptures transfixiantes associées des supraspinatus et infraspinatus non réparables par simple suture avec long biceps conservable [Deltoid muscle flap-plasty of associated transfixiant ruptures of supraspinatus and infraspinatus unrepairable by simple suture with preservable long biceps: twenty-nine cases with hindsight for 10 years and a half]. Rev Chir Orthop Reparatrice Appar Mot 2004;90(5 Suppl):1S155-1S158. (Fre).
- Birmingham PM, Neviaser RJ. Outcome of latissimus dorsi transfer as a salvage procedure for failed rotator cuff repair with loss of elevation. J Shoulder Elbow Surg 2008;17(6):871-874.
- Boileau P, Walch G, Noel E, et al. Neer shoulder prosthesis: outcome according to the shoulder disease. Rev Rhum Engl Ed 1994;61(9):537-547.
- Boussagol B, Pelissier J, Herisson C, et al. Évaluation des pathologies de la coiffe des rotateurs: analyse comparative de quatre scores [Clinical assessment of rotator cuff lesions: comparative analysis of four scales]. Ann Readapt Med Phys 1996;39(2):79-88. (Fre).
- 8. Brownlow HC, Smith C, Corner T, et al. Pain and stiffness in partial-thickness rotator cuff tears. Am J Orthop 2009;38(7):338-340.

- Chavez-Lopez MA, Navarro-Soltero LA, Rosas-Cabral A, et al. Methylprednisolone versus triamcinolone in painful shoulder using ultrasound-guided injection. Mod Rheumatol 2009;19(2):147-150.
- Cho NS, Yi JW, Rhee YG. Arthroscopic biceps augmentation for avoiding undue tension in repair of massive rotator cuff tears. Arthroscopy: The Journal of Arthroscopy & Related Surgery 2009;25(2):183-191
- Contreras-Dominguez V, Carbonell-Bellolio P. Continuous interscalene block for analgesia following shoulder rotator cuff repair: evaluation of 2 bupivacaine concentrations applied with the same infusion technique. Rev Esp Anestesiol Reanim 2008;55(10):610-615.
- 12. Dierickx C, Vanhoof H. Massive rotator cuff tears treated by a deltoid muscular inlay flap. Acta Orthop Belg 1994;60(1):94-100.
- Donigan JA, Frisella WA, Haase D, et al. Preoperative and intra-operative factors related to shoulder arthroplasty outcomes. Iowa Orthop J 2009;29:60-66.
- Favard LO, Societe orthopedique de l'-ouest-SOO. Omarthrose excentree: hemiarthroplastie versus prothese inversee: resultats a moyen terme [Glenohumeral arthritis: hemiarthroplasty versus reverse prostheses: midterm results]. Ann Orthop Ouest 2003;(35):81-86. (Fre).
- 15. Fredrickson MJ, Stewart AW. Continuous interscalene analgesia for rotator cuff repair: a retrospective comparison of effectiveness and cost in 205 patients from a multi-provider private practice setting. Anaesth Intensive Care 2008;36(6):786-791.
- Gedouin JE, Katz D, Colmar M, et al. Le lambeau deltoidien dans les ruptures massives de la coiffe des rotateurs [Deltoid muscle flap for massive rotator cuff tears: 41 cases with a mean 7-year (minimum 5 year) follow-up]. Rev Chir Orthop Reparatrice Appar Mot 2002 Jun;88(4):365-372. (Fre).
- Gerber C. Latissimus dorsi transfer for the treatment of irreparable tears of the rotator cuff. Clin Orthop Relat Res 1992 Feb;(275):152-160.

- Gerber C, Maquieira G, Espinosa N. Transfert du grand dorsal pour le traitement des ruptures massives de la coiffe des rotateurs: quels facteurs déterminent le résultat final? [Latissimus dorsi tendon transfer for treatment of massive tears of the rotator cuff: which factors determine the final result?]. Rev Chir Orthop Reparatrice Appar Mot 2004;90(5 Suppl):1S158-1S162. (Fre).
- Goutallier D, Postel JM, Van DS, et al. Tension-free cuff repairs with excision of macroscopic tendon lesions and muscular advancement: results in a prospective series with limited fatty muscular degeneration. J Shoulder Elbow Surg 2006 Mar;15(2):164-172.
- Grammont PM, Baulot E. Delta shoulder prosthesis for rotator cuff rupture. Orthopedics 1993;16(1):65-68.
- Guven O, Bezer M, Guven Z, et al. Surgical technique and functional results of irreparable cuff tears reconstructed with the long head of the biceps tendon. Bull Hosp Joint Dis 2001;60(1):13-17.
- 22. Hadjicostas PT, Soucacos PN, Theissen M, et al. The use of split deltoid-flap in the treatment of massive rotator cuff defects: a retrospective study of 61 patients. Knee Surg Sports Traumatol Arthrosc 2008;16(9):876-883.
- Huguet D, Gruber P, Societe d'-orthopedie-del'-Ouest-SOO. Arthroplasties inversees d' epaule: analyse clinique et radiographique de 17 cas a 31 mois de recul. Les Sables d' Olonne: L' avant-pied rhumatoide, luxation des PTH, fracture des deux os de l' avant-bras de l' enfant. Ann Orthop Ouest 2002;(34):93-97. (Fre).
- Ilahi OA, Cosculluela PE, Ho DM. Classification of anterosuperior glenoid labrum variants and their association with shoulder pathology. Orthopedics 2008;31(3):226.
- Jost B, Pfirrmann CW, Gerber C, et al. Clinical outcome after structural failure of rotator cuff repairs. J Bone Joint Surg Am 2000 Mar;82(3):304-314.
- Jost B, Zumstein M, Pfirrmann CW, et al. Long-term outcome after structural failure of rotator cuff repairs. J Bone Joint Surg Am 2006;88(3):472-479.
- Kadic MA, Rozing PM, Obermann WR, et al. A surgical approach in total shoulder arthroplasty. Arch Orthop Trauma Surg 1992;111(4):192-194.

- 28. Klein SM, Steele SM, Nielsen KC, et al. The difficulties of ambulatory interscalene and intra-articular infusions for rotator cuff surgery: a preliminary report. Can J Anaesth 2003;50(3):265-269.
- 29. Lehuec JC, Liquois F, Schaeverbecke T, et al. Résultats d'une series de lambeaux deltoidiens pour rupture massive de la coiffe des rotateurs avec 3,5 ans recul moyen [Results of a series of deltoid flaps for the treatment of massive rotator cuff tears with 3.5 years follow-up]. Rev Chir Orthop Reparatrice Appar Mot 1996;82(1):22-28. (Fre).
- Longo UG, Franceschi F, Ruzzini L, et al. Higher fasting plasma glucose levels within the normoglycaemic range and rotator cuff tears. BJSM online 2009;43(4):284-287.
- Lu XW, Verborgt O, Gazielly DF. Long-term outcomes after deltoid muscular flap transfer for irreparable rotator cuff tears. J Shoulder Elbow Surg 2008;17(5):732-737.
- 32. Mansat M. Place des lambeaux musculotendineux dans les ruptures irreparables de la coiffe des rotateurs de l'epaule. Enseignement de la chirurgie de la main 1996;8:119-129. (Fre).
- 33. Mansat P, Societe francaise de chirurgie orthopedique et traumatologique PFo. Protheses humerales simples pour le traitement des omarthroses avec rupture de la coiffe des rotateurs. 81e reunion annuelle de la Societe francaise de chirurgie orthopedique et traumatologique. Rev Chir Orthop Reparatrice Appar Mot 2007;93(6):3S51-3S56. (Fre).
- 34. Oh DK, Yoon YC, Kwon JW, et al. Comparison of indirect isotropic MR arthrography and conventional MR arthrography of labral lesions and rotator cuff tears: a prospective study. Am J Roentgenol 2009;192(2):473-479.
- 35. Postacchini F, Gumina S. Results of surgery after failed attempt at repair of irreparable rotator cuff tear. Clin Orthop Relat Res 2002 Apr;(397):332-341.
- 36. Razmjou H, Holtby R, Alexander P, Moola F, et al. Size of Tear as a Prognostic Indicator for Outcome Following Rotator Cuff Full-Thickness Tear Repair. 61st Annual Meeting of the Canadian Orthopaedic Association, Toronto, ON, Jun 2-4 2006.

- Reinold MM, Macrina LC, Wilk KE, et al. The Effect of Electrical Stimulation of the Intraspinatus on Shoulder External Rotation Force Production Following Rotator Cuff Repair Surgery. J Orthop Sports Phys Ther 2005 Jan;35(1):a79-a80.
- Resch H, Povacz P, Ritter E, et al. Transfer of the pectoralis major muscle for the treatment of irreparable rupture of the subscapularis tendon. J Bone Joint Surg Am 2000;82(3):372-382.
- 39. Simovitch RW, Zumstein MA, Lohri E, et al. Predictors of scapular notching in patients managed with the delta III reverse total shoulder replacement. J Bone Joint Surg Am 2007;89(3):588-600.
- 40. Skutek M, Fremerey RW, Zeichen J, et al. Outcome analysis following open rotator cuff repair: early effectiveness validated using four different shoulder assessment scales. Arch Orthop Trauma Surg 2000;120(7-8):432-436.
- Thomazeau H, Colmar M. Lambeaux deltoidiens: resultats precoces d' une serie continue de 35 cas [The deltoid flap. A series of 35 cases]. Ann Orthop Ouest 1994;(26):79-83. (Fre).
- 42. Thur C, Redaelli C. Die Deltoideus-Lappen Plastik: therapie der Wahl bei der grossen Rotatoren-Manschetten-Ruptur? [The deltoid flap-plasty: therapy of choice in large rotator cuff ruptures?]. Z Unfallchir Versicherungsmed 1992;85(4):172-185. (Ger).
- 43. Toyoda H, Ito Y, Inui K, Koike T, et al. Evaluation of the rotator cuff tear with magnetic resonance arthrography. Clin Orthop Relat Res 2005;439:109-115.
- Vecchio PC, Adebajo AO, Hazleman BL. Suprascapular nerve block for persistent rotator cuff lesions. J Rheumatol 1993 Mar;20(3):453-455.
- 45. Weber SC, Jain R, Parise C. Pain scores in the management of postoperative pain in shoulder surgery. Arthroscopy 2007 Jan;23(1):65-72.
- 46. Weiss AP, Adams MA, Moore JR, et al. Unconstrained shoulder arthroplasty: a fiveyear average follow-up study. Clin Orthop Relat Res 1990 Aug;(257):86-90.
- 47. Werner CML, Ruckstuhl T, Muller R, et al. Influence of psychomotor skills and innervation patterns on results of latissimus dorsi tendon transfer for irreparable rotator cuff tears. J Shoulder Elbow Surg 2008;17(1 Suppl):S22-S28

Excluded – No Numeric Outcomes of Interest (N = 39)

The following studies were excluded because they did report numeric data for any of the a priori specified outcomes of interest.

- Agnello L, Cataldo P, Letizia GA. Rehabilitation following injury of the rotator cuff. Acta Med Medit 2003;19(1):43-47.
- Bhatia M, Singh B, Nicolaou N, et al. Correlation between rotator cuff tears and repeated subacromial steroid injections: a casecontrolled study. Ann R Coll Surg Engl 2009;91(5):414-416.
- Boyer T, Bailly A, Hopital Bichat Clinique rhumatologique Fp. Resultats du traitement arthroscopique des lesions de la coiffe: sport et appareil locomoteur. Rhumatologie 1995;47(5):159-163. (Fre).
- Brady PC, Arrigoni P, Burkhart SS. Evaluation of residual rotator cuff defects after in vivo single-versus double-row rotator cuff repairs. Arthroscopy 2006;22(10):1070-1075.
- Bron C. Treatment of myofascial trigger points in common shoulder disorders by physical therapy: a randomized controlled trial [ISRCTN75722066]. BMC Musculoskelet Disord 2007;8:107.
- Chen SK, Lin GT, Tien YC, et al. Greater tuberosity osteotomy for treatment of impinge rotator cuff tear. Kaohsiung J Med Sci 2000 Apr;16(4):192-196.
- Dainty K, Litchfield R, Forwell L, et al. Randomized clinical trial comparing the use of hydro-therapy to land based therapy alone following full-thickness rotator cuff repairs. (abstract). Clin J Sport Med 2002 Jan;12(1):67-68.
- Deutsch A, Altchek DW, Veltri DM, et al. Traumatic tears of the subscapularis tendon: clinical diagnosis, magnetic resonance imaging findings, and operative treatment. Am J Sports Med 1997 Jan;25(1):13-22.
- Deutsch AA, Taylor MM. A Prospective Comparison of Ethibond vs. Fiberwire Suture for Arthroscopic Rotator Cuff Repair. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, IL, Mar 22-26, 2006.

- Fukuda H, Hamada K, Nakajima T, et al. Partial-thickness tears of the rotator cuff: a clinicopathological review based on 66 surgically verified cases. Int Orthop 1996;20(4):257-265.
- 11. Gartsman GM. Arthroscopic assessment of rotator cuff tear reparability. Arthroscopy 1996;12(5):546-549.
- Gazielly D. Epidémiologie. [Epidemiology of full-thickness tears of the rotator cuff, including subscapularis]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):92. (Fre).
- Gill TJ, McIrvin E, Kocher MS, et al. The relative importance of acromial morphology and age with respect to rotator cuff pathology. J Shoulder Elbow Surg 2002 Jul;11(4):327-330.
- Goutallier D, Postel JM, Bernageau J, et al. Fatty muscle degeneration in cuff ruptures: pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 1994 Jul;(304):78-83.
- Goutallier D, Postel JM. La degenerescence graisseuse des muscles des coiffes tendineuses rompues de l'epaule. Rev Rhum Ed Fr 1995;62(6):439-446. (Fre).
- Grana WA, Teague B, King M, et al. An analysis of rotator cuff repair. Am J Sports Med 1994 Sep;22(5):585-588.
- Gumina S, Di GG, Bertino A, et al. Inflammatory infiltrate of the edges of a torn rotator cuff. Int Orthop 2006 Oct;30(5):371-374.
- Hardy P. Reparation endoscopique des ruptures des tendons de la coiffe des rotateurs : evaluation de la cicatrisation tendineuse a moyen terme. Congres de la Vingt et Unieme Journee de Bichat "Pathologie Mecanique et Sportive." 15 Mars 2008. Rhumatologie 2008;60(1):23-28. (Fre).
- Holibka R, Ditmar R, Holibkova A, et al. Isolated ruptures of the supraspinatus muscle. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003;147(2):227-232.

- Iannotti JP. Postoperative outcome assessment of the shoulder following rotator cuff repair. Elsevier Science Publishers B.V.; Elsevier Science Publishing Co., Inc.; 1995.
- 21. Lyons TR, Savoie FH, Field LD. Arthroscopic repair of partial-thickness tears of the rotator cuff. Arthroscopy 2001;17(2):219-223.
- 22. Ma HL, Wu JJ, Lin CF, et al. Surgical treatment of full thickness rotator cuff tear in patients younger than 40 years. Chin Med J 2000 Jun;63(6):452-458.
- Maguire MG. Massive tears of the rotator cuff. Elsevier Science Publishers BV; Elsevier Science Publishing Co., Inc.; 1995.
- Murrell G, Walton J, Cummins C, et al. Longterm temporal outcomes following rotator cuff repair. (abstract). J Sci Med Sport 2003;6(Suppl):5.
- 25. O'Holleran JD, Kocher MS, Horan MP, et al. Determinants of patient satisfaction with outcome after rotator cuff surgery. J Bone Joint Surg Am 2005 Jan;87(1):121-126.
- Olley LM, Carr AJ. The use of a patient-based questionnaire (the Oxford Shoulder Score) to assess outcome after rotator cuff repair. Ann R Coll Surg Engl 2008 May;90(4):326-331.
- Parent EC, Brennan G, Cleland J. Clinical outcomes and utilization of physical therapy services for categories of shoulder pathologies treated conservatively. 2008 Combined Sections Meeting. Nashville, Tennessee, February 6-9, 2008. J Orthop Sports Phys Ther 2008;38(1):A18-A19.
- 28. Paulos LE, Kody MH. Arthroscopically enhance mini-approach to rotator cuff repair. Arthroscopy 1991;7(3):331.
- 29. Postacchini F, Perugia D, Rampoldi M. Rotator cuff tears: results of surgical repair. Ital J Orthop Traumatol 1992;18(2):173-188.

- Putz R, Reichelt A. Strukturelle befunde am lig. coracoacromiale bei rotatorenmanschettenruptur, tendinosis calcarea und supraspinatussyndrom. Z Orthop Ihre Grenzgeb 1990;128(1):46-50. (Ger).
- 31. Rubin A. Does continuous passive motion help? Phys Sportsmed 1996 Sep;24(9):160.
- 32. Sherman SL, Lyman S, Koulouvaris P, et al. Risk factors for readmission and revision surgery following rotator cuff repair. Clin Orthop Relat Res 2008 Mar;466(3):608-613.
- Shinoda T, Shibata Y, Izaki T, et al. A comparative study of surgical invasion in arthroscopic and open rotator cuff repair. J Shoulder Elbow Surg 2009;18(4):596-599.
- 34. Silver-Bernstein C. Continuous passive motion after repair of the rotator cuff: a prospective outcome study. Phys Ther 79[1], 99. 1999.
- 35. Simank HG, Dauer G, Schneider S, et al. Incidence of rotator cuff tears in shoulder dislocations and results of therapy in older patients. Arch Orthop Trauma Surg 2006 May;126(4):235-240.
- Tashjian RZ, Bradley MP, Tocci S, et al. Factors influencing patient satisfaction after rotator cuff repair. J Shoulder Elbow Surg 2007 Nov;16(6):752-758.
- 37. Thompson C. Abstracts. J Athl Train 1997 Apr;32(2):169.
- Weber SC, Kauffman JI. All-arthroscopic vs. mini-open rotator cuff repair: Long-term follow-up. Arthroscopy Association of North America 23rd Annual Meeting, Orlando, FL, Apr 22-25, 2004.
- Zilber S, Carillon Y, Lapner PC, et al. Infraspinatus delamination does not affect supraspinatus tear repair. Clin Orthop Relat Res 2007 May;458:63-69.

Excluded – Followup <12 Months (Operative) (N = 23)

The following operative studies were excluded because the postoperative followup duration was less than 12 months.

- Balyk R, Luciak-Corea C, Otto D, et al. Do outcomes differ after rotator cuff repair for patients receiving workers' compensation? Clin Orthop Relat Res 2008 Dec;466(12):3025-3033.
- 2. Benson RT, McDonnell SM, Rees JL, et al. The morphological and immunocytochemical features of impingement syndrome and partialthickness rotator-cuff tear in relation to outcome after subacromial decompression. J Bone Joint Surg Br 2009;91(1):119-123.
- Brislin KJ, Field LD, Savoie FH, III. Complications after arthroscopic rotator cuff repair. Arthroscopy 2007 Feb;23(2):124-128.
- Burkhart SS, Tehrany AM. Arthroscopic subscapularis tendon repair: technique and preliminary results. Arthroscopy 2002 May;18(5):454-463.
- Catasus-Clave ML, Guillen-Sola A, Diaz-Aristzabal U, et al. Isokinetic study of rotator cuff lesions: pre- and post-surgical results. Rehabil 2007;41(1):25-29.
- Cordasco FA, McGinley BJ, Charlton T. Rotator cuff repair as an outpatient procedure. J Shoulder Elbow Surg 2000 Jan;9(1):27-30.
- Ellenbecker TS, Elmore E, Bailie DS. Descriptive report of shoulder range of motion and rotational strength 6 and 12 weeks following rotator cuff repair using a mini-open deltoid splitting technique. J Orthop Sports Phys Ther 2006 May;36(5):326-335.
- Ellenbecker TS, Fischer DJ, Zeman D. Glenohumeral joint range of motion, rotational isokinetic strength, and functional self-report measures following all-arthroscopic rotator cuff repair. (abstract). J Orthop Sports Phys Ther 2006 Jan;36(1):a68-a69.
- Gumina S, Di GG, Perugia D, et al. Deltoid detachment consequent to open surgical repair of massive rotator cuff tears. Int Orthop 2008 Feb;32(1):81-84.
- Hartig A, Rojczyk M. Die arthroskopie subakromiale dekompression: anmerkungen zur indikation und operationstechnik [Arthroscopic sub-acromial decompression: comments on indications and surgical technique]. Unfallchirurg 1993 Feb;96(2):109-115. (Ger).

- Hofmann-Kiefer K, Eiser T, Chappell D, et al. Does patient-controlled continuous interscalene block improve early functional rehabilitation after open shoulder surgery? Anesth Analg 2008;106(3):991-996.
- Jeevan R, Roy B, Neumann L, et al. The Nottingham augmentation device: an alternative approach to the management of massive rotator cuff tears? 20th Congress of the European Society for Surgery of the Shoulder and the Elbow 2006, Athens, Sep 20-23, 2006.
- 13. Kang L, Henn RF, Tashjian RZ, et al. Early outcome of Arthroscopic rotator cuff repair: a matched comparison with mini-open rotator cuff repair. Arthroscopy 2007;23(6):573-582.
- Kirkley A, Litchfield RB, Jackowski DM, et al. The use of the impingement test as a predictor of outcome following subacromial decompression for rotator cuff tendinosis. Arthroscopy 2002 Jan;18(1):8-15.
- Landreau P, Societe francaise de rhumatologie Fp. Place de l'arthroscopie dans la chirurgie reconstructrice de la coiffe des rotateurs. Seizieme journee de Bichat "Appareil locomoteur" - 29 mars 2003. Seance pleniere (1ere partie). Rhumatologie 2003;55(2):31-34. (Fre).
- Leggin BG, Kelley MJ, Ramsey ML, et al. Short-term outcome following arthroscopic rotator cuff repair. (abstract). J Orthop Sports Phys Ther 2005 Jan;35(1):a3-a4.
- O'Connor DA, Chipchase LS, Tomlinson J, et al. Arthroscopic subacromial decompression: responsiveness of disease-specific and healthrelated quality of life outcome measures. Arthroscopy 1999;15(8):836-840.
- Ozbaydar MU, Bekmezci T, Tonbul M, et al. [The results of arthroscopic repair in partial rotator cuff tears]. Acta Orthop Traumatol Turc 2006;40(1):49-55. (Tur).
- Park JY, Yoo MJ, Kim MH. Comparison of surgical outcome between bursal and articular partial thickness rotator cuff tears. (abstract). J Orthop Sports Phys Ther 2003 Sep;33(9):541.

- 20. Reinold MM, Macrina LC, Wilk KE, et al. The effect of neuromuscular electrical stimulation of the infraspinatus on shoulder external rotation force production after rotator cuff repair surgery. Am J Sports Med 2008;36(12):2317-2321.
- 21. Sclamberg SG, Tibone JE, Itamura JM, et al. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg 2004 Sep;13(5):538-541.
- 22. Singh H. The efficacy of continuous cryotherapy on the postoperative shoulder: a prospective, randomized investigation. J Shoulder Elbow Surg 2001 Nov;10(6):522-555.
- 23. Thur C, Julke M, Bircher HP. Die aufrichteosteotomie des akromions (AAO) als neues prinzip in der behandlung des Iimpingementsyndroms, insbesonders im zusammenhang mit der rekonstruktion von großen rotatorenmanschettenläsionen [Lifting osteotomy of the acromion as a new principle in treatment of impingement syndrome, especially in correlation with reconstruction of large rotator cuff lesions]. Unfallchirurg 1998 Mar;101(3):176-183. (Ger).

Excluded – Non-English (N = 79)

The following studies were excluded because they were published in a language other than English.

- Akpinar S, Ozalay M, Hersekli MA, et al. Rotator manset yirtiklarinin artroskopic yardimli Mini: acik yontemle tamiri [Arthroscopic assisted mini-open rotator cuff repair]. Artroplasti Artroskopik Cerrahi 2003;14(4):209-213. (Tur).
- 2. Augereau B, Grimberg J. Traitements, résulats fonctionnel et anatomique de la série [Fullthickness tears of the rotator cuff, including subscapularis: treatments, functional and anatomical results of the series]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):100. (Fre).
- Belgian Association for Arthroscopy ABA Bp. Rupture de la coiffe des rotateurs [Rotator cuff ruptures]. Acta Orthop Belg 1995;61(Suppl 1):3-36. (Fre).
- 4. Bellumore Y, Mansat P, Determe P, et al. Ruptures associées des tendons des muscles supra et infraspinatus [Full-thickness tears of the rotator cuff, including subscapularis: tendon ruptures of the supraspinatus and the infraspinatus muscles]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):113-117. (Fre).
- Bezer M, Aydin N, Guven O. Humerus baainin yukari kaymasi rotator kilif cerrahisinde: prognostic bir arac olarak kullanilabilir mi? [Superior excursion of the humeral head: can it be used as a prognostic tool on rotator cuff tear surgery?]. Marmara Med J 2006;19(1):1-5. (Tur).
- Boehm TD, Ilg A, Werner A, et al. Langzeitergebnisse (5-13 Jahre) nach lokaler rekonstruktion und deltoideuslappenplastiken bei massiven rotatormanschettendefekten [Long-term results (5-13 years) after surgical local repair and deltoid muscle flap for massive rotator cuff tears]. Z Orthop Ihre Grenzgeb 2004 Mar;142(2):228-234. (Ger).
- Boileau P, Ahrens P. Le long biceps "en sablier" ou long biceps piege: une autre cause de douleur et de blocage de l'epaule. Rev Chir Orthop Reparatrice Appar Mot 2003;89(8):672-682. (Fre).

- Boileau P, Coste JS, Deprey F, et al. Traitement arthroscopique des lésions non transfixiantes de la coiffe des rotateurs [Arthroscopic treatment of impingement and partial thickness tears of the rotator cuff of the shoulder]. Rev Chir Orthop Reparatrice Appar Mot 2004 Dec;90(8 Suppl):S35-S48. (Fre).
- 9. Boldin C, Schippinger G. Vergleich der infekthaufigkeit zwischen resorbierbaren und nicht resorbierbaren nahtmaterialien bei rotatorenmanschetten-operationen. Aktuelle Traumatol 2001;31(3):119-121.(Ger).
- Brox JI, Bohmer AS, Ljunggren AE, et al. Behandling av kronisk senebetennelse i skulderen [Treatment of chronic shoulder tendinitis]. Tidsskr Nor Laegeforen 1994 Feb 20;114(5):575-577. 9 (Nor).
- 11. Caira SF, Melanotte PL. Le rotture isolate parziali del tendine del sovraspinoso [Partial tears of the supraspinatus tendon]. Minerva Ortop Traumatol 1997;48(9):337-342. (Ita).
- Candiotto S, Majoni A, Londei L, et al. Il trattamento chirurgico del conflitto subacromiale e della rottura della cuffia dei rotatori: esperienza personale in 134 casi [Surgical treatment of the impingement syndrome and of the rotator cuff tears: personal experience in 134 cases]. Reumatismo 2002 Oct;54(4):308-315. (Ita).
- Catalano PA, Castagna A, Auliso M, et al. La sindrome del conflitto subacromiale: principi di trattamento artroscopico [Subacromial impingement syndrome: arthroscopic treatment]. Ortop Traumatol Oggi 1994;14(1):31-35. (Ita).
- 14. Charousset C, Duranthon LD, Grimberg J, et al. Êtude par arthroscanner de la cicatrisation tendineuse après réparation arthroscopique de la coiffe des rotateurs: analyse des facteurs prédictifs à propos d'une série consécutive de 167 réparations [Arthro-C-scan analysis of rotator cuff tears healing after arthroscopic repair: analysis of predictive factors in a consecutive series of 167 arthroscopic repairs]. Rev Chir Orthop Reparatrice Appar Mot 2006 May;92(3):223-233. (Fre).

- Cossu M, Spagnolo R, Bardelli D. L'intervento riabilativo nei pazienti sottoposti ad acromioplastica secondo Rockwood [Rehabilitative treatment in patients who have undergone acromioplasty according to Rockwood]. Riabilitazione 1998;31(1):3-12. (Ita).
- Coudane H, Vauge L, Nicoud C, et al. Les ruptures associées des supscapularis, supraspinatus et infraspinatus [Full-thickness tears of the rotator cuff, including subscapularis: ruptures of the subscapularis, supraspinatus and infraspinatus]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):127-132. (Fre).
- Demirhan M, Atalar AC, Kocabey Y, et al. Rotator manset yirtiklarinin artroskopik yardimli mini-acik yöntemle tamiri [Arthroscopic-assisted mini-open rotator cuff repair]. Acta Orthop Traumatol Turc 2002;36(1):1-6. (Tur).
- DeSimoni C, Ledermann T, Imhoff AB. Holmium: YAG-Laser beim "outlet impingement" der Schulter [Holmium:YAG laser treatment of outlet impingement syndrome: medium-term results]. Orthopade 1996;25(1):84-90. (Ger).
- Fabis J, Zwierzchowski H. Ocena punktowa Constanta reconstrukjci piercienia rotatorów [Constant point evaluation for reconstruction of the rotator cuff]. Chir Narzadow Ruchu Ortop Pol 1997;62(6):491-496. (Pol)
- Frank A, Societe francaise de rhumatologie PFp. Ruptures transfixiantes de la coiffe des rotateurs: decompression sous-acromiale sans reparation: Quelles coiffes faut-il reparer et comment ?. Quinzieme Journee de Bichat : sport et appareil locomoteur, 23 mars 2002. lere partie. Rhumatologie 2002;54(2):16-24. (Fre).
- Fukuda K. [Results of the operative producers of the rotator cuff tear: prospective study of the effect of postoperative local injection of sodium hyaluronate]. Yakuri to Chiryo (Japanese Pharmacology and Therapeutics) 2000;28(9):819-823. (Jpn).
- Fukushima S, Okamura K, Usui M, et al. [Arthroscopic surgical treatment for subacromial impingement syndrome]. Hokkaido Journal of Orthopedic and Traumatic Surgery 1995;38(1):22-25. (Jpn).

- 23. Gazielly DF. Resultats fonctionnels et anatomiques apres traitement chirurgical des ruptures de la coiffe des reacteurs. I: evaluation fonctionnelle et anatomique preoperatoire des ruptures de la coiffe des rotateurs [Functional and anatomic results following surgical treatment of rotator cuff tears. I: preoperatoire functional and anatomic assessment]. Rev Chir Orthop Reparatrice Appar Mot 1995;81(1):8-16. (Fre).
- Gleyze P, Augereau B, Gazielly DF. Méthodologie [Methodology in full-thickness tears of the rotator cuff, including subscapularis]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):90-92. (Fre).
- 25. Gleyze P, Thomazeau H, Societe Francaise d'-Arthroscophie F. Reparation endoscopique des ruptures de la coiffe des rotateurs. Etude des facteurs predictifs du resultat anatomique et fonctionnel: a propos de 87 cas. Rev Chir Orthop Reparatrice Appar Mot 2000;86(6):566-574. (Fre).
- Gosak A. Síndrome de fricción subacromial: cirugía artroscópia. [Arthroscopic subacromial decompression: a prospective analysis of 62 patients]. Prensa Med Argent 2001;88(10):1030-1035. (Spa).
- 27. Goutallier D. Quelles ruptures transfixiantes de la coiffe des rotateurs doivent etre reparees? Pourquoi, quand, comment? Cahiers d'enseignement de la SOFCOT 2003;82:1-14. (Fre).
- Gschwend N, Bloch HR, Bischof A. Langzeitergebnisse der operierten rotatormanschettenruptur [Long-term results of surgical management of rotator cuff rupture]. Orthopade 1991 Sep;20(4):255-261. (Ger).
- 29. Hermann B, Steiner D, Van TD. Operative therapie und ergebnisse bei rotatormanschettenruptur [Surgical treatment and results of rotator cuff tears]. Z Orthop Ihre Grenzgeb 1990;126(6):648-651. (Ger).
- Hoffmann F, Schiller M, Reif G. Arthroskopische rotatormanschettenrekonstuktion [Arthroscopic rotator cuff reconstruction]. Orthopade 2000 Oct;29(10):888-894. (Ger).
- Holtslag HR, Jaspers PJ, Marting LN, et al. Bevredigende resultaten van operatieve reconstructie van 'rotator-cuff' rupturen,1984-1990 [Satisfactory results of surgical reconstruction of rotator cuff ruptures, 1984-1990]. Ned Tijdschr Geneeskd 1994 Jul 16;138(29):1462-1466. (Dut).

- 32. Huguet D, Societe orthopedique de l'-Ouest. Suture de coiffe sous arthroscopie. 38eme reunion annuelle de la Societe orthopedique de l' Ouest, Saint-Malo, 9-11 juin 2005. Ann Orthop Ouest 2006;(38):149-154. (Fre).
- Ibragimov D. Diagnosis and treatment of traumatic damage to the musculus supraspinatus of the shoulder. Uzbekiston Tibbiet Zhurnali 2001;(1):127-128. (Usb).
- Jerosch J, Schroder M, Schneider T. Die arthroskopische resektion des AC-gelenkes (ARAC): indikationen, op-technik, ergebnisse [The arthroscopic resection of the ac-joint (ARAC):indications, Surgical technique, results]. Unfallchirurg 1998;101(9):691-696. (Ger).
- 35. Jimenez-Martin A, ngulo-Gutierrez J, Gonzalez-Herranz J, et al. La acromioplastia con reparación del manguito rotador y sus efectos en el test de Constant tras la aplicación de plasma rico en factores de crecimiento (PRGF) [Acromioplasty with rotator cuff repair and its effects in Constant test after application of plasma rich in growth factors (PRGF)]. Trauma 2008;19(1):6-12. (Spa).
- Johannsen HV, Andersen NH, Sojbjerg JO, et al. Artroskopisk subakromial dekompression. [Arthroscopic subacromial decompression]. Ugeskr Laeger 1997 Jan 6;159(2):166-170. (Dan).
- Jouve F, Graveleau N. Luxation recidivante anterieure de l'epaule et rupture de la coiffe des rotateurs : resultats du traitement chirurgical. Rev Chir Orthop Reparatrice Appar Mot 2008;94(7):659-669. (Fre).
- Kempf JF, Bonnomet F, Orthopaedica Belgica B. Etude multicentrique de 210 ruptures de la coiffe des rotateurs traitees par acromioplastie sous arthroscopie. Acta Orthop Belg 1995;61(Suppl 1):23-31. (Fre).
- Kempf JF, Marcillou P, Schlemmer B. Étude des différents groupes lésionnels [Fullthickness tears of the rotator cuff, including subscapularis: results of surgical treatment of isolated ruptures of the supraspinatus]. Rev Chir Orthop Reparatrice Appar Mot 1999;85(Suppl II):105-109. (Fre).

- Kenesi C, Barbato B. Place de l'acromioplastie dans le traitement chirurgical de la pathologie de la coiffe des courts rotateurs de l'epaule [Place of acromioplasty in the surgical treatment of the pathology of the short rotators cuff: report of 66 cases followed from one to ten years]. Rev Rhum Mal Osteoartic 1990;57(3):193-196. (Fre).
- Kenesi C. Conception biomécanique de l'epaule et ses conséquences chirurgicales: réfexions à propos d'une expérience personelle sur 250 épaules opérées [Biomechanics of the shoulder joint and Its surgical consequences: a personal-experience of 250 operated patients]. Bull Acad Natl Med 1994;178(8):1493-1507. (Fre).
- 42. Kessler MA, Lichtenberg S, Habermeyer P. Die rekonstruktion von großen rotatormanschettenrupturen. Eine neue technik der Sehnenrefixation mitdem Corkscrew-Fadenankersystem [Reconstruction of big rotator cuff ruptures: a new technique of tendon refixation with the corkscrew suture anchor system]. Unfallchirurg 2003 Oct;106(10):826-833. (Ger).
- 43. Klein W, Gassen A. Die endoskopische subakromiale dekompression bei kompletter rotatorenmanschettenruptur. Indikation, technik und nachuntersuchungsergebnisse. Arthroskopie 1993;6(3):107-111. (Ger).
- 44. Ladero MF, Maestro A, Martinez N, et al. Estudio clínico-laboral de la suturas artroscópicas del manguito rotador con anclajes biodegradables [Clinical-occupational study of all-arthroscopic rotator cuff suture using biodegradable anchors]. Patologia del Aparato Locomotor 2006;4(4):254-260. (Spa).
- 45. Langenhorst AMWW, Diercks RL, Eikelaar HR, et al. Passagesyndroom van de schouder bij patiënten jonger dan 40 jaar, behandeld met een partiële acromionresectie [Impingement problems of the shoulder in patients under 40 treated by partial acromioplasty]. Ned Tijdschr Geneeskd 1990;134(21):1050-1053. (Dut).
- Leblebici B, Adam M, Yapgu S, et al. [Comparing the effects of open versus closed kinetic chain scapulohumeral stability exercises in rotator cuff problems]. Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi 2007;53(4):134-137. (Tur).

- 47. Machner A, Pap G, Mohrenweiser L, et al. Vergleich von 2 operationstechniken isolierter supraspinatusruptur [Comparison of 2 surgical techniques in isolated supraspinatus rupture: a matched-pair study]. Unfallchirurg 2001 Jan;104(1):19-24. (Ger).
- 48. Mariotti U, Motta PO, Vassoney PF, et al. Decompressione sub-acromiale artroscopica versus riparazione bilanciata artroscopica nel trattamento chirurgico delle lesioni massive della cuffia dei rotatori [Arthroscopic subacromial decompression versus balanced arthroscopic repair in the surgical treatment of rotator cuff massive tears]. Minerva Ortop Traumatol 2005;56(3):121-126. (Ita).
- Midorikawa K. [The arthroscopic surgery of the shoulder: a topological and clinical study]. Igaku Kenkyu 1993 Feb;63(1):21-31. (Jpn).
- 50. Milano G, Deriu L, Ziranu F, et al. Il trattamento artroscopico della capsulite adesiva di spalla [Arthroscopic treatment of adhesive capsulitis of the shoulder]. Artroscopia 2004;5(2):70-79. (Ita).
- Miyazaki AN, Doneux SP, Saito RY, et al. Acromioplastia artroscópia e reparo das lesões do manguito rotador por "miniincisão" [Arthroscopic acromioplasty and repair of rotator cuff tears using the 'mini-open' approach]. Rev Bras Ortop 1999;37(7):415-420. (Por).
- 52. Musil D, Sadovsky P. Masivni ruptura rotátorové manzety: srovnáni mini-open a artroskopické rekonstrukce. Cast 2: artroskopicka rekonstrukce [Massive tears of the rotator cuff: comparison of mini-open and arthroscopic techniques. Part 2: arthroscopic repair]. Acta Chir Orthop Traumatol Cech 2007 Oct;74(5):318-325. (Cze).
- Orsi R, De T, V, Barisone P, et al. Personal experience in the treatment of 'painful shoulder'. Minerva Ortop Traumatol 1994;45(9):399-402. (Ita).
- 54. Orsi R, Nastro M, Brignolo M, et al. Risultati a medio termine della riparazione della cuffia dei rotatori. Verifica clinica e strumentale [Medium terms results of surgical repair of the rotator cuff]. Minerva Ortop Traumatol 1997;48(1-2):7-12. (Ita).
- 55. Pechoucek J. Faktory ovlivnujici operacni vysledky lecby roztrzene manzety rotatoru ramena [Factors affecting the surgical results of treatment of rotator cuff tears in the shoulder]. Acta Chir Orthop Traumatol Cech 1990 Feb;57(1):34-39. (Cze).

- Postel JM. Les ruptures isolees du sousscapulaire: manifestations osteo-articulaires et sport. Rev Rhum Ed Fr 1998;65(7):79-84. (Fre).
- 57. Pouget G, Thomazeau H. Ruptures transfixiantes de la coiffe des rotateurs. Ann Orthop Ouest 2001;(33):171-204. (Fre).
- Prochazka P. Vysledky artroskopické subakromiálni dekomprese u padesátiletých pacientu [Results of arthroscopic subacromial decompression in fifty-year old patients]. Acta Chir Orthop Traumatol Cech 2001;68(1):39-44. (Cze).
- 59. Russo A, Coari GC, Raffelini F, et al. Ricostruzione artroscopica delle rotture complete di grandezza piccola e media del sopraspinato: risultati a distanza di 2-6 anni [Arthroscopic repair of small to medium full thickness supraspinatus tears: outcome at 2 to 6 year follow up]. Artroscopia 2004;5(1):11-17. (Ita).
- 60. Seelig W, Kohler O, Gaechter A. [Treatment of rotator cuff ruptures]. In: Laffer U, Duerig M, P Regazzoni, eds. Basler Beitraege Zur Chirurgie, Band 3 Traumatologie und Rehabilitation: I Bewegungsapparat; (Basel Contributions to Surgery, Vol 3 Traumatology and Rehabilitation: I Locomotor Apparatus). Switzerland; 1991. p. 82-92. (Ger).
- 61. Skutek M, Zeichen J, Fremerey RW, et al. Outcomeanalyse nach offener rekonstruktion von rotatorenmanschettenrupturen: eine vergleichende beurteilung neuer bewertungsverfahren [Outcome analysis after open reconstruction of rotator cuff ruptures: comparative assessment of recent evaluation procedures]. Unfallchirurg 2001 Jun;104(6):480-487. (Ger).
- 62. Societe francaise d'-arthroscopie. Résumés des communications. Rev Chir Orthop Reparatrice Appar Mot 2004;90(8):3S76-3S95. (Fre).
- 63. Sonnery-Cottet B, Edwards B. Resultats du traitement chirurgical des ruptures de coiffe des rotateurs chez le tennisman veteran. J Traumatol Sport 2001;18(2):70-76. (Fre).
- 64. Steinbeck J, Halm H, Jerosch J, et al. Die ergebnisse der endoskopischen subacromialen dekompressionsoperation (ESD) bei tendinitis und partialruptur der rotatorenmanschette [Outcome of endoscopic subacromial decompression operation in tendinitis and partial rupture of the rotator cuff]. Z Orthop Ihre Grenzgeb 1998 Jan;136(1):8-12. (Ger).

- 65. Steinbeck J, Schneider M, Potzl W, et al. Vergleichende untersuchung der ergebnisse nach der offenen naht kompletter rotatorenmanschettendefekte mit und ohne resektion der lateralen klavikula [Comparison of the results of the surgical repair of fullthickness tears of the rotator cuff with and without resection of the lateral clavicle]. Z Orthop Ihre Grenzgeb 2002 Jul;140(4):385-389. (Ger).
- 66. Sudkamp NP. Offene oder geschlossene Akromioplastik? Arthroskopische Chirurgie im Schulter- und Kniegelenkbereich. Hefte Unfallheilkd 1994;(243):57-67. (Ger).
- Tascioglu F, Dalkiran I, Oner C. Parsiyel supraspinatus tendon tupturu olan subakromiyal sikisma sendromlu hastalarda dusuk doz lazer tedavisinin etkinligi [The efficacy of low-level laser in the treatment of subacromial impingement syndrome due to partial rupture of the supraspinatus tendon]. Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi 2003;49(6):18-22. (Tur).
- Teissier J, Gaudin P. Resultats de la reparation chirurgicale par tendon artificiel des larges ruptures de la coiffe des rotateurs: a propos de 38 patients ayant un recul de plus de 2 ans. Rev Chir Orthop Reparatrice Appar Mot 1992;78(1 Suppl):175-276. (Fre).
- Thomazeau H, Gleyze P, Societe ff-A. Arthroscopie dans les ruptures transfixiantes de la coiffe des rotateurs: resultats du Symposium de la SFA 1997. Congres sport et appareil locomoteur. Rhumatologie 1998;50(4-5):131-139. (Fre).
- Urbanek L, Karjagin V. Artoskopicka subakromialni dekomprese: vlastni zkusenosti a vysledky [Arthroscopic subacromial decompression: our experience and outcomes]. Acta Chir Orthop Traumatol Cech 2004;71(1):45-49. (Cze).
- Urbanek L, Vanecek V, Vasek P, et al. Artroskopicka paliativni resekce rotatorove manzety u nerekonstruovatelnych lezi [Arthroscopic palliative resection of the rotator cuff in patients with unreconstructible lesions]. Acta Chir Orthop Traumatol Cech 2007 Aug;74(4):268-272. (Cze).
- Valente A, Quaglia F, Ravera R. Lesioni della cuffia dei rotatori: trattamento artrotomico o artroscopico? [Lesions to the cuff of the rotator muscles: arthrotomic or arthroscopic treatment?]. Minerva Ortop Traumatol 2006;57(2):21-26. (Ita).

- 73. Vitullo A, Anzini M, Sgrambiglia R, et al. Riparazione artroscopica delle lesioni della cuffia dei rotatori: risultati a breve termine [Arthroscopic rotator cuff repair: results at short follow up]. Artroscopia 2004;5(1):18-24. (Ita).
- 74. von Engelhardt LV, von FM, Fahmy U, et al. MRT nach rekonstruktion der supraspinatussehne: MR-tomographische befunde [MRI after reconstruction of the supraspinatus tendon: MR-tomographic findings]. Z Orthop Ihre Grenzgeb 2004 Sep;142(5):586-591. (Ger).
- 75. Vontobel B, Simmen BR, Munzinger U, et al. Die arthroskopische behandlung des subakromialen impingementsyndroms: moglichkeiten und grenzen [Arthroscopic treatment of subacromial impingement syndrome: possibilities and limitations]. Schweiz Rundsch Med Prax 1993 Jan 26;82(4):99-105. (Ger).
- 76. Walch G, Nove-Josserand L, Orthopaedica Belgica B. Reparation chirurgicale des ruptures totales de la coiffe des rotateurs: resultats et limites. Acta Orthop Belg 1995;61(Suppl 1):17-20. (Fre).
- 77. Wollmerstedt N, Bohm DT, Kirschner S, et al. Prufung eines einfachen Schulterfunktionstests an operativ behandelten Patienten mit Rotatorenmanschettendefekt [Evaluation of a simple test for shoulder function in patients with surgically treated rotator cuff injuries]. Z Orthop Ihre Grenzgeb 2005 Jul;143(4):468-474. (Ger).
- Yesin I, Demirhan M, Sahinkaya S. Artroskopik subakromial dekompresyon ve mini-acik rotator manset tamiri yapilmis hastalarda rehabilitasyon sonuclarimiz [Rehabilitation results of patients whom their arthroscopic subacromial decompression and mini-open repair of the rotator cuff are made]. [Abstract] Fizyoterapi Rehabilitasyon 2001 Dec;12(3):134-135. (Tur).
- 79. Zamora-Navas P, Borras Verdera A, Vargas MV, et al. Rehabilitacion en las lesiones del tendon del musculo supraespinoso. Rehabil 2001;35(3):171-174. (Spa).

Excluded – Multiple Publication (N = 13)

The following articles were excluded because they were multiple publications of studies already included in the review.

- Flurin PH, Landreau P, Gregory T, et al. Reparation arthroscopique des ruptures transfixiantes de la coiffe des rotateurs: etude retrospective multicentrique de 576 cas avec controle de la cicatrisation [Arthroscopic repair of full-thickness cuff tears: a multicentric retrospective study of 576 cases with anatomical assessment]. Rev Chir Orthop Reparatrice Appar Mot 2005;91(8 Suppl):4S31-4S42. (Fre).
- Galatz LM, Griggs S, Cameron BD, et al. Prospective longitudinal analysis of postoperative shoulder function: a ten-year follow-up study of full-thickness rotator cuff tears. J Bone Joint Surg Am 2001 Jul;83(7):1052-1056.
- Goutallier D. Surgical treatment of unrepairable associated supraspinatus and infraspinatus tears by simple suture: conclusions. Rev Chir Orthop Reparatrice Appar Mot 2004;90(5 Suppl):1S168-1S169. (Fre).
- Goutallier D, Augereau B, Bensaida M, et al. [Surgical treatment of unrepairable associated supraspinatus and infraspinatus tears by simple suture]. Rev Chir Orthop Reparatrice Appar Mot 2004;90(5):154-170. (Fre).
- 5. Hata Y, Saitoh S, Murakami N, et al. A less invasive surgery for rotator cuff tear: miniopen repair. J Shoulder Elbow Surg 2001 Jan;10(1):11-16.
- 6. LaStayo PC, Wright TW, Jaffe R. Continuous passive motion after rotator cuff repair: a prospective outcome study [abstract]. Orthop Trans 1997;21(1):151.
- 7. Leblebici B, Adam M, Bagis S, et al. Comparing the effects of open versus closed kinetic chain scapulohumeral stability exercises in patients with impingement syndrome and rotator cuff tears. Ann Rheum Dis 2007;66(Suppl 2):574-575.
- Liem D, Lichtenberg S, Magosch P, et al. Arthroscopic rotator cuff repair in overheadthrowing athletes. Am J Sports Med 2008 Jul;36(7):1317-1322.

- 9. Mohtadi N, Hollinshead R, Fletcher J, et al. A randomized clinical trail comparing mini-open to open rotator cuff repair. (abstract). Clin J Sport Med 2005 Sep;15(5):397.
- Mohtadi NG, Hollinshead RM, Sasyniuk TM, et al. A randomized clinical trail comparing mini-open with open rotator cuff repair: twoyear outcomes. (abstract). Clin J Sport Med 2006 Mar;16(2):182.
- Montgomery T, Savoie F, Yerger B. A comparison of arthroscopic debridement and subacromial decompression vs. open surgical repair of full-thickness tears of the rotator cuff. South Med J 1991;84(9):2S54.
- Rokito AS, Zuckerman JD, Gallagher MA, et al. Strength after surgical repair of the rotator cuff. J Shoulder Elbow Surg 1996 Jan;5(1):12-17.
- Tashjian RZ, Bradley MP, Tocci S, et al. A comparison of prospective and retrospective assessment of functional outcome after rotator cuff repair. J Shoulder Elbow Surg 2008;17(6):853-859.

Unobtained Studies (N = 29)

The following articles could not be obtained through the university interlibrary loan system.

- Lazarus MD, Hoser HD. Rotator cuff repair with and without anterior acromioplasty: a prospective, randomized study [Abstract]. American Academy of Orthopaedic Surgeons 67th Annual Meeting 2000, Orlando (FL), Mar 15-19, 2000.
- 15. Walmsley R. Shoulder strength following surgical rotator cuff repair: a comparative analysis using isokinetic testing. JOSPT 1992;15(0005):00215-22.
- Neviaser TJ, Neviaser RJ, Neviaser JS. Incomplete rotator cuff tears. A technique for diagnosis and treatment. Clinical orthopaedics and related research 1994 Sep;(306):12-16.
- 17. Ritacco EA, Morao LE, Zapata FO, et al. Arthroscopic subacromial decompression with "mini open" biomechanical repair. Prensa Medica Argentina 2006;93(4):248-252.
- Rubin A. Longer recovery for large rotator cuff tear. Physician & Sportsmedicine 2000;28(2):29.
- 19. Castagna A. Arthroscopic repair of rotator cuff tears. 12th Congress of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA 2000), Congress Innsbruck, Innsbruck, May 24-27, 2006.
- Chudik SC, Master D, Obopilwe E, et al. Arthroscopic double-row rotator cuff repair using a knotless parachute tissue anchor. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, Illinois, Mar 22-26, 2006.
- Costic RS, Lopez-Vidriero E, Gilbertson LG, et al. Double row arthroscopic rotator cuff repair: effect of suture anchor location & insertion technique. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- 22. Emery R. Open repair of the rotator cuff one and two tendon tears. 4th Congress of the European Federation of National Association of Orthopaedics and Traumatology, Brussels, Jun 3-8, 1999.

- 23. Fleega BA, Kovacs GE, El Shewy MO, et al. Arthroscopic repair of large and massive rotator cuff tears; 15 years follow up. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- 24. Gobbi A, Zanazzo M, Constanzo D. Analysis of two different rotator cuff repair techniques with a specific rehabilitation program. 2nd European Congress of Sport Traumatology, Monte Carlo, May 1-3, 2003.
- 25. Handelberg F, Isenborghs S. Surgical treatment of full-thickness rotator cuff tears over the age of 60. 4th Congress of the European Federation of National Association of Orthopaedics and Traumatology, Brussels, Jun 3-8, 1999.
- 26. Hashiguchi H, Ito H, Banzai Y, et al. Outcomes of arthroscopic subacromial decompression alone for partial-thickness rotator cuff tear. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, Illinois, Mar 22-26, 2006.
- Hibbey CS, Babos A, Nosek Z. Colliquation Tendon necrosis after rotator cuff surgery [Poster]. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- Madanagopal SG, Pearsall AW, Ibrahim KA. Evaluation of patients undergoing arthroscopic and mini-open rotator cuff repair: minimum two-year evaluation. 24th Annual Meeting of the Mid-America Orthopaedic Association, San Antonio, Texas, Apr 19-23, 2006.
- 29. Matsumoto I, Ito Y, Tomo H, et al. Advantages of novel surgical technique: arthroscopic multiple suture method, for massive rotator cuff tears. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- Meier SW, Manigrasso MB. Rotator cuff repair: the effect of double-row fixation on repair interface motion. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, Illinois, Mar 22-26, 2006.

- 31. Meyer M, Boru B, Rousselin B, et al. Longterm clinical and anatomical outcomes of arthroscopic repair of small and moderate-sized rotator cuff tears with magnetic resonance arthrography control. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- 32. Naka Y, Ito Y, Tomo H, et al. Short-term clinical results of arthroscopic rotator cuff repair with knotless anchors. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- 33. Nakamichi N, Ikegami H, Ogawa K, et al. Quantitative assessment of the rotator cuff after open bankart procedure. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- Nakano M, Ito Y, Tomo H, et al. Arthroscopic evaluation for delamination in full-thickness rotator cuff tears. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- 35. Natsis K, Moebius U, Totlis T, et al. Complete arthroscopic repair of full thickness rotator cuff tears. 4th European Sports Medicine Congress, Lemesos, Oct 13-15, 2005.
- Neumann L. Mini-open repair of rotator cuff tears. 12th Congress of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA 2000), Congress Innsbruck, Innsbruck, May 24-27, 2006.
- Nord KD, Gothelf TK. The 3D repair: anterolateral portal for retrograde suture passage in arthroscopic rotator cuff repair. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, Illinois, Mar 22-26, 2006
- O'Holleran J, Obopilwe E, Altchek DW, et al. Tendon-bone interface force and pressure in single-row vs double-row arthroscopic rotator cuff repair. 2006 Annual Meeting of the American Academy of Orthopaedic Surgeons, Chicago, Illinois, Mar 22-26, 2006.
- 39. Tashjian R, Spenciner D, Leventhal E, et al. Initial fixation strength of repairs of massive rotator cuff tears. Arthroscopy 23(7):710-716.

- 40. Weber SC, Sager R. Arthroscopic repair of partial thickness rotator cuff tears: the safety of completing the tear. AANA, Arthroscopy Association of North America 22nd Annual Meeting, Phoenix, AZ, Apr 24-28, 2003.
- 41. Boehm TD, Rolf O, Baumann B, et al. Age depending outcome of open rotator cuff repairs. 20th Congress of the European Society for Surgery of the Shoulder and the Elbow (SECEC-ESSSE 2006), Athens, Sep 20-23, 2006.
- 42. Butcher WM, Esch JC. Arthroscopic repair of partial rotator cuff tears: a minimum 2-year follow-up. Arthroscopy Association of North America 23rd Annual Meeting, Orlando, FL, Apr 22-25, 2004.