
1 
 

Here we give a more rigorous mathematical treatment of the learning methods presented in section 3 of 
the paper. 

Method 1M : Direct Probability Estimation   

Given a set ,k iJ , we may define the parameter set Φ that has a single smoothing parameter  

 { }τΦ =  (0.1) 

Given the training set ( ),k iJΞ  the method ( )1M Φ   defines the probability distribution of a query-

document pair dp DP∈ .    
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and the quantity ( ),k i cΘ  is the expected frequency of the class label  c C∈  for the training set 

( ),k iJΞ , and is given by 
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Applying  (0.2) to the maximization process in(5), one can induce the optimal parameter  *
kτ  for a given 

test judge k . Given the optimal parameter *
kτ and the training set ( )kJΞ , the method 1M  provides the 

probability of the class label of a query-document pair dp DP∈   as follows: 
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where 
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We can then use (0.5) for evaluation in formula (6).  
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Method 2M : Direct Probability Estimation With Weighting Parameters. It is not optimal to put each 

judge on an equal footing for his class label judgments of query- document pairs as the previous method 

1M  does since the quality or reliability of judgments will differ among judges.   Given a judge k , let us 

set 
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Incorporating the parameter ,j cw  for the class label c made by the judge j  into the method 1M , the 

method 2M   defines the probability distribution over the class variable c  

 

 

 ( ) ( )( )
( ) ( ) ( )

( ) ( )
,

,

*
, ,

2 , *
,

exp
| ,

exp 11
k i

k i

dp
j j c k i kj J

dp k k i dp
j j c kc C j J

c w c
P c M J

c w

δ ζ τ

δ ζ τ
∈

′′∈ ∈

− +Θ ⋅
Φ Ξ =

′− + ⋅

∑
∑ ∑

 (0.8) 

where *
kτ  is the smoothing factor obtained from the method 1M . Here we lose no generality by using *

kτ

as determined for 1M and the same k .  Just as for 1M  we may apply (0.8) in (5) to induce the optimal 
*
kΦ . Then we may set 
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and use (0.9) for evaluation in formula (6). 

Method 3M : Correlation Matrix  with Weighting Parameters. Given a set ,k iJ  and a query document 

pair dp DP∈ , let us define the correlation matrix for a judge ,k ij J∈    
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We may sum up (0.10) over all query-document pairs in the set DP  
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Then normalizing each row in the matrix (0.11), we  get the following  normalized correlation matrix 
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We may view  ( ), ,

j
k i m n

Λ  as the probability of the class label being n  when the class label m is chosen by 

judge j .  Because judges differ in their reliability, let us introduce the parameter ,j cv  for the purpose of 

weighting  row c C∈  of the correlation matrix  ,
j
k iΛ

 
corresponding to judge ,k ij J∈ .  Then the method 

3M  defines the probability distribution for a query- document pair dp DP∈  by  
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where  
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We then determine *
kΦ  in the standard way and apply the result to obtain  
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where the correlation matrix j
kΛ  can be obtained removing the test judge k only 
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Method 23M :  Combining the methods 2M  and 3M .  
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We can combine the methods 2M  and 3M   defining the probability distribution over a class label c for a 

query-document pair  dp  by 

 

( ) ( )( )
( ) ( ) ( ) ( )( ){ } ( )

( ) ( ) ( ) ( )( ){ }
,

,

3 ,

, , , ,,

, , , ,

| ,  =

exp exp

exp exp 11
k i

k i

dp k k i

dp dp j
j j c j j m k i k ij J m C m c

dp dp j
j j c j j m k ij J c C m C m c

P c M J

c w m v c

c w m v

δ ζ δ ζ τ

δ ζ δ ζ τ

∈ ∈

′′∈ ∈ ∈ ′

Φ Ξ

− + − Λ +Θ

′− + − Λ +

∑ ∑
∑ ∑ ∑

 (0.17) 

where  
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We then determine *
kΦ  in the standard way and complete the definition of the method analogous to 

2M  and 3M .  

Method 4M :  Intrinsic Judgments from a Weighted Average. 

Yu et. al. devised the method whereby an intrinsic value (judgment) can be obtained from a suitably 

weighted average over judgments for any given item. Given the judge set ,k iJ  and a query- document 

pair dp DP∈ , one defines the weighted average of judgments of a query document pair dp DP∈  by 
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Here the numbers jr are a nonnegative normalized set and are designed to reflect the importance of 

each judges judgments.  A judge’s judging capability is reflected in the average quadratic error in her 
judging history on all query-document pairs in DP : 
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Starting with uniform weighting, the algorithm iterates eqs. (0.19), (0.20), and (0.21) to convergence to a 

solution. Once the solution has been obtained and we have the intrinsic class values ,
dp
k iµ

 
of query-

document pairs, we can define a probability distribution  
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where { }k kσΦ = .  We then employ (0.22) to implement the optimization process  (5)  and induce the 

optimal { }* *
k kσΦ = .  Next we replace ,k iJ  by kJ  in the equations (0.19), (0.20), and (0.21) and solve to 

obtain the  intrinsic values dp
kµ . We can then define 
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and use (0.23) for evaluation as defined in (6).  

 

Method 5M : Maximum Entropy Classifier.  

For details of the Maximum Entropy classifier we refer the reader to (Berger, Pietra, and Pietra, 1996)30.  

Here data points to be classified correspond to the query-document pairs .dp DP∈  In order to apply a 

maximum entropy classifier we need to define a class label and features for each instance.   Given a 

judge set ,k iJ  and a query- document pair dp DP∈ , let us define an instance corresponding to a judge 

,k ij J∈
 
as  

 ( ) ( ){ }
, ,

, , ,
k i j

dp dp dp
k i l jl J

j l ζ ζ
∈

 =  
 

ω  (0.24) 

where the first coordinate, ( ){ }
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, is the set of features  and the second coordinate, dp
jζ , is the 

class label for the instance.  The complete set of instances may be represented as 
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Now the maximum entropy classifier requires a regularization parameter λ , so for us { }k kλΦ = .  In 

order to define the feature functions required by the maximum entropy method we let ,k iω∈Ω  and 
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allow 1ω  to represent the first coordinate or set of features for the instance and 2ω  the second 

coordinate or label of the instance. Then for each pair ( ),j m  where ,k ij J∈  and m C∈   and for each 

c C∈ there is a feature function ( ),
c
j mf  defined by 
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,Training the classifier on  will produce a set of weights  k iΩ
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We can use these weights to estimate label probabilities for any object whose features are appropriate.  

We apply them to the object dp  with the set of features ( ) ( ){ }
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where Z is the standard normalizing factor.   

Applying  (0.28) to the maximization process (5), we can induce the optimal parameter  { }* *
kλΦ =  for 

given test judge k . Given the optimal parameter *
kλ   , were rewrite (0.24) as 
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and train the maximum entropy classifier on kΩ  using *
kλ . We then redefine the feature set for the 
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where ( ),j m
cα   are the newly learned weights based on (0.30).  We then use (0.31) for evaluation as 

defined in (6). 

 

 

 


