Here we give a more rigorous mathematical treatment of the learning methods presented in section 3 of
the paper.

Method M, : Direct Probability Estimation
Given a set Jk’i , we may define the parameter set @ that has a single smoothing parameter
O ={r} (0.1)

Given the training setE(Jkyi) the method M, (CD) defines the probability distribution of a query-

document pairdp € DP.

Zjejklé‘(é/jdp —c)+0,,(c)r

Pdp (ClMl(cD)’E(‘]k,i)): 11+11.7 (0.2)
where
1,ifX=0
5(X) :{ . (03)
0, otherwise
and the quantity @k’i (C) is the expected frequency of the class label ¢ € C for the training set
E(‘]k,i ), and is given by
1 dp
Oy, (C) = WdeeDP ZjeJk_, 5(41' _C)' (0.4)

Applying (0.2) to the maximization process in(5), one can induce the optimal parameter r; for a given
test judge k . Given the optimal parameter T: and the training set E(Jk ) , the method M, provides the

probability of the class label of a query-document pair dp € DP as follows:

>58¢ —c)+e,(c) =
12+12-7,

P (c|M1(q>’;),5(Jk))= (0.5)

where

1
0, (C) = WdeEDP ZjeJk 5(4?‘) _C)' (0.6)

We can then use (0.5) for evaluation in formula (6).



Method M, : Direct Probability Estimation With Weighting Parameters. It is not optimal to put each

judge on an equal footing for his class label judgments of query- document pairs as the previous method

M, does since the quality or reliability of judgments will differ among judges. Given a judge k,letus

set

, ={w, " i), 0.7)

Incorporating the parameter W for the class label C made by the judge ] into the method M,, the

method M, defines the probability distribution over the class variable €

X, 8(6F —c)exp(w, )+, (c) 7
zc’eCZjeJkyi 5(4’;‘!3 _C')eXp(Wj‘c,)—l—ll.z';

where ’l': is the smoothing factor obtained from the method M, . Here we lose no generality by using T;

Py (cIM, (2,),2(3y;)) (0.8)

as determined for M, and the same K. Just as for M, we may apply (0.8) in (5) to induce the optimal

CD; . Then we may set

X, 0(¢7 —c)ep(wi) +0u (0) 7
Zc’eCZjeJk 5(4,;1;) _C’)eXp(W?,c')+12'T;

and use (0.9) for evaluation in formula (6).

Pdp(C|M2(CD;)’E(Jk)) (0.9)

Method M;: Correlation Matrix with Weighting Parameters. Given a set Jk’i and a query document

pair dp € DP, let us define the correlation matrix for a judge j € Jk'i

()\‘li,i )1pn - Z|6Jk,i,,~ 5(4;1’) - m)é(é/'dp a n) where m, n <C. (0.10

We may sum up (0.10) over all query-document pairs in the set DP

()“'ivi )m,n - degop(x'ﬂvi):n' (0.11)

Then normalizing each row in the matrix (0.11), we get the following normalized correlation matrix



Al ‘%
S W

We may view (Ad i) as the probability of the class label being N when the class label M is chosen by
'/ m,n

(0.12)

judge j . Because judges differ in their reliability, let us introduce the parameter Ve for the purpose of
weighting row C € C of the correlation matrix Alf'i corresponding to judge | € Jk'i . Then the method

M, defines the probability distribution for a query- document pair dp € DP by

_ ZjeJk’i Zmecé‘(m _é/idp)exp(vj,m)(/\l{,i )m,c +0,; (C)T

R ) 90 S o SR Al
where
D, = {vjlc}cj: Uz, (0.14)
We then determine CD; in the standard way and apply the result to obtain
. S(¢® - T (A C) .
Pe (C| Ms(q):)’a(‘]k)) = Zjdkzmec (gj ":)eXp(VJ,m)(* k)m,c-.'_ k(C)Tk* (0.15)
ZjeJk Zc'ec Zmec 5(§J P - m)eXp(Vj’m )(‘Ali )m,c’ +12Tk
where the correlation matrix Ai can be obtained removing the test judge k only
(1), = X o(¢p-m)-5(¢® -n)
T dedy
()\"2 )m,n = deeDP (kd ):qpn (0.16)
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Method M,;: Combining the methods M, and M,.



We can combine the methods M, and M, defining the probability distribution over a class label Cfor a

guery-document pair dp by

Py (CIMy(@,).2(3,,))
Z jedy, {5(§Jdp N C)eXp(ijc ) + ZmeC 5(m - é/Jdp )exp (Vj,m )(Adl )m’c} +0,; (C) T (0.17)
Y T8 (67 - )exp(w, o)+ 2, S(m= Jexp (v, ) (AL, | +11e

where

O, :{Wj,c}ceC u{vjlc}ceC u{r}. (0.18)

i<l el

We then determine CD: in the standard way and complete the definition of the method analogous to

M, and M,.
Method M, : Intrinsic Judgments from a Weighted Average.

Yu et. al. devised the method whereby an intrinsic value (judgment) can be obtained from a suitably

weighted average over judgments for any given item. Given the judge set Jk‘i and a query- document

pair dp € DP, one defines the weighted average of judgments of a query document pair dp € DP by
d d
Her szejkif,-é“,»p- (0.19)

Here the numbers ryarea nonnegative normalized set and are designed to reflect the importance of

each judges judgments. A judge’s judging capability is reflected in the average quadratic error in her
judging history on all query-document pairs in DP :

ej? :ﬁzdpeop(gﬁp -1 )2 foranyjeJy. (0.20)

Then the weights may be defined by

fo=—_31 (0.21)



Starting with uniform weighting, the algorithm iterates egs. (0.19), (0.20), and (0.21) to convergence to a

solution. Once the solution has been obtained and we have the intrinsic class values ﬁ:ﬁ’ of query-

document pairs, we can define a probability distribution

Py (1M (®,),E(3,,))=exp| - 20 /Zcecep (C_”k') (0.22)
k

where @, = {Uk} . We then employ (0.22) to implement the optimization process (5) and induce the
optimal @; = {0';} . Next we replace J, ; by J, inthe equations (0.19), (0.20), and (0.21) and solve to
obtain the intrinsic values ,ufp. We can then define
—d ! d
’) (c-°)

Pdp(c| M4(®;),E(Jk)):exp > exXp —ﬁ (0.23)
Ok

and use (0.23) for evaluation as defined in (6).

Method M, : Maximum Entropy Classifier.

For details of the Maximum Entropy classifier we refer the reader to (Berger, Pietra, and Pietra, 1996)°.
Here data points to be classified correspond to the query-document pairs dp € DP. In order to apply a
maximum entropy classifier we need to define a class label and features for each instance. Given a

judge set Jk'i and a query- document pair dp € DP, let us define an instance corresponding to a judge

jeld,;as

of ()= ({(I,g,dp )}lejm ,gj“p] (0.24)

where the first coordinate, {( é’,dp )} , is the set of features and the second coordinate, Q’Jdp ,isthe

Eklj

class label for the instance. The complete set of instances may be represented as

dpeDP

Q, ={of(j)} . (0.25)

JE‘Jk,I

Now the maximum entropy classifier requires a regularization parameter A, so for us @, = {ik} . In

order to define the feature functions required by the maximum entropy method we let @ € Qk'i and



allow @, to represent the first coordinate or set of features for the instance and @, the second
coordinate or label of the instance. Then for each pair (j, m) where jeJ,; and meC and for each

¢ € C there is a feature function f(cj‘m) defined by

1if (j,m)ew andc =,
f¢ (o,0,)= . (0.26)
“’m)( 10 2) {0 otherwise
Training the classifier on , ; will produce a set of weights
{aﬁ‘”m)}. (0.27)

We can use these weights to estimate label probabilities for any object whose features are appropriate.

We apply them to the object dp with the set of features n(dp, K, i) = {( j,g”?p )} and obtain the
jedk;

probability estimates

_ 1 T .
Py (CIMs(®,),2(3,;)) = >exp > amefe (n(dpkii).c) (0.28)
Z (J,m)en(dp k,i),c'eC
where Z is the standard normalizing factor.
Applying (0.28) to the maximization process (5), we can induce the optimal parameter @ = {ﬂ:} for

given test judgek . Given the optimal parameterl: , were rewrite (0.24) as

oy () =({(|1§|dp )}IEJM 74}"’) (0.29)

and (0.25)

dpeDP

Q, ={of (i)} (0.30)

jedy
and train the maximum entropy classifier on €, using l: We then redefine the feature set for the

object dp by n(dp, k) = {( j,g”?p )}jEJk and in analogy with (0.28) set

Pdp(c|MS(CD’;),E(JK)):%exp[(_ | > e, f(j’ym)(n(dp,k),c)j (0.31)
j,m)e

7(dp.k),c'eC



(3,m)

c

defined in (6).

where & are the newly learned weights based on (0.30). We then use (0.31) for evaluation as



